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Abstract

Clean and safe drinking water is essential for public health and the development of societies, especially
in the context of Smart Cities. This essay examines a data-driven approach to detecting drinking water
contamination, focusing on the need for efficient and affordable real-time monitoring. Traditional methods of
water quality testing are often slow and involve manual tests, which makes detection in real-time challenging.
By utilizing modern computational intelligence methods, such as Al and machine learning, we can improve
water quality monitoring systems. These technologies offer significant benefits for both developed regions with
existing infrastructure and developing regions facing limited resources. This essay discusses the sociological
and ethical importance of water quality, evaluates different indicators for measuring water safety, and
examines the potential of Al-based methods for real-time contamination detection. We demonstrate the
effectiveness of machine learning models for contamination detection using a real-world dataset from the
Thiiringer Fernwasserversorgung (Thuringian water supply), which involves challenges like missing values,
class imbalance, and collinearity. Finally, we propose policy suggestions to ensure sustainable and equitable
access to safe drinking water in order to highlight the broader implications for public health and social equity
in Smart Cities.

1 Introduction

Around 71% of earth’s surface is covered with water. Together with carbon, hydrogen, nitrogen, oxygen,
phosphorus, and sulfur, it is one of the most important building blocks for all known forms of life [1]. Not
only is it essential for sustaining all forms of life, it is fundamental for the growth and development of human
civilization, as it plays a leading role in e.g. food production and economic development, and is relevant for
general well being [2|. As humans are made up of 70 % water and lose a lot of fluids through sweat and other
excretions throughout the day, steady hydration is essential for survival.

Here, the quality of the water plays an important role, as clean and safe drinking water has a major impact
on health and life expectancy [3|, [4]. For example, there is a clear relationship between contaminated water
and cholera [5]. In regions where access to clean drinking water is scarce, infections with diarrhea become a
life-threatening danger, as they cause approximately 1.9 million deaths among children globally per year [6], [7].
But even in Germany, where drinking water suppliers have to follow strict regulations regarding water quality
[8], Legionella spp. which can cause severe pneumonia [9] are found within various water systems, e.g. in private
housing, hospitals, or hotels [10]. But also contamination by inorganic substances such as lead, nitrate, fluoride,
or aluminum poses a serious health concern [11].

This explains, why drinking water is subjected to strict controls [12]. To ensure the safety and quality
of drinking water, the water that comes to people’s homes through complex drinking water networks has to
be treated by biological, physical or chemical purification in wastewater treatment plants [13], [14]. Because
in centralized drinking water networks, impurities in the water can potentially affect several million people,
contamination detection is a particular challenge to closely control the quality of the water. The water has
to be tested for various pathogens and other contaminants in elaborate laboratory tests [15]. However, the
evaluation of these tests takes a relatively long time and are therefore not suitable for online monitoring [16],
|17]. Contaminants can sometimes only be detected after people may have already been exposed to them.

Therefore, there is a need for inexpensive, yet effective real-time contamination detection. Modern computa-
tional intelligence methods offer an attractive option here [18]|. Al-based technologies can not only help people
in Western cultures, where the supply of drinking water is already highly developed, but especially in countries
in the Global South and improve their quality of life and life expectancy [19]. With the help of machine learning,
the quality of drinking water can be reliably controlled with little effort, and the early recognition of unwanted
substances in drinking water allows water suppliers to counteract in time [20)].

This essay is organized as follows: Section discusses the sociological importance of clean drinking water in
general, but with an even greater focus in the context of Smart Cities. In section we will introduce indicators
to measure drinking water quality and its impact on society and discuss their ethical and social implications in
section [[.3] Continuing in section 2:.I}2.3] we will then utilize a real-world dataset to show, that a data-driven
approach to a reliable online contamination detection can be both time- and cost-effective. Finally, in section 2.5]
we will propose policy suggestions to ensure a continuous supply of safe and clean drinking water and highlight
their implications in section [2.6

1.1 Smart Cities and Safe Water

Although there is no precise definition of Smart Cities, there is consensus that smart cities aim to address specific
challenges such as mobility, energy consumption, waste management, economical sustainability, and public safety
[21]. By making data-driven decisions that improve urban living conditions, these cities leverage the possibilities



of modern Information and Communication Technology (ICT), such as Internet of Things (IoT), data analytics,
and Artificial Intelligence (AI) to create more interactive, accessible, and efficient urban environments [22].

1.1.1 Smart Cities in the Global South

For countries of the Global South, the implementation of Smart Cities has a particular importance for promoting
social equity. These regions often face significant challenges related to rapid urbanization, such as insufficient
infrastructure, limited coverage of basic needs, and pronounced socio-economic disparities. By adopting modern
ICT, these countries can bridge these gaps, ensuring that all citizens, regardless of their socio-economic status,
benefit from essential urban services and enhanced quality of life.

While the benefits of smart technologies in developing countries are obvious, it is necessary to consider the
constraints these countries face before they can implement such data-driven approaches. The main barriers are:
limitations in education, budget constraints, and lack of policy commitments |23].

1.1.2 The Importance of Safe Water

In 2004, the WHO estimated that out of 6.3 billion people globally, 1.1 billion people drink unsafe water [4].
Therefore, even before the concept of Smart Cities existed, the need for reliable contamination detection was
openly discussed and examined, as the demand for such equipment and an early warning system was high, to
protect public health |20].

Existing evidence about the strong relation between clean drinking water and life expectancy emphasize the
importance of proper water treatment. While the challenge of ensuring a constant supply of safe tap water has
largely been resolved for the countries of the Western world, it is not the case that a renewed examination of the
issue is only relevant for countries in the Global South. Aging infrastructure and surface level pollution make
this challenge even more demanding due to its invisible nature [19].

However, maintaining high drinking water quality poses significant economic challenges, especially in
developing countries. The costs associated with water treatment infrastructure, continuous monitoring, and
contamination control can be prohibitive. A survey conducted by Dogo, Nwulu, Twala, et al. [24] in 2019
reported, that of 182 global water utilities, the annual cost of providing clean water is around USD 184 billion.
Unfortunately, many regions struggle to allocate sufficient resources to these efforts, and the economic burden of
waterborne diseases intensifies this problem even further, as communities face additional medical costs and lost
productivity due to illness.

1.1.3 Advances in AI and Online Contamination Detection

Recent developments in the field of ICT, on the other hand, could accelerate this development of Smart Cities
not only in Western countries, but also in developing countries |25]. This is based on the wide availability of data-
driven algorithms for recognizing patterns in complex data, such as detecting contamination in drinking water
composition. Several studies proved the cost- and time-effectiveness of Al-driven approaches to contamination
detection [26]-[29].

Dogo, Nwulu, Twala, et al. [24] furthermore revealed, that 41 % of surveyed water utilities still rely on manual
collection of water samples for analysis, with only 16 % relying on automated sampling. While 40 % of these
utilities would like to have a real-time water quality monitoring system, only 17 % currently have one. The
remaining utilities still rely on manual sample collection. Of the aforementioned USD 184 billion spent annually
on clean water supply, switching to Al-driven methods could potentially save around USD 12.5 billion [24].

Summing up the above gathered evidence, the recent advances in the field of ICT heavily assist us in the
creation and development of Smart Cities. Not only does the technological basis for detecting contamination
in real time exist, but several studies have already shown that modern data-driven methods are perfectly
capable of analyzing the data collected by this technology. Safe drinking water is key to protecting citizens from
water-related diseases, thus making societies healthier and economically more productive. The need for reliable
availability of drinking water from countries in both the Western world and the Global South demands that we
create a sustainable and resource-efficient foundation for the future.

1.2 Indicators for Safe Water

In order to evaluate the quality of drinking water and its impact on society, various indicators can be evaluated.
These indicators comprise the obvious chemical or physical parameters which can be measured using sensors or
through laboratory test, but also socio-economic and behavioral indicators can provide information about the
safety of drinking water.



1.2.1 Physical, Chemical and Biological Indicators

There are several physical and chemical parameters of drinking water that can serve as direct indicators of the
quality and safety of the water. It has been found that a few parameters such as pH, chlorine, total organic
carbon (TOC), conductivity, and temperature already provide the most reliable means by which changes in
drinking water quality can be measured with no delay [25|, [30]. There already exist many affordable sensors on
the market, to reliably measure these parameters, which makes evaluating the water quality in real-time viable.
Other parameters of online water quality measuring are: turbidity, color, hardness, disinfectants, metals, fluoride,
nutrients, hydrocarbon, pesticides, algae, and many more [16].

Unfortunately, there are other many other organic contaminants, which can not be measured in real-time as
they often involve the use of indicator organisms or other comprehensive laboratory tests. These kinds of tests
allow to precisely determine contamination e.g. with bacteria such as E. coli, Enterococci, or Salmonella [16].
There is an ongoing endeavor towards more complex biological sensors to detect hazardous bio-molecules, but
their greatest drawback lies in their disability to detect low concentrations of microorganisms [25]. Although
the presence of bio-molecules in drinking water cannot yet be detected sufficiently well in real-time, it is still a
valuable indicator of water quality, as it has a direct influence of public health and socio-economic growth [2].

1.2.2 Socio-Economic and Behavioral Indicators

In addition to the above indicators, incorporating socio-economic and behavioral data can provide a more holistic
understanding of water safety. These indicators can also offer insights into the underlying causes of water quality
issues and the effectiveness of policy suggestions.

One option is tracking the rates of waterborne diseases, such as cholera or dysentery [4], [5]. This can indicate
potential issues with water quality. Analyzing correlations between disease outbreaks and water quality data can
help identify contamination sources. This requires comprehensive and, above all, area-wide data collection, as
drinking water treatment plants are often responsible for large areas. In addition, it is necessary to record which
households are connected to which drinking water network in order to be able to draw these kinds of conclusions.
Studies that focus on very small areas therefore do not allow any meaningful conclusions to be drawn about the
possible causes of the diseases that have occurred.

Another indicator for the quality of drinking water is the socio-economic status of cities and their access to
clean water. Disparities in water quality can often be linked to economic inequality, with poorer areas suffering
from lower life quality and a higher environmental risk exposure [31]. While the differences within a country’s
borders may not be so prominent, the differences between The West and countries of the Global South are much
more tangible.

Furthermore, the public perception of water quality can be assessed through surveys or social media analysis
[32]. For example, public behavior, such as the use of bottled water over tap water serves as an indirect indicator
of perceived water safety. Compared to tap water, bottled water is perceived as a more pure and safe alternative
[33]. Although more difficult to measure, as these kinds of studies can be skewed by the perception bias of
interviewed people [34], they can offer interesting insights into trust in local water authorities and the safety of
water.

1.3 Ethical and Social Implications

The application of previously mentioned indicators to assess water quality in Smart Cities carries significant
ethical and social implications. These implications span across public health, social equity, trust in public
institutions, and the responsible use of technology.

Water is a fundamental human right 35|, and failing to provide clean, safe water directly threatens public
health [3], [4]. Utilizing physical, chemical, and biological indicators to monitor water quality helps fulfill this
ethical duty by enabling timely detection of contaminants. However, the challenge lies in ensuring that these
indicators are consistently and accurately monitored across all regions, especially in marginalized communities.
If lower-income areas lack resources for comprehensive water quality monitoring, residents might face prolonged
exposure to harmful contaminants, which leads to health issues and intensifies socio-economical disparities.

Incorporating socio-economic and behavioral indicators brings additional ethical considerations related to
equity and justice. Disparities in water quality often correlate with socio-economic inequalities which suggests
that economically disadvantaged populations are more likely to suffer from contaminated water sources [31].
This creates a moral obligation for policymakers to prioritize investments in water infrastructure and quality
monitoring in these areas.

Furthermore, the effective implementation of water quality measures requires public trust in water authorities.
When residents resort to bottled water due to mistrust in safe tap water, it reflects a failure in communication



and transparency from the authorities |32] or even worse, a lack of governing policies and regulations. This failure
can lead to an increased ecological burden due to the increase of waste production, but also to an increased
economic burden on households, particularly in low-income areas where the cost of bottled water can be high.
This is especially visible in countries of the Global South where the supply of safe tap water is usually scarce,
and bottled water is the primary source of hydration [36].

In conclusion, the lack of safe and clean drinking water has many different implications. Besides the obvious
consequences on the physical health of residents of cities, there is a much larger and more multifaceted set of
socio-economic implications on how contamination of drinking water affects society. Solving the problem of safe
and clean drinking water will therefore not only have a beneficial impact on life quality and life expectancy due
to the increase in public health, it will furthermore have a strong impact on social equity and social justice.

2 Data Analytics, Optimization and Policy Suggestions

In the second part of this essay, we will implement an actual strategy for detecting drinking water contamination.
To do so, we will first investigate a real-world dataset provided by the Thiiringer Fernwasserversorgung. We will
then identify the necessary steps to prepare the data for building an online monitor to detect contamination.
Afterwards, we will compare the performance of different machine learning models to find a suitable candidate
for reliably detecting contamination and try to improve this candidate using hyper-parameter optimization.
Finally, we will propose policy suggestions based on our findings and discuss their ethical and social implications.

2.1 Dataset

The Genetic and Evolutionary Computation Conference (GECCO) is the premier conference in the area of
genetic and evolutionary computation and has been held every year since 1999 [37]. For several years now, the
organizers have been inviting various industry partners to organize challenges across diverse sectors to engage
both Computational Intelligence (CI) researchers and practitioners. The goal of the GECCO 2019 Industrial
Challenge was to develop an online drinking water contamination detector to accurately predict any kinds of
changes in time series of drinking water composition data [18].

For this purpose, the Thiiringer Fernwasserversorgung published real-world drinking water composition data
from its waterworks in Germany [38]. The data at hand is a time series dataset, containing 218,880 records of
drinking water composition data, which were recorded every minute over the time span of almost five months
from 2017-07-01 up to and including 2017-11-29 (152 days). These measurements were performed at significant
points throughout the water distribution system, in particular at the outflow of the waterworks and the in- and
outflow of the water towers [18].

Records comprise a timestamp and various sensor values, i.e. the water’s temperature, its pH value, the
electric conductivity, the water’s turbidity, the spectral absorption coefficient, and the pulse-frequency modulation.
However, temperature and the pulse-frequency modulation value are considered operational data, and therefore,
changes in those values may indicate changes in the water quality but are not considered events themselves
|18]. Finally, the data contains another variable EVENT, which describes whether the corresponding entry in the
dataset should be considered a contamination or not. Table[I] gives an overview of the structure of the data and
figure [I] shows a snapshot of the sensor readings for a randomly selected date, in this case November 13, 2017,
with an area highlighted in red where contamination has occurred. The incidents which occurred on this date
highlight the difficulty of contamination detection only using drinking water composition data. The first incident
around 3:30 PM might be detectable through the sudden increase in turbidity. However, this decision is not that
easy for the second incident around 10 PM.

During this five-month period, only 628 anomalies occurred. Figure[2|shows the huge differences in the quantity
of data per class. This low amount of contamination events is fortunate for the Thiiringer Fernwasserversorgung
and their consumers, however, this means a huge class imbalance which has to considered during training, as
merely 0.29 % of the dataset contains information about identifying a possibly harmful event.

Due to the nature of technical devices such as sensors, the dataset contains missing values. Especially in the
case of the dataset at hand, the level of outliers and missing values is particularly high, as the data originates
from sensors that were not continuously maintained for test purposes [18]. There are 2610 rows which contain at
least one missing value, or in other words there are in total 15,019 sensor values missing, which makes 1.14 % of
the entire dataset.

Finally, figure [3] shows, that the target EVENT variable has no correlation with any other variable from the
dataset. However, we can observe that Tp, Cond, and SAC have significant pairwise correlations. Correlated
variables cause collinearity and can have a negative impact on many predictive models and has to be considered
in modeling.



Column  Description Unit

Time Time of measurement timestamp
Tp The temperature of the water °C

pH pH value of the water pH

Cond Electric conductivity of the water S/m

Turb Turbidity of the water FNU

SAC Spectral absorption coefficient 1/m

PFM Pulse-Frequency-Modulation Hz

EVENT Marker if this entry should be considered as a remarkable change resp. event boolean

Table 1: Description of drinking water composition data published by Thiiringer
Fernwasserversorgung for the GECCO 2019 Industrial Challenge: Monitoring
of drinking-water quality . The presented data was measured at significant
points throughout the water distribution system.
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Figure 1: Sensor values for November 13, 2017 with areas of contamination
highlighted in red. While the first incident around 3:30 PM looks like it can
be detected through the sudden increase in turbidity, this decision is not that
easy for the second incident around 10 PM.

2.2 Data Preprocessing

With regard to the continuous measurement of the water composition, it is to be expected that the sensors will
not always function properly , which can result in missing values. There are many different techniques to
deal with this issue, e.g. deleting rows containing missing values, imputing missing values, or using classifiers,
which are capable of working with missing values in the first place, e.g. histogram-based gradient boosting.
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Figure 3: Pairwise correlation matrix. There are significant pairwise correlations
between Tp and Cond, Tp and SAC, and Cond and SAC.

But, in order not to go beyond the the scope of this work, the implications and benefits of different imputation
techniques are not further elaborated, as they have already been thoroughly studied . Instead, missing
values will simply be forward-filled, where a last valid value will be propagated forward. This has already led to
sufficiently good results in the past .

2.3 Training Procedure
2.3.1 Model Selection

Tree ensembles perform quite well when used for anomaly detection [27]. For evaluating the most suitable
tree-based classifier, we examine the following models: gradient boosting (GradientBoosting), histogram-based
gradient boosting (HistGradientBoosting), decision trees (DecisionTree), adaptive boosting (AdaBoost),



extremely randomized trees (ExtraTrees), random forests (RandomForest), and extreme gradient boosting with
and without dropout (xgbTree and xgbDART respectively).

2.3.2 Evaluation

The above mentioned tree ensembles will be evaluated in terms of their performance in predicting water
contamination by utilizing 5-fold cross-validation with shuffled stratified folds and a 4:1 ratio between training
data and test data, as it is done in comparable studies [40]. Despite the fact that we are dealing with time series
data, due the short time span of the training data, it is not effective to use time series splits for cross-validation
127].

The models’ performance is assessed by comparing their F1 scores, which is not only the recommended
performance indicator according to the editors of the challenge [18], but is also an accurate metric when dealing
with high class imbalance, as it penalizes classifiers performing poorly on minority classes, considering the
balance between recall and precision [41]. Higher F1 scores mean better performance.

Given the amount of True Positives (TP), False Positives (FP), and False Negatives (FN), the F1 score can

be computed as
Precision - Recall

F1=2-
! Precision + Recall
with
Precision — TP
recision = TPLFP
TP
RBCCL” = m

2.3.3 Class Imbalance

Machine learning algorithms by design assume a balanced class distribution [42]. Therefore, in many experiments
with unequal amount of records per class it is necessary to apply resampling methods such as over-sampling the
minority class or under-sampling the majority class. However, with the exception of AdaBoost, the performance
of tree-based classifiers does not significantly benefit from resampling methods, at least not regarding the problem
domain of contamination detection in drinking water networks, as it has been shown that predictive performance
of decision trees and random forests remains the same or even worsens when applying resampling methods |40].

2.3.4 Normalization and Standardization

Another great advantage of tree-based classifiers is, that they don’t require any kind of normalization or
standardization [43]. This is due to the fact, that, in contrast to other machine learning methods, they don’t rely
on the distance between data points, but instead on the order of the data. As normalization is a monotonous
transformation, it preserves the order of values and therefore does not provide any benefit. This drastically
simplifies the training pipeline.

2.3.5 Collinearity

Our analysis of the dataset revealed that three variables are significantly pairwise correlated: Tp, Cond, and SAC.
There are many different ways to deal with collinearity in datasets. For example, the dimension of the existing
data can be reduced by Principal Component Analysis (PCA) and thus strongly correlated information can
be merged. However, the experiments conducted as part of this essay have shown that any measures against
collinearity have only led to a reduction in prediction performance.

2.3.6 Results

In table [2| you can see the results of 5-fold cross-validation. Overall, there are significant differences in the
performance of reliable contamination detection for the examined classifiers. While some models fail to accurately
predict contamination, the ExtraTrees classifier seems to detect anomalies in drinking water composition with
ease. It reached a mean F1 score of 0.9311. Another very important metric in this context is the amount of
false positives and false negatives. From 43,776 predictions in total, only 2.6 predictions were false positives,
which means that the classifier detected contamination where there was none. The much more important metric,
however, is probably are probably the amount of false negatives, as it measures the amount of undetected
contamination. A high number of false negatives indicates, that the model is unable to detect ongoing contagion.



While the ExtraTrees classifier is not perfect in this aspect, it is still the best performing model. Together
with an efficient training time, this makes the ExtraTrees model our favored candidate. Without any hyper-
parameter optimization, the results from this evaluation already allow for a relatively cost- and time-efficient
online contamination detection.

Algorithm Training TP TN FP FN F1
GradientBoosting 22.86s 77.8  43,638.8 11.6 47.8  0.7228 £ 0.0482
HistGradientBoosting 0.20s 78.0  43,619.6 30.8 47.6  0.6568 £ 0.0984
DecisionTree 1.12s  107.8 43,633.8 16.6 17.8  0.8633 +0.0343
AdaBoost 4.82s 75.6 43,6416 88 50.0 0.7193 £ 0.0242
ExtraTrees 3.01s 111.8 43,647.8 2.6 13.8 0.9311+0.0260
RandomForest 20.64s 104.6 43,647.8 2.6 21.0 0.8986 £ 0.0075
xgbDART 33.77s  109.0 43,645.0 54 16.6  0.9082 £ 0.0125
xgbTree 0.20s 109.8 43,6446 58 158 0.9102 £0.0152

Table 2: Performance of various tree-based classifiers for 5-fold cross-validation with shuffled stratified folds.

2.4 Feature Importance

The use of tree-based classifiers allows us to determine the relative importance of drinking water composition
parameters without much effort, as this information is a by-product of the training process. Figure [ visualizes
this and indicates that the spectral absorption coefficient and the turbidity of the water are most important for
successful contamination detection. This also provides valuable insights into which sensors should be treated
with particular care. Outage of these sensors poses a higher risk of false predictions, as the information density
in these parameters is higher as for example in the water’s pH value or the pulse-frequency modulation value.
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Figure 4: The relative importance of water composition parameters. Most
important for contamination detection are SAC and Turb.

2.4.1 Hyper-parameter Optimization

Training a model and evaluating its performance usually also comprises hyperparameter optimization, as this
results in a better performing classifier. However, the ideal configuration of hyper-parameters is often tightly
related to the actual problem at hand and the underlying dataset [44].

While not being the most efficient way to optimize the hyper-parameters of a machine learning model,
exhaustive grid search cross-validation will most likely offer the ideal configuration when given the right search
space . After several iterations of optimization, the following parameters were found to yield the best
performance for contamination detection using an ExtraTrees classifier:

e n_estimators: 1000



e criterion: "entropy"

e max_depth: None

e min_samples_split: 2

e min_samples_leaf: 1

e min_weight_fraction_leaf: 0
e max_leaf_nodes: None

e min_impurity_decrease: 0.

The above specified hyper-parameters have a significant negative impact on the training time of the
ExtraTrees classifier. While training previously took around 3 seconds to finish, the mean training time for
5-fold cross-validation now is over 31 seconds. This makes sense as the default number of estimators is 100, and
as we increased the number of estimators by a factor of 10, the training also took almost 10 times as long.

However, the increase in performance achieved is rather disappointing. The F1 score for the optimized
parameters is 0.9369 which is an increase of only 0.10 %. This increase is in no way proportionate to the increased
resource requirements and is therefore not advisable.

2.5 Policy Suggestions

In the previous sections we have seen that an effective online detector of drinking water contamination can
be achieved with relatively little effort. Based on these findings, we will propose several policy suggestions to
enhance drinking water safety and address contamination issues effectively. These policies aim to improve the
supply of clean water for the population and thereby protect public health.

The first policy suggestion is the governmental requirement of comprehensively deploying smart sensors
and their maintenance. These sensors should be installed at critical points within the water distribution
network, including water treatment plants, storage facilities, and ideally in the pipes of the distribution network.
Continuous monitoring through these sensors will provide comprehensive data on water quality in real-time.
Additionally, predictive maintenance is necessary to minimize outages of these sensors and therefore reduce the
amount of missing values.

A centralized data platform should be established to collect, integrate, and store data from all sensors. This
platform must support interoperability with existing water management systems and allow for easy integration of
new sensor technologies. By centralizing data collection, we can utilize the collected data for further improving
the performance of the contamination detector.

The third suggestion involves the utilization of machine learning models to detect contamination. Machine
learning models should be developed and trained using both historical and real-time data to identify patterns
and anomalies indicative of contamination. Implementing real-time anomaly detection algorithms will enable the
system to detect potential contamination events as soon as possible and allow for immediate investigation and
response.

Especially in the beginning, where a lot of data has first to be collected and the contamination detector has
to be properly trained, there might be some false predictions. To build trust for the deployed systems, it is
therefore recommended to have a tried and tested backup system running simultaneously and first assess the
performance of the novel technology before deriving any kind of action from its predictions.

Finally, in the case of a detected contamination, relevant authorities have to be notified immediately through
a robust alert system. For this, a standardized response protocol is required to quickly investigate and mitigate
contamination events. For example, this protocol may include shutting down affected water lines, issuing public
advisories, or deploying emergency water treatment measures.

The above mentioned steps allow the Smart City to ensure a continuous supply of safe and clean drinking
water. Furthermore, the suggested policy protects public health by reducing the risk of waterborne diseases and
other health issues associated with contaminated drinking water. Operational efficiency is enhanced through
predictive maintenance. This not only reduces downtime and resource wastage but also results in cost savings by
preventing large-scale contamination incidents.



2.6 Ethical and Social Implications of Policy Suggestions

The above suggested policies carry several ethical and social implications that must be considered carefully
before actually implementing them.

One primary ethical concern is data security. Due to the extensive use of smart sensors and centralized data
platforms, it is necessary to ensure that this data is protected against breaches or tampering. Unauthorized
access to such data could lead to malicious actions, such as dispatching false alarms or hiding an ongoing
contamination. The infrastructure introduced by these regulations must be classified as critical infrastructure
and secured and guarded accordingly to mitigate these risks.

Another ethical question concerns equity and access. Wealthier areas might receive more immediate and
thorough implementation of these technologies, while economically disadvantaged communities could be left with
outdated or insufficient water monitoring systems. This disparity could exacerbate existing inequalities in access
to safe drinking water. Therefore, it has to be ensured, that the deployed technologies are evenly distributed
across different regions and communities, regardless of their economic status.

Transparency and public trust are also significant social implications of this policy. False predictions can lead
to panic among the population if not handled correctly. Thus, every prediction made by the online contamination
detector has to be verified by a human, to also build trust in this novel technology.

The policy suggestions also raise questions about the potential impact on employment and the reduction
of workforce within the water treatment plant. The integration of advanced technologies for monitoring and
maintenance may reduce the need for certain manual labor tasks. Of course, they may create new job opportunities
in areas such as data analysis, cybersecurity, or technology maintenance, but these opportunities do not exist for
the currently employed workers. It is therefore an ethical responsibility to ensure that transition programs exist
for displaced workers.

Last but not least, the suggested policies raise ethical concerns regarding responsibility and liability in the
event of an incorrect prediction. If the system falsely predicts contamination where none exists, it could lead to
unnecessary panic, costly interventions, and a loss of public trust in the water management system. Conversely,
a false negative, where the system fails to predict an actual contamination event, poses severe risks to public
health. It is therefore essential that the question of liability is clear at all times.

In conclusion, when utilizing modern CI techniques for drinking water contamination detection, there are
numerous benefits for public health and how fast incidents can be detected. However, they also bring with them
several ethical and social implications. These include concerns about data security, equity and access, public
trust, impact on the workforce, and liability in the event of an incorrect prediction. These issues need to be
addressed first to ensure that these measures not only achieve their technological and health-related objectives,
but also uphold social justice and public safety.

3 Conclusion

In this essay we found that ensuring access to clean and safe drinking water is a critical challenge that Smart
Cities must address to enhance public health and societal well-being. Furthermore, we highlighted the potential
of data-driven approaches, particularly the use of AI and machine learning, to improve the efficiency and
effectiveness of real-time water contamination detection. By utilizing a real-world dataset by the Thiiringer
Fernwasserversorgung, we demonstrated that these technologies can offer cost-effective solutions that benefit
both developed and developing regions.

Moving forward, it is essential for policymakers to support the integration of these technologies into water
management, while always taking into account their ethical and social implications, in order to ensure sustainable
and equitable access to safe drinking water.
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