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WORD EMBEDDINGS

| ow-dimensional dense word vectors



Learning Embeddings (Dense Vectors)

Two (main) types of models:

- Count-based models
- Distributed semantics models

- Predictive models
- Neural network models



Count-based models

- Count-based models

- Compute the statistics of how often each word co-occurs with its
neighbor words in a large text corpus;

- Then map these count-statistics down to a small, dense vector for
each word.

- Count-based models learn vectors by doing dimensionality
reduction on a term-context matrix.

- The term-context matrix contains the information on how frequently
each “word” (stored in rows), is seen in some “context” (the columns).

- They factorize this matrix to yield a lower-dimensional matrix
of words and features, where each row yields a (dense)
vector representation for each word.



Count-based models

- Latent Dirichlet Allocation (LDA)
- Based on a term-document matrix (suitable for topic modeling)

- Singular Value Decomposition (SVD) = Linear algebra
- Latent Semantic Analysis (LSA)

- GloVe (Pennington, Socher, Manning, 2014)

contexts features

words
words

General idea




Predictive models

- Predictive models directly try to predict a word from its
neighbors in terms of learned small, dense embedding
vectors (considered parameters of the model).

- Neural-network-inspired models:
- word2vec (Mikolov et al., 2013)
- FastText (Bojanowski et al., 2016)



COUNT-BASED MODELS

Singular Value Decomposition (SVD)



Singular Value Decomposition

- Any rectangular w X ¢ matrix X can be expressed
as the product of 3 matrices:

- U. aw X m matrix where the w rows correspond to rows
of the original matrix X, but the m columns represents a
dimension (feature) in a new latent space.

- S diagonal m x m matrix of singular values expressing
the importance of each dimension (feature).

- VT: transposed m x ¢ matrix where the ¢ columns
correspond to the columns of the original matrix X, but
the m rows correspond to singular values.

Classic linear algebra result.
Golub, G. H., & Reinsch, C. (1971). Singular value decomposition and least

squares solutions. In Linear Algebra (pp. 134-151). Springer, Berlin, Heidelberg.
https://link.springer.com/chapter/10.1007%2F978-3-662-39778-7_10



https://link.springer.com/chapter/10.1007/978-3-662-39778-7_10

Singular Value Decomposition

Context words

Target words




SVD and Embedding: Latent Semantic Analysis

- If, instead of keeping all m dimensions, we just keep the
top-k singular values, we obtain a low-rank
approximation of the original matrix X.

mxﬂ y/xc

Context words

Target words
<

wx;g(k

Dumais, S. T. (2004). Latent semantic analysis. Annual review
of information science and technology, 38(1), 188-230
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SVD and Embedding: Latent Semantic Analysis

- Instead of multiplying, we just make use of the matrix U.
- In this way, we obtain the following matrix: Features

- Each row of U:
- A k-dimensional vector,
- Representing a word in the vocabulary.

Target words

- 300 dimensions are commonly used.
- k =300

w Xk



SVD applied to term-context matrix
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SVD applied to term-context matrix
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SVD applied to term-context matrix
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SVD applied to term-context matrix

W1 B N
Wa
: W3
Embedding for W
the word w;
ol
Wivi



L
Simple SVD word vectors in Python

- Corpus: | like deep learning. | like NLP. | enjoy flying.

import numpy as np
la = np.linalg
words - [ n I" ’ n 1ike n " llenjoy" ’

" deep ’ learnig " ’ "NLP" ’ "f].Ying " ’ " ]
X =np.array((r0,2,1,0,0,0,0,07,

IZIOIOIIIOIIIOUO]I
[llolololololllo]l
[olllololllolololl
co%,9,90,1,0,0,0,1],
[0'1,0,0'0'0'0'1]'
[0'0’1,0'0'0'0'1],
to%,9,9,0,1,1,1,0]11)

U, s, Vh = la.svd(X, full matrices=False)



L
Simple SVD word vectors in Python

- Printing first two columns of U corresponding to the 2
biggest singular values

- —| for i in xrange(len(words)):
08} plt.text(U[i,0], U[i,1], words[i])
like

06|
04}
02}
00}
-02} P
-04 |

-0.6 |

_08 1 I I L
-0.8 -0.6 -04 -0.2 00 0.2




Singular Value Decomposition

Drawbacks:

- The dimensions of the matrix change very often (new
words are added very frequently and corpus changes in
size).

- The matrix is extremely sparse since most words do not
CO-0ccur.

- Quadratic cost to perform SVD.



COUNT-BASED MODELS

GloVe
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Origins (2014)

GloVe: Global Vectors for Word Representation

Jeffrey Pennington, Richard Socher, Christopher D. Manning
Computer Science Department, Stanford University, Stanford, CA 94305
jpennin@stanford.edu, richard@socher.org, manning@stanford.edu

Abstract the finer structure of the word vector space by ex-
amining not the scalar distance between word vec-
tors, but rather their various dimensions of dif-
ference. For example, the analogy “king is to
queen as man is to woman” should be encoded
in the vector space by the vector equation king —
queen = man — woman. This evaluation scheme
favors models that produce dimensions of mean-
ing, thereby capturing the multi-clustering idea of
distributed representations (Bengio, 2009).

Recent methods for learning vector space
representations of words have succeeded
in capturing fine-grained semantic and
syntactic regularities using vector arith-
metic, but the origin of these regularities
has remained opaque. We analyze and
make explicit the model properties needed
for such regularities to emerge in word
vectors. The result is a new global log-



Introduction

- The model leverages statistical information by training
only on the non-zero elements in a word-word co-
occurrence matrix, rather than:

- on the entire sparse matrix (e.g., SVD)
- on individual context windows in a large corpus (e.g., word2vec).

- Global corpus statistics are captured directly by the
model.



Basic notation

- X =2 the term-context matrix.

- X;j 2 the frequency of word j occurring in context
of word i.

- X; = X Xir. =2 the global frequency of any word
appearing in the context of word i.

- Pij = P(jli) = %’ —> probability that word j appears in the

context of word i = co-occurrence
probability



Example

- Can certain aspects of meaning be extracted directly
from co-occurrence probabilities?

- Consider two words i and j that exhibit a particular aspect
of interest; for concreteness, suppose we are interested in
the concept of thermodynamic phase, for which we
might take i = ice and j = steam.

- The relationship of these words can be examined by
studying the ratio of their co-occurrence probabilities with
various “probe” words (i.e., context words), k.




Example

- For words k related to i = ice but not j = steam, say k =

solid, the ratio —& . “ should be large.
]

- Similarly, for words k related to j = steam but not i = ice,

say k = gas, the ratlop should be small.
jk

- For words k like water or fashion, that are either related

to both i = ice and j = steam, or to neither, the ratio g—"‘
jk

should be close to “1”.



Meaning extraction

- Co-occurrence probabilities for target words ice and steam
with selected context words from a 6 billion token corpus.

Probability and Ratio | k = solid k = gas k = water k = fashion
P(k|ice) 1.9%107% 66%x10™° 30x10° L1.7x107°
P(k|steam) 22%10° 78x%107% 22x107 18x10°
P(klice)/P(k|steam) 8.9 8.5 % 102 1.36 0.96

- Only in the ratio capture non-discriminative words like water
and fashion, because:

- large values (much greater than 1) correlate well with properties
specific to ice.

- small values (much less than 1) correlate well with properties specific
of steam.
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The GloVe model

- Starting point for word vector learning?

- Co-occurrence probabilities ratios instead of
probabilities themselves.

- Co-occurence probabilities ratios capture relevant
Information about words’ relationships.
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The GloVe model

- The ratio 2% * depends on three words i, j, and k
]k

- The most general model takes the form:

P;
F(WL,W],Wk) =

Pi

where w € R? are word vectors and w € R? are separate
context word vectors.
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The GloVe model

- The GloVe model constructs this F function to learn
word vectors representation.

- After a series of steps which we omit, a simplification
over F(w;, w;, Wy ) = =% is as follows:

Jk some parameters to be

selected

Cwi Wk/\:‘"‘\bu !95 log(Xix) (*)

We are interested in these vectors!
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The GloVe model

- Then, GloVe builds an objective function J that
associates word vectors to text statistics.
- Least squares regression model.

- Cast the equation (*) as a least squares regression
model.

Pennington, J., Socher, R., & Manning, C. (2014). Glove:
Global vectors for word representation. In Proceedings
of the 2014 conference on empirical methods in natural

language processing (EMNLP) (pp. 1532-1543)



Pharenteses: Least squares regression

- A least squares regression model, often referred to as
linear regression, is a statistical approach used to:

Model the relationship between a dependent variable and
one or more independent variables by finding the best-
fitting linear equation.

- The “least squares™ part of the name refers to the method
used to estimate the parameters of the linear equation by:

Minimizing the sum of the squared differences between the
observed values and the values predicted by the model.
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The GloVe model

- Then, GloVe builds an objective function J that
associates word vectors to text statistics.
- Least squares regression model.

- Cast the equation (*) as a least squares regression
problem with a weighting function f(X;;).

v
~ ~ 2
J = Z f X)) (W] Wy + b; + by —log(Xyx))
k=1

Where V IS the SIZ€ Pennington, J., Socher, R., & Manning, C. (2014). Glove:
of the VOC&bUlary_ Global vectors for word representation. In Proceedings
of the 2014 conference on empirical methods in natural

language processing (EMNLP) (pp. 1532-1543)



The GloVe model — Simplification

v
1
J = > 2 f X (W, — 108(Xik))2

I,k=1

- We end up with U and V from all the vectors u = w and
V=W

- What to do with the two sets of vectors?

- Both capture similar co-occurrence information. It turns out, the
best solution is to simply sum them up (one of many
hyperparameters explored in GloVe):

Xfinal =U+V

https://nlp.stanford.edu/projects/glove/



https://nlp.stanford.edu/projects/glove/

PREDICTIVE MODELS

word2vec and FastText
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Origins (2013)

Efficient Estimation of Word Representations in
Vector Space

Tomas Mikolov Kai Chen
Google Inc., Mountain View, CA Google Inc., Mountain View, CA
tmikolovl@google.com kaichenlgoogle.com
Greg Corrado Jeffrey Dean
Google Inc., Mountain View, CA Google Inc., Mountain View, CA
gcorradolgoogle.com jeffl@google.com
Abstract

We propose two novel model architectures for computing continuous vector repre-
sentations of words from very large data sets. The quality of these representations
is measured in a word similarity task, and the results are compared (o the previ-
ously best performing techniques based on different types of neural networks. We
observe large improvements in accuracy at much lower computational cost, i.e. it
takes less than a day to learn high quality word vectors from a 1.6 billion words
data set. Furthermore, we show that these vectors provide state-of-the-art perfor-
mance on our test set for measuring syntactic and semantic word similarities.
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Origins (2013)

Distributed Representations of Words and Phrases
and their Compositionality

Tomas Mikolov Ilya Sutskever Kai Chen
Google Inc. Google Inc. Google Inc.
Mountain View Mountain View Mountain View
mikolov@google.com ilyasu@google.com kai@google.com
Greg Corrado Jeffrey Dean
Google Inc. Google Inc.
Mountain View Mountain View
gcorrado@google.com jeffe@google.com
Abstract

The recently introduced continuous Skip-gram model is an efficient method for
learning high-quality distributed vector representations that capture a large num-
ber of precise syntactic and semantic word relationships. In this paper we present
several extensions that improve both the quality of the vectors and the training
speed. By subsampling of the frequent words we obtain significant speedup and
also learn more regular word representations. We also describe a simple alterna-
tive to the hierarchical softmax called negative sampling.



word2vec

- This technigue provides a tool to create collections of
similar concepts automatically, on raw texts and without
advanced language skills on the part of the user.

- Raw texts are used as implicitly supervised
training data.

- No need for hand-labeled supervision.

- Not all the “traditional” pre-processing steps performed with the
BoW and TF-IDF representations are necessary = Next slides.



word2vec

- The largest the training set, the better the performance

- Very good performances are obtained by employing very large
texts in the learning phase (> 10M of words).

- The texts should include as many different words as
possible.

- Code available on the Web:
- https://code.qgoogle.com/archive/p/word2vec/
- https://www.tensorflow.org/text/tutorials/word2vec

- https:/Iwww.kaqqgle.com/code/pierremegret/gensim-word2vec-
tutorial



https://code.google.com/archive/p/word2vec/
https://www.tensorflow.org/text/tutorials/word2vec
https://www.kaggle.com/code/pierremegret/gensim-word2vec-tutorial
https://www.kaggle.com/code/pierremegret/gensim-word2vec-tutorial

Main idea (neural network word embeddings)

- Similar to language modeling but predicting context,
rather than next word.

P(context|lword) <€ maximize

- In practice:

J =1 — P(context|word) < minimize

- We adjust the vector representations of words to
minimize the loss.



Directly learning low-dimensional vectors

Relevant literature:

- Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1988). Learning
representations by back-propagating errors. Cognitive modeling, 5(3).

- Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A neural
probabilistic language model. Journal of machine learning
research, 3(Feb), 1137-1155.

- Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., &
Kuksa, P. (2011). Natural language processing (almost) from
scratch. Journal of machine learning research, 12(Aug), 2493-2537.

- The word2vec papers illustrated before and explained in the next
slides.



Two basic architectures

- There are two architectures used by word2vec:

- Skip-gram Algorithms for producing
- Continuous bag-of-words (CBOW) ] word vectors

- Two (moderately efficient) training methods:
- Softmax
- Negative sampling



Softmax and negative sampling

Softmax

- A function used, in the context of word2vec and word
embedding, to predict the context words (or target words) for a
given input word - all the vocabulary.

- Softmax “bottleneck”.

Negative sampling

- Atechnique introduced to address the computational
Inefficiency of softmax in training word embeddings.

- Instead of predicting the entire vocabulary, select a small
number of negative samples (typically a few dozen) and the
true context words.

- The negative examples are words that do not appear in the context of the
target word.

- The model is trained to assign higher probabilities to the true
context words and lower probabilities to the negative samples.



word2vec Architecture

INPUT PROJECTION  OQUTPUT

w(t-2)

w(t-1)

wity ——»

w(t+1)

w(t+2)

P

Skip-gram

INPUT PROJECTION OUTPUT

w(t-2)

w(t-1)

SUM

w(t+1)

N

w(t+2)

CBOW



Skip-gram model

- Predict the
surrounding words
(context words), based
on the current word
(the center word).

- Mikolov et. al. 2013.
Efficient Estimation of
Word Representations
In Vector Space.

INPUT

wity ———

PROJECTION  OUTPUT

e

Skip-gram

w(t-2)

w(t-1)

w(t+1)

w(t+2)



CBOW model

INPUT PROJECTION OUTPUT

- Predict the current
word (the center word) w2
based on the
surrounding words w(t-1)
(context words).

SUM

o w(t)

- Mikolov et. al. 2013. w(t+1)
Efficient Estimation of
Word Representations w2
In Vector Space.

N

CBOW



The skip-gram model
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Skip-gram

- It predicts context words from the target word.

_r the quick N brown }Fox over { the ] lazy dog




L
The model (1)

- Given a sliding window of a fixed size moving
along a sentence:
- the word in the middle is the “target”;

- those on its left and right within the sliding window
are the context words.
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The model (2)
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L
The model (3)

- The skip-gram model is trained to predict the
probabilities of a word being a context word
for the given target.



The model

Parshon of Probalahhy of

tyard -"} " »
Prboloility of o
thhﬂﬂ-:a o .
F-mt-%-a of Hhws

- The hidden layer is the word embedding of size N.



The CBOW model




R - :
CBOW

- The Continuous Bag-of-Words (CBOW) is another
similar model for learning word vectors.

- It predicts the target word from source context
words.
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The model (1)

Positive Training Samples

Sentence
CBOW
-quick brown |fox jumps over the lazy dog. == ((quick, brown), the)
The brown |fox|jumps over the lazy dog. == ((the, brown, fox), quick)
The quick-fox Jumps [ over the lazy dog. == ((the, quick, fox, jumps), brown)

The|guick brown-jumps over |the lazy dog. = ((quick, brown, jumps, over), fox)
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The model (2)
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Skip-gram VS CBOW

- Skip-gram: works well also with a smaller amount of the
training data, represents well even rare words or phrases.

- CBOW: several times faster to train than the skip-gram,
slightly better accuracy for the frequent words.



FastText (Origins, 2017)

607.04606v2 [cs.CL] 19 Jun 2017

Enriching Word Vectors with Subword Information

Pioir Bojanowski® and Edounard Grave®and Armand Joulin and Tomas Mikolov
Facebook Al Research
{bojanowski,egrave,ajoulin,tmikolov}@fb.com

Abstract

Continuous word representations, trained on
large unlabeled corpora are useful for many
natural language processing tasks. Popular
models that learn such representations ignore
the morphology of words, by assigning a dis-
tinct vector to each word. This is a limitation,
especially for languages with large vocabular-
ies and many rare words. In this paper, we pro-
pose a new approach based on the skipgram
model, where each word is represented as a
bag of character n-grams. A vector represen-
tation is associated to each character n-gram;
words being represented as the sum of these
representations.  Our method is fast, allow-
ing to train models on large corpora quickly
and allows us to compute word representations
for words that did not appear in the training
data. We evaluate our word representations on

et al., 2010; Baroni and Lenci, 2010). In the neural
network community, Collobert and Weston (2008)
proposed to learn word embeddings using a feed-
forward neural network, by predicting a word based
on the two words on the left and two words on the
right. More recently, Mikolov et al. (2013b) pro-
posed simple log-bilinear models to learn continu-
ous representations of words on very large corpora
efficiently.

Most of these techniques represent each word of
the vocabulary by a distinct vector, without param-
eter sharing. In particular, they ignore the internal
structure of words, which is an important limitation
for morphologically rich languages, such as Turk-
ish or Finnish. For example, in French or Spanish,
most verbs have more than forty different inflected
forms. while the Finnigh laneuace has fifteen caces



FastText: Main characteristics

- Subword Embeddings
- It breaks words down into smaller character n-grams (subwords) and
learns embeddings for these subwords.
- This allows FastText to capture morphological and syntactic
information, making it effective for handling out-of-vocabulary words
and languages with rich morphology.

- Efficiency
- Designed for efficient training and inference.
- Its subword modeling reduces the dimensionality of the embedding

space.
- It stores embeddings for subwords and composes word embeddings from
these subword representations.

- This can lead to significant memory savings, especially when dealing
with large vocabularies, making it more memory and computationally
efficient compared to some other embedding models.
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From WORD vectors to DOCUMENT vectors

- At this point we have word embeddings, such as those
generated by methods like Singular Value Decomposition
(SVD), GloVe, Word2Vec, or FastText.

- What about DOCUMENT representation?

- We can use word embeddings to represent a document
by combining the embeddings of the individual words in
the document.



Average word embeddings

- Calculate the mean (average) of the word embeddings for
all words in the document.

- This is a simple and effective method.

- It captures the overall semantic content of the document
but may lose some word order information.



Sum of word embeddings

- Sum the word embeddings for all words in the document.

- This representation also captures the semantics of the
document but might be sensitive to the length of the
document.
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Weighted average (TF-IDF-based)

- Use TF-IDF to assign weights to each word in the
document.

- Calculate the weighted average of word embeddings
based on the TF-IDF scores.

- This method gives more importance to important or
unique words in the document.
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Doc2Vec (Paragraph Vector)

- Doc2Vec Is an extension of Word2Vec that learns
document embeddings.

- It can represent a document as a fixed-length vector,
making it particularly useful when you want to capture the
overall context of the document.

- It will be illustrated during the labs.
- https://radimrehurek.com/gensim/models/doc2vec.html



https://radimrehurek.com/gensim/models/doc2vec.html

ISSUES AND SOLUTIONS

Towards Contextualized Word Embeddings



Main Issues

- Context independence

- “Traditional” word embeddings are “context-independent”, which means that
each word is represented by a single static vector.

- This fails to capture the various meanings of a word in different contexts.

- For example, "bank" can refer to a financial institution or the side of a river, but a
traditional embedding represents it with a single vector.

- Out-of-Vocabulary (OOV) words

- Traditional embeddings cannot handle out-of-vocabulary words, as they are
limited to the words present in the training data.

- In contrast, models like FastText, which use subword representations, can handle such
words.

- Lack of transparency

- Traditional embeddings are not always transparent, and it can be difficult to
interpret the meaning of individual dimensions or vectors.

AND...



Changes in meaning...

- The word gay shifted from meaning “cheerful” or “frolicsome” to referring to

homosexuality.

- In the early 20th century broadcast referred to “casting out seeds”; with the
rise of television and radio its meaning shifted to “transmitting signals”.

- Awful underwent a process of pejoration, as it shifted from meaning “full of
awe” to meaning “terrible or appalling”.

a (aft 9ay (1900s)

sweet

faunung cheerful

tasteful

pleasant
frolicso

witty Y gay (1950s)
bright
gays iIsexual

gay (1990s) homosexual
lesbhian

b
spread
broadcast (1 850s)seseodW
. SOWS
circulated scatter
broadcast (1900s)
newspapers
television
radio
bhc broadcast (1990s)

C

awe

dread

appalli
a

wful (1900s

solemn
awful (1850s)

majestic

arodye

horrible
terrible

wonderful
awful (1990s)

awfully’eird

Semantic change in English. From: Diachronic Word Embeddings Reveal Statistical Laws of Semantic Change



https://arxiv.org/abs/1605.09096

Bias over time...

Man is to Computer Programmer as Woman is to
Homemaker? Debiasing Word Embeddings

Tolga Bolukbasi', Kai-Wei Chang?®, James Zou?, Venkatesh Saligrama'?, Adam Kalai’
'Boston University, 8 Saint Mary's Street, Boston, MA
2Microsoft Research New England. | Memorial Drive, Cambridge, MA
tolgab@bu.edu, kw @kwchang.net, jamesyzou @ gmail.com, srv@bu.edu, adam.kalai @microsoft.com

Abstract

The blind application of machine learning runs the risk of amplifying biases present
in data. Such a danger is facing us with word embedding, a popular framework to
represent text data as vectors which has been used in many machine learning and
natural language processing tasks. We show that even word embeddings trained on
Google News articles exhibit female/male gender stereotypes to a disturbing extent.
This raises concerns because their widespread use, as we describe, often tends to
amplify these biases. Geometrically, gender bias is first shown to be captured by
a direction in the word embedding. Second, gender neutral words are shown to
be linearly separable from gender definition words in the word embedding. Using
these properties, we provide a methodology for modifying an embedding to remove
gender stereotypes, such as the association between the words receptionist and
female, while maintaining desired associations such as between the words queen
and female. Using crowd-worker evaluation as well as standard benchmarks, we
empirically demonstrate that our algorithms significantly reduce gender bias in
embeddings while preserving the its useful properties such as the ability to cluster
related concepts and to solve analogy tasks. The resulting embeddings can be used
in applications without amplifying gender bias.



Bias over time...

However, the embeddings also pinpoint sexism implicit in text. For instance, it is also the case that:

5 s 3 S m i ——
man — woman = computer programmer — homemaker.

In other words, the same system that solved the above reasonable analogies will offensively answer
“man is to computer programmer as woman is to 2" with x=homemaker.

Extreme she Extreme he

1. homemaker 1. maestro

2. nurse 2. skipper

3. receptionist 3. protege

4. librarian 4. philosopher
5. socialite 5. captain

6. hairdresser 6. architect

7. nanny 7. financier

8. bookkeeper 8. warrior

0. stylist 9. broadcaster

10. housekeeper 10. magician

Gender stereotype she-he analogies
sewing-carpentry registered nurse-physician  housewife-shopkeeper
nurse-surgeon interior designer-architect softball-baseball

blond-burly feminism-conservatism cosmetics-pharmaceuticals
giggle-chuckle  vocalist-guitarist petite-lanky
sassy-snappy diva-superstar charming-affable
volleyball-football cupcakes-pizzas lovely-brilliant

Gender appropriate she-he analogies
queen-king sister-brother mother-father

waitress-waiter  ovarian cancer-prostate cancer convent-monastery



as over time...

oo
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https://www.pnas.org/content/pnas/115/16/E3635.full.pdf ()]

Word embeddings quantify 100 years of gender

and ethnic stereotypes

Nikhil Garg*', Londa Schiebinger®, Dan Jurafsky~?, and James Zou®""

*Department of Electrical Engineering, S5tanford University, Stanford, CA 94305; ®Department of History, Stanford University, Stanford, CA 94305;
“‘Department of Linguistics, Stanford University, Stanford, CA 94305; "'Departmen't of Computer Science, Stanford University, Stanford, CA 94305;
*Department of Biomedical Data Science, Stanford University, Stanford, CA 94305; and fChan Zuckerberg Biohub, San Francisco, CA 94158

Edited by Susan T. Fiske, Princeton University, Princeton, M), and approved March 12, 2018 (received for review November 22, 2017)

Word embeddings are a powerful machine-learning framework
that represents each English word by a vector. The geometric
relationship between these vectors captures meaningful semantic
relationships between the corresponding words. In this paper, we
develop a framework to demonstrate how the temporal dynamics
of the embedding helps to quantify changes in stereotypes and
attitudes toward women and ethnic minorities in the 20th and
21st centuries in the United States. We integrate word embed-
dings trained on 100 y of text data with the US Census to show
that changes in the embedding track dosely with demographic
and occupation shifts over time. The embedding captures societal
shifts—e.g., the women's movement in the 1960s and Asian immi-
gration into the United States—and also illuminates how specific
adjectives and occupations became more closely associated with
certain populations over time. Our framework for temporal anal-
ysis of word embedding opens up a fruitful intersection between
machine learning and quantitative social science.

in the large corpora of training texts (20-23). For example, the
vector for the adjective honorable would be close to the vector for
man, whereas the vector for submissive would be closer to woman.
These stereotypes are automatically learned by the embedding
algorithm and could be problematic if the embedding is then used
for sensitive applications such as search rankings, product recom-
mendations, or translations. An important direction of research is
to develop algorithms to debias the word embeddings (20).

In this paper, we take another approach. We use the word
embeddings as a quantitative lens through which to study histor-
ical trends—specifically trends in the gender and ethnic stereo-
types in the 20th and 21st centuries in the United States. We
develop a systematic framework and metrics to analyze word
embeddings trained over 100 y of text corpora. We show that
temporal dynamics of the word embedding capture changes in
gender and ethnic stereotypes over time. In particular, we quan-
tify how specific biases decrease over time while other stereo-
types increase. Moreover, dynamics of the embedding strongly
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