Laboratory of Experimental Stroke Research

Simone Beretta, MD, PhD

Laboratory of Experimental Stroke Research Department of Medicine and Surgery University of Milano Bicocca Department of Neurology and Stroke Unit Fondazione IRCCS San Gerardo dei Tintori Monza

STROKE

Definition (OMS):

Rapidly developing clinical signs of focal (or global) disturbance of cerebral function, with symptoms lasting 24 hours or longer or leading to death, with no apparent cause other than vascular origin.

STROKE

Epidemiology:

- 2° leading cause of <u>DEATH</u>
- 2° leading cause of <u>DEMENTIA</u>
- 3° leading cause of <u>DISABILITY</u>
- 200.000 cases every years
- 80% new event
- Age related incidence

Fig. 1.2 Graph showing incidence rate per 1000 person-years for stroke in relation to age and gender.

Adapted from J Neurol Neurosurg Psychiatry, 74(3), Hollander M, Koudstaal P J, Bots M L, Grobbee D E, Hofman A, Breteler M M B, Incidence, risk, and case fatality of first ever stroke in the elderly population. The Rotterdam Study, pp. 317–21, Copyright (2003), with permission from BMJ Publishing Group Ltd.

STROKE

Eziology

- Ischemic stroke (80-85%)
 - Thrombotic stroke
 - Embolic stroke
- Hemorragic stroke (10%)
- Subaracnoid Hemorrage (5%)

ISCHEMIC CORE AND PENUMBRA

CEREBRAL COLLATERALS

PATHWAYS INVOLVED

TIME IS BRAIN

Our aim

Transient endovascular middle cerebral artery occlusion in the rat tMCAO

video of MCAO surgery

MOOR LASER DOPPLER

Neurobehavioural tests

Hystology analisys

Quantification of ischemic lesion

121	Ø.						-	anima lando - 1	an anager (ample	en P	m	a
1910					. File	110	-	meriosi Layeut	t di Fermule D	at Anvisiane Visual	izze Guida	đ
					(2) Appr	ne Ca	A attes	Alternets •	% 10 Marriel *	herrattarione condicio formatta correctabella Dil colla - tras	ude *	-
	1º											
an p					111		i.	R.A.K	A			
111	S				1.43	1.0	́н.	1	- 10	×	1	1.12
11/2	1.14					CA.						
lendht.			Π.	- K	100	-						
Edit Font R	lesuts											
Acta	Mean	MIT	Mar		1	1	-	Concernant I	Contraction of the	Concernant and the		
10067676.659	179.774	124	210		- Al-	1.1		data point #	Simpson coeff	data point value		
11679723.043	192.349	90	220				1	1	1	0.000	ů.	
13763269.558	182.531	115	216		7		.0	2	4	0.000	0	1
16661386 927	191,488	130	215		1		1	1	2	0.000	0	1
21499731.928	177.611	50	240					4	4	0.000	0	
24310067 664	104.713		222		10		1	5	2	0.000	0	
207120399-416	103,256	- 10	200		21		- 0		4	0.000	0	Т
12826390 123	182,121	3	240		12		1	7	2	0.000	0	Т
177601EM 0.08	191,798		518	- 1	13		. 0	8.	4	0.000	0	
					14		1	. 9	2	0.000	0	
					15		.0	35	A	0,000	8	
					-16		1	11	2	0,000	0	
					17		0	32	4	0.000	0	_
					18		1	10	2	0.000	0	4
					19		.0	- 14	4	0.000	0	4
					20		1	15	2	0.000	0	4
					23	1	.0	- 36	4	0.000	0	4
					22	-	1	17		0.000	0	+
					1 2			18	-	0.006	0	-
				1	1	-	. 1.	-19	1	0.000	0	_
					1			-	Mail and			
									Macones	und I	and a	-
					20 20				HIGHNA	0.00		-
					1 20					NON SERVICENTIA	UNA LESIONE I	CHE
					30							
					31							
					12							
				1	10		Note	An edd owned	No. of measures of	tost be entered.		
				_	34		if few	ver than 28 me	downed one enforce	of, then the Sampson	coefficient for I	Re.h
				1	25		Fore	somple, £12 m	wanters are to be	e entered, change th	e Tfuthese	19230
		-	-		Ø. •		+	12305 3250	4 32900 -			
					Prest.					1 1 月		

Research projects

HEAD DOWN TILT 15

HDT15° is simple, safe and non pharmacological treatment to increase collateral flow

Inspired by analogies...

AED

Head Positioning: enhancing collaterals?

Kim BM, Journal of Neurology, Neurosurgery & Psychiatry 2018

Original Article

JCBFM

Cerebral collateral therapeutics in acute ischemic stroke: A randomized preclinical trial of four modulation strategies

Simone Beretta^{1,2,3}, Alessandro Versace¹, Davide Carone^{1,2}, Matteo Riva¹, Valentina Dell'Era¹, Elisa Cuccione¹, Ruiyao Cai¹, Laura Monza¹, Silvia Pirovano¹, Giada Padovano¹, Fabio Stiro¹, Luca Presotto^{4,5}, Giovanni Paternò¹, Emanuela Rossi⁶, Carlo Giussani^{1,2,3}, Erik P Sganzerla^{1,2,3} and Carlo Ferrarese^{1,2,3} Journal of Cerebral Blood Flow & Metabolism J(00) 1–1 © Author(s) 2017 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav DOI: 10.11770271678X16688705 journals.sagepub.com/home/jcbfm © SAGE

TIMING OF TREATMENT APPLICATION

0	min	30 min	90 min	24 hours
surgery		MCA occlusion	repe	rfusion
		HDT15 or fla	t position	

HDT15 versus other COLLATERALS THERAPEUTICS

Pooled analysis of stroke outcome

104 randomized rats (from 3 studies)

higher chance of good outcome OR 2.64, 96% CI 1.12-6.20, p = 0.015

Diamanti et al., Eur J Neurosci 2022

Brain regional reduction of TTP after HDT15

voxelwise analysis and perfusion shift POST versus PRE treatment (60 min)

HDT15 versus FLAT relative difference 56.8%; p < 0.0001

higher chance of better perfusion OR 1.50, 96% CI 1.41-1.60, p < 0.0001

approximately 20% absolute gain

in cerebral perfusion

Infarct growth

over the first 24 hours

DOWN-PRIME study

8 primates (macaques)

endovascular MCA occlusion/reperfusion

single arm, proof-of-concept, phase 1 trial

perfusion MRI (DSC) perfusion/metabolism PET (¹⁵O-water)

Substudy of CMRO2 project (embedded) Lyon-Milan collaboration First exp May 2023

AAPG2021	CMRO2		PRCE
Coordinated by:	Tae-Hee CHO	Duration 48 months	ANR Requested Funding 950 k€
Scientific evaluation	n committee CE17 Axis 3.9 tran	nslational health research	

Oxygen metabolism by MRI in clinical stroke: Innovative biomarker in cerebrovascular diseases

intraventricular cooling device (V-Cool) for acute stroke therapy

BERETTA SIMONE Principal Investigator:

BANDO 2011-2012 PROGETTI DI RICERCA PROGETTO COMPLETO

GR-2011-02347879

Project Code:

Simone Beretta, MD, PhD

Laboratory of Experimental Stroke Research Department of Medicine and Surgery University of Milano Bicocca

REVIEW ARTICLE

Hypothermia in animal models of acute ischaemic stroke: a systematic review and meta-analysis

H. Bart van der Worp,¹ Emily S. Sena,² Geoffrey A. Donnan,³ David W. Howells³ and Malcolm R. Macleod²

Fig. 2 Point estimate of effect on infarct size and 95% Cl by mode of ischaemia, species, rat strain, sex, method of occlusion, anaesthetic, use of co-treatment, randomisation, and assessment of outcome. The grey band indicates the global estimate and its 95% Cl.

Fig. 4 Point estimate of effect on infarct size and 95% Cl by duration of ischaemia in models of reperfusion, time to treatment, depth of hypothermia, duration of hypothermia, timing of hypothermia and time of outcome assessment. The grey band indicates the global estimate and its 95% Cl.

Selective CSF hypothermia is a

new unexplored concept.

Advantages compared to systemic hypothermia:

- targeted hypothermia
- deeper degree of hypothermia
- longer duration of hypothermia
- reduction of systemic side effects *shivering*

infections (pneumonia)

cardiac arrhythmias

coagulopathy

sedation and intubation

Selective CSF hypothermia is a new unexplored concept.

Clinical translation potential:

- vasospasm after subarachnoid hemorrhage
- acute ischemic stroke (severe)
- malignant cerebral edema
- traumatic brain injury
- super-refractory status epilepticus

Potential combination with external ventricular drains (EVD)

Neurotherapeutics https://doi.org/10.1007/s13311-022-01302-y

ORIGINAL ARTICLE

Selective Cerebrospinal Fluid Hypothermia: Bioengineering Development and In Vivo Study of an Intraventricular Cooling Device (V-COOL)

Simone Beretta^{1,2} · Alessandro Versace¹ · Gianfranco Fiore³ Marco Piola³ · Beatrice Martini¹ · Vittorio Bigiogera¹ · Lorenzo Coppadoro² · Jacopo Mariani¹ · Lorenzo Tinti¹ · Silvia Pirovano¹ · Laura Monza¹ · Davide Carone¹ · Matteo Riva¹ · Giada Padovano¹ · Gilda Galbiati¹ · Francesco Santangelo¹ Marco Rasponi³ · Francesco Padelli⁵ · Isabella Giachetti⁵ · Domenico Aquino⁵ · Susanna Diamanti^{1,2} · Laura Librizzi⁴ · Maria Grazia Bruzzone⁵ · Marco De Curtis⁴ · Carlo Giussani^{1,2} · Erik P. Sganzerla^{1,2} · Carlo Ferrarese^{1,2}

Accepted: 11 September 2022 © The Author(s) 2022

Concept design of the V-COOL device

The **cooling mechanism** of the V-COOL device is based on **exchange of cool-versus-warm CSF**, similarly to hemodialysis or plasma exchange

In silico model of the V-COOL device

mono-compartmental

In vitro model of the V-COOL device

In vivo prototyping of the V-COOL device

CSF access

Copyright @ 2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.

In vivo prototyping of the V-COOL device

CSF access

...size always matters!

In vivo prototyping of the V-COOL device

CSF access

Target for V-COOL device

Target for temperature (and pressure) probes

In vivo prototyping of the V-COOL device *CSF access*

...tip always matters!

V-COOL 2.0

V-COOL 3.0

V-COOL 2.0 prototype

- Double parallel lumen, one for infusion (23GA) and one for drainage (22GA)
- Exoskeleton with internal cold water recirculation (5-7°C), cooled by an ice coil
- Peristaltic pump for infusion at 0.1 ml/min, 0.2 ml/min and 0.4 ml/min flow rates
- Double pressure transducer placed upstream of the infusion lumen and downstream of the drainage lumen
- Thermocouple for cooling circuit control

V-COOL 3.0 prototype

- Double concentric lumen, with larger and more efficient drain lumen (19GA) and 23.5GA infusion lumen
- Exoskeleton with internal cold water recirculation (5-7°C), cooled by Peltier module
- Syringe pump for infusion at flow rates of 0.2 ml/min, 0.4 ml/min and 0.8 ml/min
- Pressure transducer placed inside the drainage lumen
- Early detachment of the two lumens, to avoid heat exchange
- Thermocouple for cooling circuit control

V-COOL 3.0 prototype

V-COOL 3.0 prototype

In vivo effect on brain and systemic temperature of the V-COOL device

Fig. 3 Representative tracings showing the dynamics of cerebral cortical temperature in a rat during application of the V-COOL device (**a**). Mean cerebral cortical cooling (n=42) during V-COOL application at increasing inflow rates (**b**). Mean systemic cooling (rectal temperature, n=42) during V-COOL application at increasing inflow rates (**c**)

Figura 56. *Esempio di curva iperbolica con rappresentazione di* τ e 5τ.

time to steady state 4.8 min

time to target temperature (5T; 5 times the time constant) (0.4 mL/min)

Net cooling effect

Rhinochill – 1.7°C in 60 min target tympanic temperature of 34°C in 1.3 hours (coupled with surface cooling)

Cooling helmet – 1.8°C in 60 min target cerebral temperature of 34°C in 3.4 hours

Neuron Guard - 0.6°C in 60 min Steady stated -1.2°C at 2 hours

In vivo effect on intracranial pressure of the V-COOL device

Fig. 4 Representative tracings showing intracranial pressure changes in a rat during application of the V-COOL device (**a**). Mean intracranial pressure (n=15) during V-COOL application at increasing inflow rates (**b**)

In vivo effect on ventricular volume of the V-COOL device

Fig. 5 Representative brain MRI images (axial view) of a rat before (a) and after 60-min application of V-COOL (b). The site of V-COOL access is highlighted (dotted circles). Mean ventricular volume (n=5) was calculated before, immediately after 60-min application of V-COOL, and 24 h after V-COOL removal (c)

Remote ischemic conditioning in ischemic stroke

CDEGLI STUDI MILANO BICOCCA Sistema Socio Sanitario

JNIVERSIT

Fondazione IRCCS San Gerardo dei Tintori

Regione Lombardia

Simone Beretta, MD, PhD Department of Neurology and Stroke Unit Fondazione IRCCS San Gerardo dei Tintori Monza University of Milano Bicocca, ITALY

A translational story...

Remote ischaemic conditioning—a new paradigm of self-protection in the brain

David C. Hess, Rolf A. Blauenfeldt, Grethe Andersen, Kristina D. Hougaard, Md Nasrul Hoda, Yuchuan Ding and Xunming Ji

Hess, D. C. et al. Nat. Rev. Neurol. 11, 698–710 (2015);

REMOTE ISCHEMIC CONDITIONING: HOW-TO

REMOTE ISCHEMIC CONDITIONING IN ACUTE ISCHEMIC STROKE Evidence from basic science research

Review Article

A meta-analysis of remote ischaemic conditioning in experimental stroke

Philippa Weir¹, Ryan Maguire¹, Saoirse E O'Sullivan¹ and Timothy J England^{1,2}

Journal of Cerebral Blood Flow & Metabolism 2021, Vol. 41(1) 3–13 © The Author(s) 2020 Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/0271678X20924077 journals.sagepub.com/home/jcbfm

Figure 5. Begg's funnel plot. An asymmetric funnel indicates a relationship between treatment effect estimate and study precision. Egger's test suggested significant publication bias (p < 0.001).

JCBFM

MULTICENTER PRE-CLINICAL AND CLINICAL TRIAL

TRICS BASIC

Protocol

Surgical RIC

(5-10 min femoral artery occlusion) Single RIC application Outcome assessed at 48 hours

210 randomized animals

Multi-centric (7 laboratories in Italy) Mice and Rats Males and Females Central randomization

> Blinded surgeons, outcome assessment and centralized histology

Open access

BMJOpen Science Multicentre translational Trial of Remote Ischaemic Conditioning in Acute Ischaemic Stroke (TRICS): protocol of multicentre, parallel group, randomised, preclinical trial in female and male rat and mouse from the Italian Stroke Organization (ISO) Basic Science network

> Mauro Tettamanti,¹ Simone Beretta ¹,² Giuseppe Pignataro,³ Stefano Fumagalli,¹ Carlo Perego,¹ Luigi Sironi,⁴ Felicita Pedata,⁵ Diana Amantea ¹,⁶ Marco Bacigaluppi,⁷ Antonio Vinciguerra,³ Alessia Valente,¹ Susanna Diamanti,² Jacopo Mariani,² Martina Viganò,² Francesco Santangelo,² Chiara Paola Zoia,² Virginia Rogriguez-Menendez,² Laura Castiglioni,⁴ Joanna Rzemieniec,⁴ Ilaria Dettori,⁵ Irene Bulli,⁵ Elisabetta Coppi,⁵ Giorgia Serena Gullotta,⁷ Giacinto Bagetta,⁶ Gianvito Martino,⁷ Carlo Ferrarese,² Maria Grazia De Simoni¹

NATIONWIDE TRANSLATIONAL RESEARCH PROGRAM FROM THE ISO BASIC SCIENCE

TRICS BASIC: Translational <u>Trial of Remote Ischaemic Conditioning in Acute Ischaemic Stroke</u>: multicentre, parallel group, randomised, preclinical trial in female and male rat and mouse from the Italian Stroke Organization (ISO) <u>Basic</u> Science network

TRICS-9: Multi-center randomized pilot clinical <u>Trial on Remote</u> <u>I</u>schemic <u>Conditioning in acute</u> ischemic <u>S</u>troke within <u>9</u> hours of onset in patients ineligible to recanalization therapies

INTRA-ISCHEMIC CLINICal ASSESSMENT

Intra-ischemic clinical assessment	of successful MCA occlusi	on
one or both palpebral fissures have an ellipsoidal shape	no	yes O
one or both ears extend laterally	0	0
asymmetric body bending on the ischemic side	0	0
limbs extend laterally and do not align to the body	0	0
Calcolo valore occlusione		
Death during MCA surgery, before RIC	() no (⊖ yes

Remote Ischemic post-Conditioning

Surgery to expose Femoral Artery starts atfer riperfusion

Waiting time before treatment application:

- Rats: 20min
- Mice: 10min

PRIMARY OUTCOME

De Simoni Composite Neuroscore

GENERAL DEFICITS

L Hair (score 0-2)

- 0 Hair nest and clean.
- 1 Localized piloerection and dirty hair in 2 body parts (typically nose and eyes).
- 2 Piloerection and dirty hair in more than 2 body parts.

II. Ears (score 9-2)

Mouse on OBT. Observation at the beginning with no interference, then stimulating by snapping fingers.

- 0 Normal. Ears are stretched laterally and behind. They react to noise
- 1 Stretched laterally but not behind (one or both). They react to noise.
- 2 Same as 1 but they do not react to noise.
- III. Eyes (score 9-4)
- Mouse on OBT. Observation with no interference or atimulation.
- 0 Open, clean and quickly follow the surrounding environment.
- 1 Open and characterized by squeous mucus. Blowly follow the surrounding environment.
- 2 Open and characterized by dark murus.
- 3 Ellipsoidal shaped and characterized by dark murus.
- 4 Closed.

IV. Posture (score 0-4)

Place the mouse on the palm and suring gently.

- 0 The mouse stands in the upright position with the back parallel to the palm (during the swing, it stands rapidly).
- The mouse stands humpbacked. During the swing, it flattens the body to gain stability.
- 2 The head or part of the trunk lies on the palm.
- 3 The mouse lies on one side, barely able to recover the upright position.
- 4 The mouse lies in a prone position, not able to recover the upright position.

V. Spontaneous activity (score 0-4)

Mouse on OBT. Observation with no interference or atimulation.

- 0 The mouse is alert and explores actively
- 1 The mouse seems alert, but it is calm and sluggish.
- 2 The mouse explores intermittently and sluggishly.
- 3 The mouse is somnolent and numb, few movements on-the-spot.
- 4 No spontaneous movements.

VI. Epileptic behavior (score @-12)

Mouse on OBT. The worse eplicptic behavior detected during the whole observational period should be recorded and reported according to the following score.

- Ø None.
- 3 The mouse is reluctant to handling, shows hyperactivity.
- 6 The mouse is aggressive, stressed and stares.
- 9 The mouse shows hyperexcitability, chaotic movements and presence of convulsion following handling.
- 12 Generalized seizures associated with wheezing and unconsciousness.

FOCAL DEFICITS

VII. Body symmetry (score 0-4)

Muuse on OBT, observation of undisturbed resting behavior and description of the virtual nosetail line.

0 - Normal.

- a. Body: normal posture, trank elevated from the bench, with fore and hindlimbo leaning beneath the body.
- b. Tail: streight.
- 1 Sight asymmetry.
 - a. Body: leans on one side with fore and hindlimbs leaning beneath the body.
- b Tail: slightly bent.
- 2 Moderate asymmetry.
- Body: leans on one side with fore and hindlimbs stretched out.
 b. Tail: slightly bent.
- 3 Prominent asymmetry.
 - a. Body: heat, on one side lies on the OBT.
- h Tail bent.
- 4 Extreme asymmetry.
 - Body: highly bent, on one side constantly lies on the OBT
 Tail: highly bent.

VIII. Galt (score 0-4)

- Mouse on OBT. Observation of undisturbed movements.
- 0 Normal. Gait is flexible, symmetric and quick.
 - 1 Stiff, inflexible. The mouse walks humpbacked, slower than normal mice.
- 2 Limping with asymmetric movements.
- 3 Trembling, drifting, falling.
- 4 Does not walk spontaneously. When stimulated, the mouse walks no longer than three steps

IX Climbing (score 0-4)

Mouse on a gripping surface 43° to OBT. Place the mouse in the centre of the gripping surface.

- 0 Normal. The mouse climbs quickly.
- 1 Climbo with strain, limb weakness present.
- 2 Holds onto slope, does not slip or climb
- 3 Slides down slope, unsuccessful effort to prevent fail.
- 4 Slides immediately, no effort to prevent fail.

X Circling behavior (score 0-1)

- Musse on OBT. Observation of the mouse wolking undisturbed on the OBT.
- 0 Absent. The mouse equally turns left or right.
 - 1 Predominantly one-sided turns.
- 2 Circles to one side, although not constantly.
- 3 Circles constantly to one side.
- 4 Pivoting, swaying, or no movement.

32 Forelimb symmetry (score 9-4)

- Musse suspended by the tail. Movements and position of forelimbs are observed. • Normal. Both forelimbs are extended towards the bench and move actively.
 - 1 Light asymmetry. Contralateral forelimb does not extend entirely.
 - 2 Marked asymmetry. Contralateral forelimb bends towards the trunk. The body slightly bends on the insilateral side.
 - 1 Prominent asymmetry Contralateral forelimb adheres to the trunk
 - 4 Sight asymmetry, no body/imb movement.

XII. Compulsory circling (score 0-4)

Forelimbs on bench, hindlimbs suspended by the tail. This position reveals the presence of the controlateral limb poly.

- 0 Absent. Normal extension of both forelimbs
- Tendency to turn to one side. The mouse extends both forelimbs but starts to turn preferably to one side.
- 2 Cirriles to one side. The mouse turns towards one side with a slower movement compared to healthy mice.
- 3 Pirots to one side sluggishly. The mouse turns towards one side failing to perform a complete circle.
- 4 Does not advance. The front part of the trunk lies on the bench. Slow and brief movements.

XIII. Whisher response (score 0-4)

Mouse on the bench. Using a pen, touch gently the whishers and the tip of the ears from behind, first one the lesioned and then on the contralateral side.

- Normal symmetrical response. The mouse turns the head towards the stimulated side and withdraws from the stimulus.
- 1 Light asymmetry.
 - a. The mouse withdraws slowly when stimulated on the ischemic side.
 b. Normal response on the contralateral side.

https:// figshare. com, DOI: 10.6084/m9.figshare.13031861)

- 2 Prominent asymmetry
 - a. No response when stimulated on the ischemic side.
 - b. Normal response on the contralateral side.

(13 items, range 0-56 points)

Dichotomised neuroscore

0-20 Good outcome

21-56 Bad outcome

- 3 Absent response ipsilaterally, slow response when stimulated on the contralateral side.
- 4 Absent response hilaterally

HEALTH REPORT AT 24/48h

Low distress		
Reduced food and water intake	⊖ no	⊖ yes
Abnormal behaviour upon handling (increased or decreased reaction to being handled)	⊖ no	⊖ yes
Lethargy and reduced motility	⊖ no	⊖ yes
Piloerection / staring coat	⊖ no	⊖ yes
Discharge from the eyes and nose	⊖ no	⊖ yes

Moderate distress		
Animal not drinking	⊖ no	() yes
Animal not eating (including wet mash)	() no	() yes
Severe surgical wound complication (infection, bleeding, opening)	() no	() yes
Absence of faeces	⊖ no	() yes
Audible respiratory noises (rasping, wheezing), intermittent, without respiratory effort	() no	() yes
Weight loss exceeding 10%		
	$\tilde{(0)} = n \tilde{(0)}$	o, 1 = yes)

High distress		
Presence of barrel rolling	⊖ no	\bigcirc yes
Presence of tonic clonic seizures	⊖ no	⊖ yes
Continuous laboured respiration with increased respiratory effort	⊖ no	⊖ yes
Animal not moving, unresponsive to stimulation, or in a lateral recumbent position	⊖ no	⊖ yes

Open access

BMJ Open Science Multicentre translational Trial of

Remote Ischaemic Conditioning in Acute Ischaemic Stroke (TRICS): protocol of multicentre, parallel group, randomised, preclinical trial in female and male rat and mouse from the Italian Stroke Organization (ISO) Basic Science network

> Mauro Tettamanti,¹ Simone Beretta ⁽ⁱ⁾,² Giuseppe Pignataro,³ Stefano Fumagalli,¹ Carlo Perego,¹ Luigi Sironi,⁴ Felicita Pedata,⁵ Diana Amantea ⁽ⁱ⁾,⁶ Marco Bacigaluppi,⁷ Antonio Vinciguerra,³ Alessia Valente,¹ Susanna Diamanti,² Jacopo Mariani,² Martina Viganò,² Francesco Santangelo,² Chiara Paola Zoia,² Virginia Rogriguez-Menendez,² Laura Castiglioni,⁴ Joanna Rzemieniec,⁴ Ilaria Dettori,⁵ Irene Bulli,⁵ Elisabetta Coppi,⁵ Giorgia Serena Gullotta,⁷ Giacinto Bagetta,⁶ Gianvito Martino,⁷ Carlo Ferrarese,² Maria Grazia De Simoni¹

Good outcome at 48 hours	Risk difference	Odds Ratio	95% CI	p value
RIC versus untreated	0.1993	2.33	1.23-4.42	0.009

JAMA | Original Investigation

Effect of Remote Ischemic Conditioning vs Usual Care on Neurologic Function in Patients With Acute Moderate Ischemic Stroke The RICAMIS Randomized Clinical Trial

Hui-Sheng Chen, MD; Yu Cui, PhD; Xiao-Qiu Li, MD; Xin-Hong Wang, MD; Yu-Tong Ma, MM; Yong Zhao, BSM; Jing Han, MM; Chang-Qing Deng, MM; Mei Hong, BSM; Ying Bao, MM; Li-Hong Zhao, MM; Ting-Guang Yan, BSM; Ren-Lin Zou, BSM; Hui Wang, MM; Zhuo Li, MM; Li-Shu Wan, MM; Li Zhang, BSM; Lian-Qiang Wang, BSM; Li-Yan Guo, MM; Ming-Nan Li, BSM; Dong-Qing Wang, MM; Qiang Zhang, MM; Da-Wei Chang, MM; Hong-Li Zhang, BSM; Jing Sun, BSM; Chong Meng, BSM; Zai-Hui Zhang, BSM; Li-Ying Shen, BSM; Li Ma, MM; Gui-Chun Wang, BSM; Run-Hui Li, MM; Ling Zhang, BSM; Cheng Bi, MM; Li-Yun Wang, BSM; Duo-Lao Wang, PhD; for the RICAMIS Investigators

JAMA August 16, 2022 Volume 328, Number 7

1893 randomized patients

within 48 hours of onset (median 25 hours) NIHSS 6 to 16 (median 7) ineligible to recanalization therapies pre-stroke mRS <=1

Table 2. Primary and Secondary Outcomes in the Full Analysis Set

	Group, No. (%)			Unadjusted		Adjusted ^b	
	Remote ischemic conditioning (n = 863)	Control (n = 913)	— Treatment effect metric ^a	Treatment difference (95% CI)	P value	Treatment difference (95% CI)	P value
Primary outcome							
mRS score of 0 to 1	582 (67.4)	566 (62.0)	RR ^d	1.17 (1.03 to 1.32)	.02	1.18 (1.04 to 1.34)	.007
within 90 d ^c			RD, % ^d	5.4 (1.0 to 9.9)	.02	6.2 (2.0 to 10.4)	.004
Secondary outcomes							
mRS score of 0 to 2	687 (79.6)	689 (75.5)	RR ^d	1.20 (1.01 to 1.43)	.04	1.22 (1.03 to 1.45)	.02
within 90 d ^c			RD, % ^d	4.1 (0.3 to 8.0)	.04	4.3 (0.9 to 7.8)	.01
Change in NIHSS score at day 12 from baseline, median (IQR) ^{9,d}	4 (2 to 6)	4 (2 to 5)	GMR	1.02 (0.99 to 1.05)	.32	1.02 (0.99 to 1.05)	.30
Death within 90 d ^h	7 (0.8)	10 (1.1)	HR	0.74 (0.28 to 1.94)	.54	0.63 (0.24 to 1.70)	.37

Excluded uncontrolled hypertension cardioembolic etiology

Anterior circulation 60% Posterior circulation 35%

RIC application

Bilateral arm, automated 5 minutes on/off, 5 cycles Twice a day for 10-14 days JAMA | Original Investigation

Effect of Remote Ischemic Conditioning vs Usual Care on Neurologic Function in Patients With Acute Moderate Ischemic Stroke The RICAMIS Randomized Clinical Trial

Hui-Sheng Chen, MD; Yu Cui, PhD; Xiao-Qiu Li, MD; Xin-Hong Wang, MD; Yu-Tong Ma, MM; Yong Zhao, BSM;
Jing Han, MM; Chang-Qing Deng, MM; Mei Hong, BSM; Ying Bao, MM; Li-Hong Zhao, MM; Ting-Guang Yan, BSM;
Ren-Lin Zou, BSM; Hui Wang, MM; Zhuo Li, MM; Li-Shu Wan, MM; Li Zhang, BSM; Lian-Qiang Wang, BSM;
Li-Yan Guo, MM; Ming-Nan Li, BSM; Dong-Qing Wang, MM; Qiang Zhang, MM; Da-Wei Chang, MM;
Hong-Li Zhang, BSM; Jing Sun, BSM; Chong Meng, BSM; Zai-Hui Zhang, BSM; Li-Ying Shen, BSM; Li Ma, MM;
Gui-Chun Wang, BSM; Run-Hui Li, MM; Ling Zhang, BSM; Cheng Bi, MM; Li-Yun Wang, BSM; Duo-Lao Wang, PhD;
for the RICAMIS Investigators

JAMA August 16, 2022 Volume 328, Number 7

Figure 2. Distribution of Modified Rankin Scale Scores at 90 Days in the Full Analysis Set

The raw distribution of scores is shown. Scores range from 0 to 6 (0 = no symptoms, 1 = symptoms without clinically significant disability, 2 = slight disability, 3 = moderate disability, 4 = moderately severe disability, 5 = severe disability, and 6 = death). The odds ratio was 1.29 (95% CI, 1.09-1.52), and the *P* value was .003; the adjusted odds ratio was 1.37 (95% CI, 1.16-1.63), and the adjusted *P* value was <.001.

Mentimeter

www.menti.com