
WORD EMBEDDING
Count-based and Predictive Models

Prof. Marco Viviani

marco.viviani@unimib.it

mailto:marco.viviani@disco.unimib.it

WORD EMBEDDINGS

Low-dimensional dense word vectors

Learning Embeddings (Dense Vectors)

Two (main) types of models:

• Count-based models

• Distributed semantics models

• Predictive models

• Neural network models

Count-based models

• Count-based models

• Compute the statistics of how often each word co-occurs with its
neighbor words in a large text corpus;

• Then map these count-statistics down to a small, dense vector for
each word.

• Count-based models learn vectors by doing dimensionality
reduction on a term-context matrix.

• The term-context matrix contains the information on how frequently
each “word” (stored in rows), is seen in some “context” (the columns).

• They factorize this matrix to yield a lower-dimensional matrix
of words and features, where each row yields a (dense)
vector representation for each word.

Count-based models

• Latent Dirichlet Allocation (LDA)

• Based on a term-document matrix (suitable for topic modeling)

• Singular Value Decomposition (SVD) → Linear algebra

• Latent Semantic Analysis (LSA)

• GloVe (Pennington, Socher, Manning, 2014)

General idea

→

Predictive models

• Predictive models directly try to predict a word from its

neighbors in terms of learned small, dense embedding

vectors (considered parameters of the model).

• Neural-network-inspired models:

• word2vec (Mikolov et al., 2013)

• FastText (Bojanowski et al., 2016)

COUNT-BASED MODELS

Singular Value Decomposition (SVD)

Singular Value Decomposition

• Any rectangular 𝑤 × 𝑐 matrix 𝑋 can be expressed

as the product of 3 matrices:

• 𝑈: a 𝑤 × 𝑚 matrix where the 𝑤 rows correspond to rows

of the original matrix 𝑋, but the 𝑚 columns represents a

dimension (feature) in a new latent space.

• 𝑆: diagonal 𝑚 × 𝑚 matrix of singular values expressing

the importance of each dimension (feature).

• 𝑉𝑇: transposed 𝑚 × 𝑐 matrix where the 𝑐 columns

correspond to the columns of the original matrix 𝑋, but

the 𝑚 rows correspond to singular values.

Classic linear algebra result.
Golub, G. H., & Reinsch, C. (1971). Singular value decomposition and least

squares solutions. In Linear Algebra (pp. 134-151). Springer, Berlin, Heidelberg.

https://link.springer.com/chapter/10.1007%2F978-3-662-39778-7_10

https://link.springer.com/chapter/10.1007/978-3-662-39778-7_10

Singular Value Decomposition

𝑋 𝑈

𝑆 𝑉𝑇

=

𝑤 × 𝑐 𝑤 × 𝑚

𝑚 × 𝑚 𝑚 × 𝑐

Context words

T
a
rg

e
t
w

o
rd

s

SVD and Embedding: Latent Semantic Analysis

• If, instead of keeping all 𝑚 dimensions, we just keep the

top-𝒌 singular values, we obtain a low-rank

approximation of the original matrix 𝑋.

Dumais, S. T. (2004). Latent semantic analysis. Annual review

of information science and technology, 38(1), 188-230

𝑋 𝑈

𝑆 𝑉𝑇

≈

𝑤 × 𝑐 𝑤 × 𝑚

𝑚 × 𝑚 𝑚 × 𝑐

Context words

T
a
rg

e
t
w

o
rd

s

𝑘

𝑘 𝑘
=

𝑘

SVD and Embedding: Latent Semantic Analysis

• Instead of multiplying, we just make use of the matrix 𝑈.

• In this way, we obtain the following matrix:

• Each row of 𝑈:

• A 𝑘-dimensional vector,

• Representing a word in the vocabulary.

• 300 dimensions are commonly used.

• 𝑘 = 300

𝑈

𝑤 × 𝑘

T
a
rg

e
t
w

o
rd

s

Features

SVD applied to term-context matrix

|𝑉|

|𝑉|

SVD applied to term-context matrix

𝑋 𝑈 𝑉𝑇

𝒌

SVD applied to term-context matrix

𝑋 𝑈

𝑉𝑇

SVD applied to term-context matrix

Embedding for

the word 𝑤𝑖

𝑤1

𝑤2

𝑤3

…

𝑤𝑖

…

𝑤 𝑉

Simple SVD word vectors in Python

• Corpus: I like deep learning. I like NLP. I enjoy flying.

Simple SVD word vectors in Python

• Printing first two columns of 𝑈 corresponding to the 2

biggest singular values

Singular Value Decomposition

Drawbacks:

• The dimensions of the matrix change very often (new

words are added very frequently and corpus changes in

size).

• The matrix is extremely sparse since most words do not

co-occur.

• Quadratic cost to perform SVD.

COUNT-BASED MODELS

GloVe

Origins (2014)

Introduction

• The model leverages statistical information by training

only on the non-zero elements in a word-word co-

occurrence matrix, rather than:

• on the entire sparse matrix (e.g., SVD)

• on individual context windows in a large corpus (e.g., word2vec).

• Global corpus statistics are captured directly by the

model.

Basic notation

• 𝑋 → the term-context matrix.

• 𝑋𝑖𝑗 → the frequency of word 𝑗 occurring in context

of word 𝑖.

• 𝑋𝑖 = σ𝑘 𝑋𝑖𝑘 → the global frequency of any word

appearing in the context of word 𝑖.

• 𝑃𝑖𝑗 = 𝑃 𝑗 𝑖 =
𝑋𝑖𝑗

𝑋𝑖
 → probability that word 𝑗 appears in the

context of word 𝑖 → co-occurrence

 probability

Example

• Can certain aspects of meaning be extracted directly

from co-occurrence probabilities?

• Consider two words 𝑖 and 𝑗 that exhibit a particular aspect

of interest; for concreteness, suppose we are interested in

the concept of thermodynamic phase, for which we

might take 𝑖 = 𝑖𝑐𝑒 and 𝑗 = 𝑠𝑡𝑒𝑎𝑚.

• The relationship of these words can be examined by

studying the ratio of their co-occurrence probabilities with

various “probe” words (i.e., context words), 𝑘.

Example

• For words 𝑘 related to 𝑖 = 𝑖𝑐𝑒 but not 𝑗 = 𝑠𝑡𝑒𝑎𝑚, say 𝑘 =

𝑠𝑜𝑙𝑖𝑑, the ratio
𝑃𝑖𝑘

𝑃𝑗𝑘
should be large.

• Similarly, for words 𝑘 related to 𝑗 = 𝑠𝑡𝑒𝑎𝑚 but not 𝑖 = 𝑖𝑐𝑒,

say 𝑘 = 𝑔𝑎𝑠, the ratio
𝑃𝑖𝑘

𝑃𝑗𝑘
should be small.

• For words 𝑘 like 𝑤𝑎𝑡𝑒𝑟 or 𝑓𝑎𝑠ℎ𝑖𝑜𝑛, that are either related

to both 𝑖 = 𝑖𝑐𝑒 and 𝑗 = 𝑠𝑡𝑒𝑎𝑚, or to neither, the ratio
𝑃𝑖𝑘

𝑃𝑗𝑘

should be close to “1”.

Meaning extraction

• Co-occurrence probabilities for target words 𝑖𝑐𝑒 and 𝑠𝑡𝑒𝑎𝑚
with selected context words from a 6 billion token corpus.

• Only in the ratio capture non-discriminative words like 𝑤𝑎𝑡𝑒𝑟
and 𝑓𝑎𝑠ℎ𝑖𝑜𝑛, because:

• large values (much greater than 1) correlate well with properties
specific to 𝑖𝑐𝑒.

• small values (much less than 1) correlate well with properties specific
of 𝑠𝑡𝑒𝑎𝑚.

The GloVe model

• Starting point for word vector learning?

• Co-occurrence probabilities ratios instead of

probabilities themselves.

• Co-occurence probabilities ratios capture relevant

information about words’ relationships.

The GloVe model

• The ratio
𝑃𝑖𝑘

𝑃𝑗𝑘
depends on three words 𝑖, 𝑗, and 𝑘

• The most general model takes the form:

𝐹 𝑤𝑖 , 𝑤𝑗 , 𝑤𝑘 =
𝑃𝑖𝑘

𝑃𝑗𝑘

where 𝑤 ∈ R
𝑑 are word vectors and 𝑤 ∈ R

𝑑 are separate

context word vectors.

The GloVe model

• The GloVe model constructs this 𝐹 function to learn

word vectors representation.

• After a series of steps, which we omit, a simplification

over 𝐹 𝑤𝑖 , 𝑤𝑗 , 𝑤𝑘 =
𝑃𝑖𝑘

𝑃𝑗𝑘
is as follows:

𝑤𝑖
𝑇 𝑤𝑘 + 𝑏𝑖 + ෨𝑏𝑘 = log(𝑋𝑖𝑘) (*)

some parameters to be

selected

We are interested in these vectors!

The GloVe model

• Then, GloVe builds an objective function 𝐽 that

associates word vectors to text statistics.

• Least squares regression model.

• Cast the equation (*) as a least squares regression

model.

Pennington, J., Socher, R., & Manning, C. (2014). Glove:

Global vectors for word representation. In Proceedings

of the 2014 conference on empirical methods in natural

language processing (EMNLP) (pp. 1532-1543)

Pharenteses: Least squares regression

• A least squares regression model, often referred to as
linear regression, is a statistical approach used to:

Model the relationship between a dependent variable and
one or more independent variables by finding the best-

fitting linear equation.

• The “least squares” part of the name refers to the method
used to estimate the parameters of the linear equation by:

Minimizing the sum of the squared differences between the
observed values and the values predicted by the model.

The GloVe model

• Then, GloVe builds an objective function 𝐽 that
associates word vectors to text statistics.
• Least squares regression model.

• Cast the equation (*) as a least squares regression
problem with a weighting function 𝑓(𝑋𝑖𝑘).

𝐽 =

𝑖,𝑘=1

𝑉

𝑓 𝑋𝑖𝑘 𝑤𝑖
𝑇 𝑤𝑘 + 𝑏𝑖 + ෨𝑏𝑘 − log 𝑋𝑖𝑘

2

where 𝑉 is the size
of the vocabulary.

Pennington, J., Socher, R., & Manning, C. (2014). Glove:

Global vectors for word representation. In Proceedings

of the 2014 conference on empirical methods in natural

language processing (EMNLP) (pp. 1532-1543)

The GloVe model – Simplification

𝐽 =
1

2

𝑖,𝑘=1

𝑉

𝑓 𝑋𝑖𝑘 𝑤𝑖
𝑇 𝑤𝑘 − log 𝑋𝑖𝑘

2

• We end up with 𝑈 and 𝑉 from all the vectors 𝑢 = 𝑤 and
𝑣 = 𝑤

• What to do with the two sets of vectors?
• Both capture similar co-occurrence information. It turns out, the

best solution is to simply sum them up (one of many
hyperparameters explored in GloVe):

𝑋𝑓𝑖𝑛𝑎𝑙 = 𝑈 + 𝑉

https://nlp.stanford.edu/projects/glove/

https://nlp.stanford.edu/projects/glove/

PREDICTIVE MODELS

word2vec and FastText

Origins (2013)

Origins (2013)

word2vec

• This technique provides a tool to create collections of

similar concepts automatically, on raw texts and without

advanced language skills on the part of the user.

• Raw texts are used as implicitly supervised

training data.

• No need for hand-labeled supervision.

• Not all the “traditional” pre-processing steps performed with the

BoW and TF-IDF representations are necessary → Next slides.

word2vec

• The largest the training set, the better the performance

• Very good performances are obtained by employing very large

texts in the learning phase (> 10M of words).

• The texts should include as many different words as

possible.

• Code available on the Web:

• https://code.google.com/archive/p/word2vec/

• https://www.tensorflow.org/text/tutorials/word2vec

• https://www.kaggle.com/code/pierremegret/gensim-word2vec-

tutorial

https://code.google.com/archive/p/word2vec/
https://www.tensorflow.org/text/tutorials/word2vec
https://www.kaggle.com/code/pierremegret/gensim-word2vec-tutorial
https://www.kaggle.com/code/pierremegret/gensim-word2vec-tutorial

Main idea (neural network word embeddings)

• Similar to language modeling but predicting context,

rather than next word.

𝑃(𝑐𝑜𝑛𝑡𝑒𝑥𝑡|𝑤𝑜𝑟𝑑) maximize

• In practice:

𝐽 = 1 − 𝑃(𝑐𝑜𝑛𝑡𝑒𝑥𝑡|𝑤𝑜𝑟𝑑) minimize

• We adjust the vector representations of words to

minimize the loss.

Directly learning low-dimensional vectors

Relevant literature:

• Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1988). Learning
representations by back-propagating errors. Cognitive modeling, 5(3).

• Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A neural
probabilistic language model. Journal of machine learning
research, 3(Feb), 1137-1155.

• Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., &
Kuksa, P. (2011). Natural language processing (almost) from
scratch. Journal of machine learning research, 12(Aug), 2493-2537.

• The word2vec papers illustrated before and explained in the next
slides.

Two basic architectures

• There are two architectures used by word2vec:

• Skip-gram

• Continuous bag-of-words (CBOW)

• Two (moderately efficient) training methods:

• Softmax

• Negative sampling

Algorithms for producing

word vectors

Softmax and negative sampling

Softmax

• A function used, in the context of word2vec and word
embedding, to predict the context words (or target words) for a
given input word → all the vocabulary.

• Softmax “bottleneck”.

Negative sampling

• A technique introduced to address the computational
inefficiency of softmax in training word embeddings.

• Instead of predicting the entire vocabulary, select a small
number of negative samples (typically a few dozen) and the
true context words.
• The negative examples are words that do not appear in the context of the

target word.

• The model is trained to assign higher probabilities to the true
context words and lower probabilities to the negative samples.

word2vec Architecture

Skip-gram model

• Predict the

surrounding words

(context words), based

on the current word

(the center word).

• Mikolov et. al. 2013.

Efficient Estimation of

Word Representations

in Vector Space.

CBOW model

• Predict the current

word (the center word)

based on the

surrounding words

(context words).

• Mikolov et. al. 2013.

Efficient Estimation of

Word Representations

in Vector Space.

The skip-gram model

Skip-gram

• It predicts context words from the target word.

The model (1)

• Given a sliding window of a fixed size moving
along a sentence:
• the word in the middle is the “target”;
• those on its left and right within the sliding window

are the context words.

The model (2)

The model (3)

• Given a sliding window of a fixed size moving
along a sentence:
• the word in the middle is the “target”;
• those on its left and right within the sliding window

are the context words.

• The skip-gram model is trained to predict the
probabilities of a word being a context word
for the given target.

The model

• The hidden layer is the word embedding of size 𝑁.

The CBOW model

CBOW

• The Continuous Bag-of-Words (CBOW) is another
similar model for learning word vectors.

• It predicts the target word from source context
words.

The model (1)

The model (2)

Skip-gram VS CBOW

• Skip-gram: works well also with a smaller amount of the

training data, represents well even rare words or phrases.

• CBOW: several times faster to train than the skip-gram,

slightly better accuracy for the frequent words.

FastText (Origins, 2017)

FastText: Main characteristics

• Subword Embeddings

• It breaks words down into smaller character n-grams (subwords) and
learns embeddings for these subwords.

• This allows FastText to capture morphological and syntactic
information, making it effective for handling out-of-vocabulary words
and languages with rich morphology.

• Efficiency

• Designed for efficient training and inference.

• Its subword modeling reduces the dimensionality of the embedding
space.

• It stores embeddings for subwords and composes word embeddings from
these subword representations.

• This can lead to significant memory savings, especially when dealing
with large vocabularies, making it more memory and computationally
efficient compared to some other embedding models.

From WORD vectors to DOCUMENT vectors

• At this point we have word embeddings, such as those

generated by methods like Singular Value Decomposition

(SVD), GloVe, Word2Vec, or FastText.

• What about DOCUMENT representation?

• We can use word embeddings to represent a document

by combining the embeddings of the individual words in

the document.

Average word embeddings

• Calculate the mean (average) of the word embeddings for

all words in the document.

• This is a simple and effective method.

• It captures the overall semantic content of the document

but may lose some word order information.

Sum of word embeddings

• Sum the word embeddings for all words in the document.

• This representation also captures the semantics of the

document but might be sensitive to the length of the

document.

Weighted average (TF-IDF-based)

• Use TF-IDF to assign weights to each word in the

document.

• Calculate the weighted average of word embeddings

based on the TF-IDF scores.

• This method gives more importance to important or

unique words in the document.

Doc2Vec (Paragraph Vector)

• Doc2Vec is an extension of Word2Vec that learns

document embeddings.

• It can represent a document as a fixed-length vector,

making it particularly useful when you want to capture the

overall context of the document.

• It will be illustrated during the labs.

• https://radimrehurek.com/gensim/models/doc2vec.html

https://radimrehurek.com/gensim/models/doc2vec.html

ISSUES AND SOLUTIONS
Towards Contextualized Word Embeddings

Main Issues

• Context independence
• “Traditional” word embeddings are “context-independent”, which means that

each word is represented by a single static vector.

• This fails to capture the various meanings of a word in different contexts.

• For example, "bank" can refer to a financial institution or the side of a river, but a
traditional embedding represents it with a single vector.

• Out-of-Vocabulary (OOV) words
• Traditional embeddings cannot handle out-of-vocabulary words, as they are

limited to the words present in the training data.

• In contrast, models like FastText, which use subword representations, can handle such
words.

• Lack of transparency
• Traditional embeddings are not always transparent, and it can be difficult to

interpret the meaning of individual dimensions or vectors.

AND…

Changes in meaning…

• The word gay shifted from meaning “cheerful” or “frolicsome” to referring to

homosexuality.

• In the early 20th century broadcast referred to “casting out seeds”; with the

rise of television and radio its meaning shifted to “transmitting signals”.

• Awful underwent a process of pejoration, as it shifted from meaning “full of

awe” to meaning “terrible or appalling”.

Semantic change in English. From: Diachronic Word Embeddings Reveal Statistical Laws of Semantic Change

https://arxiv.org/abs/1605.09096

Bias over time…

Bias over time…

Bias over time…

https://www.pnas.org/content/pnas/115/16/E3635.full.pdf

https://www.pnas.org/content/pnas/115/16/E3635.full.pdf

Current trends in word embedding

• Contextual word
embeddings: a different
embedding depending on
context):
• The nail hit the beam behind

the wall.

• They reflected a beam off the
moon.

• Tackling changes in
meaning.

• Tackling bias over time.

	Diapositiva 1: Word embedding Count-based and Predictive Models
	Diapositiva 3: Word embeddings
	Diapositiva 4: Learning Embeddings (Dense Vectors)
	Diapositiva 5: Count-based models
	Diapositiva 6: Count-based models
	Diapositiva 7: Predictive models
	Diapositiva 8: Count-based models
	Diapositiva 9: Singular Value Decomposition
	Diapositiva 10: Singular Value Decomposition
	Diapositiva 11: SVD and Embedding: Latent Semantic Analysis
	Diapositiva 12: SVD and Embedding: Latent Semantic Analysis
	Diapositiva 13: SVD applied to term-context matrix
	Diapositiva 14: SVD applied to term-context matrix
	Diapositiva 15: SVD applied to term-context matrix
	Diapositiva 16: SVD applied to term-context matrix
	Diapositiva 20: Simple SVD word vectors in Python
	Diapositiva 21: Simple SVD word vectors in Python
	Diapositiva 23: Singular Value Decomposition
	Diapositiva 25: Count-based models
	Diapositiva 26: Origins (2014)
	Diapositiva 27: Introduction
	Diapositiva 28: Basic notation
	Diapositiva 29: Example
	Diapositiva 30: Example
	Diapositiva 31: Meaning extraction
	Diapositiva 32: The GloVe model
	Diapositiva 33: The GloVe model
	Diapositiva 34: The GloVe model
	Diapositiva 35: The GloVe model
	Diapositiva 36: Pharenteses: Least squares regression
	Diapositiva 37: The GloVe model
	Diapositiva 38: The GloVe model – Simplification
	Diapositiva 44: Predictive models
	Diapositiva 45: Origins (2013)
	Diapositiva 46: Origins (2013)
	Diapositiva 48: word2vec
	Diapositiva 49: word2vec
	Diapositiva 50: Main idea (neural network word embeddings)
	Diapositiva 51: Directly learning low-dimensional vectors
	Diapositiva 52: Two basic architectures
	Diapositiva 53: Softmax and negative sampling
	Diapositiva 55: word2vec Architecture
	Diapositiva 56: Skip-gram model
	Diapositiva 57: CBOW model
	Diapositiva 58: The skip-gram model
	Diapositiva 59: Skip-gram
	Diapositiva 60: The model (1)
	Diapositiva 62: The model (2)
	Diapositiva 63: The model (3)
	Diapositiva 64: The model
	Diapositiva 65: The CBOW model
	Diapositiva 66: CBOW
	Diapositiva 67: The model (1)
	Diapositiva 68: The model (2)
	Diapositiva 69: Skip-gram VS CBOW
	Diapositiva 75: FastText (Origins, 2017)
	Diapositiva 76: FastText: Main characteristics
	Diapositiva 77: From WORD vectors to DOCUMENT vectors
	Diapositiva 78: Average word embeddings
	Diapositiva 79: Sum of word embeddings
	Diapositiva 80: Weighted average (TF-IDF-based)
	Diapositiva 81: Doc2Vec (Paragraph Vector)
	Diapositiva 83: ISSUES AND SOLUTIONS
	Diapositiva 84: Main Issues
	Diapositiva 85: Changes in meaning…
	Diapositiva 86: Bias over time…
	Diapositiva 87: Bias over time…
	Diapositiva 88: Bias over time…
	Diapositiva 89: Current trends in word embedding

