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POTENTIAL OUTCOMES 1

In this lecture you will learn about new concepts and notations needed to clearly describe

causal concepts.

In particular, the lecture presents and discusses the following:

= Potential Outcomes and Individual Treatment Effects

* The Fundamental Problem of Causal Inference
« Average Treatment Effects and Missing Data Interpretation
» Ignorability — Exchangeability
« Conditional Exchangeability — Unconfoundedness
« Positivity — Overlap — Common Support and Extrapolation
* No interference, Consistency, and SUTVA
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PART 1

POTENTIAL OUTCOMES AND
INDIVIDUAL TREATMENT EFFECTS
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We will use the following notation:
= X denotes the random variable for TREATMENT,
= Y denotes the random variable for the ouTCOME of interest,

» 7 denotes a set of random variables (COVARIATES),

In general, we will use uppercase letters Z to denote random variables and lowercase letters z to

denote values that random variables take on.
Much of what we consider will be settings where X and Y are binary.

In general, we can extend things to work in settings where X and Y can take on more than two values

or where X and Y are continuous.
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We have the following narration, you are unhappy (@ ) You get the dog and become happy!!!
and consider whether or not to get a dog ( #% ) to help

O+a—o>0
To answer the question to the right we need to know more. The dog (#® ) CAUSED you to be happy (® )?
= What if | told you “I'm certain you would have c I ,\’ ) e

become happy also without getting the dog”? The dog was not necessary to make you

happy, so its claim to a causal effect on your
happiness is weak.

= What if instead | told you “/I’'m certain you \ 7
| | + 28 —

would have remained unhappy without

getting the dog”? The dog has a pretty strong claim to a causal
effect on your happiness.
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We have just used the causal concept known

as POTENTIAL OUTCOME. o OUTCOME
unhappy (Y) happy
Happiness = OUTCOME = Y Y =10 r =
L2 TREATMENT
Dog = TREATMENT = X A\
do not get (X)
x =10

We let Y (1) be the POTENTIAL OUTCOME OF HAPPINESS you would observe if you were to get a dog (X = 1).
We let Y(0) be the POTENTIAL OUTCOME OF HAPPINESS you would observe if you were to not get a dog (X = 0).
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+Bd o0 ro-:
Xo=
O+ N—o>0 ro-:
\ X =0
B +B OO rw-:
Xi= 4
D+ N—B
\ X=at)

We let Y (1) be the POTENTIAL OUTCOME OF HAPPINESS you would observe if you were to get a dog (X = 1).
We let Y(0) be the POTENTIAL OUTCOME OF HAPPINESS you would observe if you were to not get a dog (X = 0).

scenario 1 <

scenario 2 <

0) =20
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POTENTIAL OUTCOME

o =

Y (x) denotes what your outcome would be, if you were to take treatment X = x.

= A POTENTIAL OUTCOME Y (x) is distinct from the OBSERVED OUTCOME Y in that not all
potential outcomes are observed.

= All potential outcomes can potentially be observed.

» The actually observed potential outcome depends on the given value x of treatment Xj

L

,_ ®ro=1=v , @® rw=1=v osserveo
®+8 ®+a 7
X=1

X¥1NOY(1)= —y Y(0) =? bk

OBSERVED
BD+B-oBro-1-ry B+UWo>oBro=-0-v
e X=0
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Up to now there is only a single individual in the whole population: you.

However, the POPULATION consists of many INDIVIDUALS oOr UNITS.

Each individual (unit) is tipically associated with one or more

variables, referred to as COVARIATES Z.

We denote TREATMENT X, COVARIATES Z and OUTCOME Y of the pin

individual (unit) as X;, Z; and ;.

INDIVIDUAL TREATMENT EFFECT — (ITE)

5
The individual treatment effect (ITE) for the i*” individual (unit)
is defined as follows:

7, 2 Y.(1) — Y;(0)
O 2

population
individuals
units
individual ﬁ gender
CLlly weight

ith
individual fél v oy
(unit) P!

X, =1
BD+B->® o=
O+@+wao

= i=1—-0=1

l
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ERTUTITTY:

() H(x) - oK)

You

Individual treatment effects (ITEs) are some of the main
quantities that we care about in causal inference.

INDIVIDUAL TREATMENT EFFECT — (ITE)

5
The individual treatment effect (ITE) for the i*” individual (unit)
is defined as follows:

Yk e )

\ b

Y(x) is a random variable (different individuals
have different potential outcomes).

Y:(x) is treated as a non-random variable
we are conditioning on so much
individualized (and context-specific)
information, that we restrict our focus to a
single individual (in a specific context)
whose potential outcomes are deterministic.

You would choose to get a dog because the
CAUSAL EFFECT (ITE) 7; = Y;(1) — Y;(0) of getting
a dog on your happiness is positive 7; = 1.

Xizl

BD+B->® o=
D + w—)@ (0) = 0

= i=1—-0=1

l
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%%?&5&32 Y(x) is a random variable (different individuals
units have different potential outcomes).
Yi(x) Yo(x) - Y;(x) is treated as a non-random variable

we are conditioning on so much
You individualized (and context-specific)

information, that we restrict our focus to a
Y;(x) single individual (in a specific context)
whose potential outcomes are deterministic.

You would decide to not get a dog because
there is NO CAUSAL EFFECT of getting a dog
O eX) B =1-1=0.

Individual treatment effects (ITEs) are some of the main
quantities that we care about in causal inference.

INDIVIDUAL TREATMENT EFFECT — (ITE) X =1

B+8->® -
is defined as follows:

TléYl(l)—Yl(O) o + 'A‘ % e Y(O)_l

\. J = i=1—-1=0

l

5
The individual treatment effect (ITE) for the i*” individual (unit)
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PART 11

THE FUNDAMENTAL PROBLEM
OF CAUSAL INFERENCE
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It is impossible to observe all potential outcomes for a given
individual (unit).

- “ =3 ¥{1) In particular:

Q = You cannot observe both Y (1) and Y (0), unless you

' \ have a TIME MACHINE that would allow you to go back in
v ) time and choose the version of treatment X that you
'«‘." Y(O) didn’t take the first time.

D oB > 0> Pd— YO

b S Y-S TIME

v P | MACHINE = You cannot simply get a dog, observe Y (1), give the dog
g away, and then observe Y (0) because the second
| \l observation will be influenced by all the actions you took
NS ) between the two observations and anything else that
'4}’ Y (0) changed since the first observation.
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THE FUNDAMENTAL PROBLEM OF CAUSAL INFERENCE

(We cannot observe both Y;(1) and Y;(0), therefore we cannot
observe the causal effect

7= B =00

N

J

Indeed, we care about making causal
claims, which are defined in terms of

potential outcomes.

In machine learning, we often only care about predicting the observed outcome Y, so there is no need for
potential outcomes, which means machine learning does not have to deal with this fundamental problem that

we must deal with in causal inference.

= The potential outcomes that you do not (and

because they are counter to fact (reality).

cannot) observe are known as COUNTERFACTUALS g — “ —> Y(1) COUNTERFACTUAL
X =1

= A potential outcome Y (x) does not become
counter to fact (COUNTERFACTUAL) until another
potential outcome Y (x') is observed.

= Note that there are no counterfactuals or factuals
until the outcome is observed. Before that, there
are only potential outcomes.

e —> ':’ —> Y(0) = 1 FAcTUAL

X=0
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THE FUNDAMENTAL PROBLEM OF CAUSAL INFERENCE

(We cannot observe both Y;(1) and Y;(0), therefore we cannot
observe the causal effect

7= B =00

N

5

However, what about AVERAGE TREATMENT EFFECTS?

AVERAGE TREATMENT EFFECT - ATE
Ghe average treatment effect (ATE) is obtained by taking an =

average over the ITEs:

T 2 E[Y;(1) - ¥;(0)] = E[¥(1) — Y(0)]

where we recall that the average is over the individuals “i” if

Y:(x) is deterministic.
N e

We know that we can’t access individual
treatment effects (ITE), due to the

fundamental problem of causal inference.

How would we actually compute the ATE?
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Let us assume that data in the right table (Table 2.1)

represent the whole population of interest. L= ¢l ) Y1) -v(0)
1 0 0 7 0 50,
2 1 1 1 ? ?
3 1 0 0 ? ?
4 0 0 ? 0 44
3} 0 1 ? 1 ?
6 1 1 1 ? ?
Table 2.1
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Let us assume that data in the right table (Table 2.1) .
X Y2 Veh)y Y (0 ¥Y{1)—Y (0

represent the whole population of interest. l (1) (0) (1) (0)

1 0 0 ? 0 ?
The FUNDAMENTAL PROBLEM OF CAUSAL INFERENCE can be ? s
seen as a MISSING DATA PROBLEM, i.e., all question marks (?) 2 1 L 1 : :
in Table 2.1 mean that we do not observe the value for the 3 1 0 0 = ?
corresponding cell. 4 0 0 ? 0 ?

) 0 1 ? 1 ?

6 1 1 1 ? 2

Table 2.1
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Let us assume that data in the right table (Table 2.1)

Yi(1 Y (0 Y(1)—-Y(0
represent the whole population of interest. (1) (0) (1) O

? 0

Oy

The FUNDAMENTAL PROBLEM OF CAUSAL INFERENCE can be
seen as a MISSING DATA PROBLEM, i.e., all question marks (?)
in Table 2.1 mean that we do not observe the value for the
corresponding cell.

w D) AN A @Atk X

Therefore, we can not compute directly the average
treatment effect (ATE) or average causal effect (ACE):

72 E[Y;(1) = Y;(0)] =2 Table 2.1
ASSOCIATIONAL DIFFERENCE

%
0
1
0
0
1
1

O O B W N =

1

However, we know the following:

(VVe could be tempted to use the associationa?
T 2 E[Y;(1) — Y:(0)] = E[Y(1) — Y(O)] difference
Blrix—1| - E|Y|X =0
| EYIX=1]-Elvjx=0]
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Let us assume that data in the right table (Table 2.1)

Yi(1 Y (0 Y(1)-Y(0
represent the whole population of interest. (1) (0) (1) (0)

7 0

Oy

The FUNDAMENTAL PROBLEM OF CAUSAL INFERENCE can be
seen as a MISSING DATA PROBLEM, i.e., all question marks (?)
in Table 2.1 mean that we do not observe the value for the
corresponding cell.

Therefore, we can not compute directly the average
treatment effect (ATE) or average causal effect (ACE):

72 E[Y;(1) = Y;(0)] =2 Table 2.1
ASSOCIATIONAL DIFFERENCE

o O A W N =
N = O Y
ENYEE AR e R YA ) AR e D)

However, we know the following:

(VVe could be tempted to use the associationa?
T 2 E[Y;(1) — Y:(0)] = E[Y(1) — Y(O)] difference
Blrix—1| - E|Y|X =0
| EYIX=1]-Elvjx=0]
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Let us assume that data in the right table (Table 2.1)

L X ¥ Y(1 Y (O el ) —Y (0
represent the whole population of interest. (D) © o, ©
1 0 0 ? 0 f
The FUNDAMENTAL PROBLEM OF CAUSAL INFERENCE can be , s
seen as a MISSING DATA PROBLEM, i.e., all question marks (?) £ 1 1 1 :
in Table 2.1 mean that we do not observe the value for the S 0 0 ? ?
corresponding cell. 4 0 0 ? 0 ?
Therefore, we can not compute directly the average &0 1 Y: 1 !
treatment effect (ATE) or average causal effect (ACE): 6 1 1 1 2 ?

T2 E[Y;(1) -Y:(0)] =7 Table 2.1

S ASSOCIATIONAL DIFFERENCE
However, we know the following:

(\/Ve could be tempted to use the associationa?
T 2 E[Y;(1) — Y:(0)] = E[Y(1) — Y(O)] difference
and linearity of expectation E[-] gives: v E[Y|X = 1] — E[Y]X = 0] )

T2 E[Y(1) - Y(0)] = E[Y(1)] — E[Y(0)]
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Let us assume that data in the right table (Table 2.1)

Yi(1 Y (0 Y(1)—-Y(0
represent the whole population of interest. (1) (0) (1) O

7 0

~.

The FUNDAMENTAL PROBLEM OF CAUSAL INFERENCE can be
seen as a MISSING DATA PROBLEM, i.e., all question marks (?)
in Table 2.1 mean that we do not observe the value for the
corresponding cell.

=) =) (@») K1

Therefore, we can not compute directly the average
treatment effect (ATE) or average causal effect (ACE):

T2 E[Y;(1) = Y;(0)] =2 Table 2.1
ASSOCIATIONAL DIFFERENCE

%
0
1
0
0
1
1

o O A W N =
N = O Y
AN AN A e N TANY I N

1

However, we know the following:

(\/Ve could be tempted to use the associationa?
T 2 E[Y;(1) — Y:(0)] = E[Y(1) — Y(O)] difference
and linearity of expectation E[-] gives: v E[Y|X = 1] — E[Y]X = 0] )

T2 E[Y(1) - Y(0)] = E[Y(1)] — E[Y(0)]
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Let us assume that data in the right table (Table 2.1)

Oy

Yi(1)

Y (0)

¥(1)—Y(0)

represent the whole population of interest.
"

The FUNDAMENTAL PROBLEM OF CAUSAL INFERENCE can be
seen as a MISSING DATA PROBLEM, i.e., all question marks (?)
in Table 2.1 mean that we do not observe the value for the
corresponding cell.

=) =) (@») K1

Therefore, we can not compute directly the average

¥
0
1
0
0
1
treatment effect (ATE) or average causal effect (ACE): 1

o O A W N =

1

0

N = O Y

b0 2SO et S IRERIE D PR S IEL 0

T2 E[Y;(1) -Y:(0)] =7 Table 2.1

However, we know the following:

ASSOCIATIONAL DIFFERENCE

T 2 E[Y;(1) — Y:(0)] = E[Y(1) — Y(O)] difference

and linearity of expectation E[:] gives:

B A )
(\/Ve could be tempted to use the associational

E[Y|X = 1] — E[Y|X = 0]

I?

r 2 E[Y(1) — Y(0)] = E[Y(1)] - E[Y(0)] = E[Y|X = 1] — E[V|X = 0]

Unfortunately, this is not true in general. If it were, that would mean that causation is simply association.
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R ¢ ¥ ol oY) Y(1)-—-Y(0)
E[Y|X = 1] = E[¥|X = 0] e e - :
_ & | _ 2 1 1 ? ?
IS an associational quantity, while 3 1 0 0 » ”
4 0 0 ? 0 6
E[Y(1)] — E[Y(0)] e o ? 1 ?
6 1 1 1 ? 2
is a causal quantity. Table 2.1
Z
In general, they are not equal due to CONFOUNDING.
The graphical representation of such a difference is depicted
in Figure 2.1.
In particular, we say that the covariate Z confounds the effect
of X on Y, because of the following path
X—/—Y X Figure 2.1 Y
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But ... under which assumptions the following equality holds pedtiings F ol Yoy v()-=-v()
2
lurisr 1 0 0] ? 0 ?
" 2. 1 1 2 ?
T2 E[Y(1)] — E[Y(0)] = [E[Y|X = 1] = IE[YIX = 0]
3 1 0 0 ? 2
4 0] 0 ? 0 ?
In other terms, when ATE is equal to the associational 5 0 1 2 1 2
difference?
6 1 1 1 ? 2
Table 2.1
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But ... under which assumptions the following equality holds
true?

~.

¥elEr Y(0) Y(1)—Y(0)
? 0

T 2 E[Y(1)] - E[Y(0)] = E[Y|X = 1] — E[Y|X = 0]

In other terms, when ATE is equal to the associational
difference?

oo OO A W0 N -
N = O Y
ENYEE AR e R YA ) AR e D)

What legitimates us to calculate the ATE by taking the
average of the Y (0) column, ignoring the question marks, and
subtracting that from the average of the Y (1) column, ignoring
the question marks?

Table 2.1
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But ... under which assumptions the following equality holds
true?

e ) Y (1) —Y(0)
® 0

Oy

T 2 E[Y(1)] - E[Y(0)] = E[Y|X = 1] — E[Y|X = 0]

In other terms, when ATE is equal to the associational
difference?

v AR H A

%
0
1
0
0
1
1

o O A W N =
N = O Y
AN AN A e N TANY I N

1
What legitimates us to calculate the ATE by taking the Table 2.1
average of the Y (0) column, ignoring the question marks, and :
subtracting that from the average of the Y (1) column, ignoring

the question marks?
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But ... under which assumptions the following equality holds

Yk Y00 Y(1)—-Y(0)
true?

? 0

Oy

T 2 E[Y(1)] - E[Y(0)] = E[Y|X = 1] — E[Y|X = 0]

In other terms, when ATE is equal to the associational
difference?

=) =) (@») K1

%
0
1
0
0
1
1

o O A W N =
NN = O Y
AN AN A e N TANY I N

1
Table 2.1

What legitimates us to calculate the ATE by taking the
average of the Y (0) column, ignoring the question marks, and
subtracting that from the average of the Y (1) column, ignoring
the question marks?
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But ... under which assumptions the following equality holds

R ¢ ¥ ol oY) Y(1)-—-Y(0)
true?

1 0 0 ? 0 0

" 2. 1 1 2 ?
T 2 E[Y(1)] — E[Y(0)] = E[Y|X = 1] — E[Y|X = 0]

3 1 0 0 ? 2

4 0 0 ? 0 6
In other terms, when ATE is equal to the associational 5 0 1 2 1 2
difference?

6 1 1 1 ? 2
What legitimates us to calculate the ATE by taking the Table 2.1
average of the Y (0) column, ignoring the question marks, and :
subtracting that from the average of the Y (1) column, ignoring >
the question marks?
Ilgnoring question marks (missing data) Assuming
IS known as: IGNORABILITY — EXCHANGEABILITY

S means we can ignore how a
IGNORABILITY — EXCHANGEABILITY patient ended up selecting the
treatment X she selected and O
(Y(l), Y(O)) JI-X just assuming she was randomly
assigned her treatment X. X Figure 2.2 4
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IGNORABILITY — EXCHANGEABILITY IS fundgmental pecause it ; X v Y1) Y@ Y1) -v(©)
allows us to reduce the ATE to the associational difference: : ” : = : 5
T 2 E[Y(1)] — E[Y(0)] 2 b 1 7 7
3 1 0 0 ? 2
= E[Y(1)|X = 1] — E[Y(0)|X = 0] 4 - 1 h ? 0 ?
3} 0 1 ? 1 7
= E[Y|X = 1] = E[Y|X = 0] 6 1 1 1 2 2
IGNORABILITY — EXCHANGEABILITY means that the groups Table 2.1
(treatment/control) are exchangeable in the sense that if s b i
they were swapped, the new treatment group would [E[Y(l) |X 1] E[Y(l) |X O]
observe the same outcomes as the old treatment group, E[Y(0)|X = 0] = E[Y(0)|X = 1]
and the new control group would observe the same : :
outcomes as the old control group. which brings to
IGNORABILITY — EXCHANGEABILITY MEAN IGNORABILITY — EXCHANGEABILITY
nearly equivalent to [E[Y(l)lX =w]= [E[Y(l)]
[ (Y(1),Y(0)) 1 X ] <, | i
E[Y(0)[X = x] = E[Y(0)]
CAUSAL NETWORKS — POTENTIAL OUTCOMES FALL 2024 FABIO STELLA



PART II: THE FUNDAMENTAL PROBLEM OF CAUSAL INFERENCE

29
IGNORABILITY — EXCHANGEABILITY is fundgmental pecause it S g ¥ D Y0) Y-y
allows us to reduce the ATE to the associational difference: : ” : > : :
t £ E[Y(1)] — E[Y(0)] 2 L ok L 7 :
3 1 0 0 ? 2
= E[Y(1)|X = 1] — E[Y(0)|X = 0] 4 - 1 h ? 0 ?
3} 0 1 ? 1 7
= E[Y|X = 1] = E[Y|X = 0] 67 1 1 ? ?
MEAN (IGNORABILITY — EXCHANGEABILITY) is a weaker assumption Table 2.1
than FULL (IGNORABILITY — EXCHANGEABILITY) (box below), A o i
because it only constrains the first moment of the distribution. [E[Y(1)|X 2 1] % E[Y(1)|X o O]
In general, MEAN (IGNORABILITY — EXCHANGEABILITY) is sufficient [E[Y(O)|X = 0] = [E[Y(())|X — il
for ATE, but it is common to assume complete independence, as hohbh t
formally represented in the box below. SALERR s
IGNORABILITY — EXCHANGEABILITY MEAN IGNORABILITY — EXCHANGEABILITY
nearly equivalent to [E[Y(l)lX — X] — [E[Y(l)]
[ (Y(1),Y(0)) 1 X ] <, | i

E[Y(0)|X = x| = E[Y(0)]
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IGNORABILITY — EXCHANGEABILITY IS fundgmental pecause it ; X v Y1) Y@ Y1) -v(©)

allows us to reduce the ATE to the associational difference: : ” : = : 5
7.2 Ei¥(1)] ~ EER(0}] Fa o 1 :
3 1 0 0 ? 2
= E[Y(1)|X = 1] — E[Y(0)|X = 0] 4 - 1 h ? 0 ?
5 0 1 ? 1 2
= E[Y|X = 1] — E[Y|X = 0] 64y g 1 ? ?

An important intuition to have about Table 2.1

IGNORABILITY — EXCHANGEABILITY is that it guarantees i T £
that the groups are comparable. E[Y(1)|X e 1] = E[Y(1)|X = 0]

In other words, the TREATMENT GROUP (X = 1) and the E[Y(0)|X = 0] = E[Y(0)|X = 1]
CONTROL GROUP (X = 0) are the same in all relevant
aspects other than the treatment X.

IGNORABILITY — EXCHANGEABILITY MEAN IGNORABILITY — EXCHANGEABILITY

nearly equivalent to [E[Y(l)lX = x| =E[¥(1)]
Y(1),Y(O X |
[ S ] = E[Y(0)|X = x] = E[Y(0)]

which brings to

YV x
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The assumption of IGNORABILITY — EXCHANGEABILITY allows us to IDENTIFY CAUSAL EFFECTS.
= To IDENTIFY A CAUSAL EFFECT is to reduce a causal expression to a purely statistical expression.

— To reduce an expression from one that uses potential outcome notation to one that uses only
statistical notation such as X, Z, Y, expectations, and conditioning.

— We can calculate the CAUSAL EFFECT from just the OBSERVATIONAL DISTRIBUTION P(X,Z,Y)

IDENTIFIABILITY

& )
A causal quantity (e.g. E[Y(x)]) is identifiable | IGNORABILITY — EXCHANGEABILITY
if we can compute it from a purely statistical Is extremely important, but how A
quantity (e.g. E[Y]|X = x]). realistic of an assumption is it?

\&. J

IGNORABILITY — EXCHANGEABILITY

COMPLETELY UNREALISTIC,
(Y(1), Y(O)) 1 X confounding is likely to happen
in most data we observe.

X Figure 2.1 4
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We can make the IGNORABILITY — EXCHANGEABILITY assumption realistic by
performing RANDOMIZED EXPERIMENTS, which force the treatment X to not be

caused by anything but a coin toss, so then we have the causal structure

shown in Figure 2.2.

O

IDENTIFIABILITY X Figure 2.2 i
~ )

A causal quantity (e.g. E[Y(x)]) is identifiable | IGNORABILITY — EXCHANGEABILITY

if we can compute it from a purely statistical is extremely important, but how A

quantity (e.g. E[Y]|X = x]). realistic of an assumption is it?
%

IGNORABILITY — EXCHANGEABILITY

COMPLETELY UNREALISTIC,
[ (Y(1),Y(0)) 1L X ]

confounding is likely to happen
in most data we observe.

X Figure 2.1 4
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In OBSERVATIONAL DATA, it is unrealistic to assume that the groups
(treatment and control) are exchangeable. In other words, there is

no reason to expect that the groups (treatment and control) are the
same in all relevant variables Z € Z other than the treatment X.

However, if we control for relevant variables by conditioning, then
maybe the groups will be exchangeable.

» What do we mean by “relevant variables™?
= For now, let’s just say they are all of the covariate variables Z. X

Figure 2.3 Y

CONDITIONAL EXCHANGEABILITY — UNCONFOUNDEDNESS
We do not have

IGNORABILITY — EXCHANGEABILITY in
the data because Z is a common
cause of X and Y.

(Y(l), Y(O)) 1L X | Z where Z are the covariate variables.

Although the treatment X and potential outcomes Y (1) and Y(0) may = NON-CAUSAL ASSOCIATION between X
be unconditionally associated (due to confounding), within levels of Z, andY, flows along the following path:
they are not associated.

No confounding within levels of Z because CONTROLLING FOR Z makes e oy
the treatment group (X = 1) and the control group (X = 0) comparable. = g
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However, CONDITIONAL EXCHANGEABILITY — UNCONFOUNDEDNESS
holds in the data.

Indeed, when conditioning on Z, non-causal association between
X and Y no longer exists.

Non-causal association is “BLOCKED” at Z by conditioning on Z.

CONDITIONAL EXCHANGEABILITY — UNCONFOUNDEDNESS is the main
assumption necessary for causal inference.

CONDITIONAL EXCHANGEABILITY — UNCONFOUNDEDNESS

[ (Y(l), Y(O)) 1L X | Z where Z are the covariate variables.

We can now identify the causal effect within levels of Z, just like we
did with (unconditional) ignorability — exchangeability:

E[Y(1) —Y(0) | Z] = E[Y(DI|Z] — E[Y(0)|Z]
= E[¥El}X = 1, Z] = E[Y(0)|X =.0,Z]
= E[Y|X =1,Z] — E|Y]|X = 0,Z] X Figure 2.4 Y
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However, CONDITIONAL EXCHANGEABILITY — UNCONFOUNDEDNESS Conditional exchangeability is a core
holds in the data. assumption for causal inference and

goes by many names:

Indeed, when conditioning on Z, non-causal association between
X and Y no longer exists.

Non-causal association is “BLOCKED” at Z by conditioning on Z.

CONDITIONAL EXCHANGEABILITY — UNCONFOUNDEDNESS is the main
assumption necessary for causal inference.

CONDITIONAL EXCHANGEABILITY — UNCONFOUNDEDNESS

[ (Y(l), Y(O)) 1L X | Z where Z are the covariate variables.

We can now identify the causal effect within levels of Z, just like we
did with (unconditional) ignorability — exchangeability:

E[Y(1) — Y(0) | Z] = E[Y(1)|Z] — E[Y(0)|Z]
= E[Y(D|X = 1,Z] — E[Y(0)|X = 0,Z]
= E[Y|X = 1,Z] — E[Y|X = 0, Z]

unconfoundedness,
conditional ignorability,

no unobserved confounding,
selection on observables,
no omitted variable bias

etc...

| will use the term
UNCONFOUNDEDNESS
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If we want the marginal effect that we had before when assuming Conditional exchangeability is a core
(unconditional) ignorability — exchangeability, we can get that by assumption for causal inference and
simply marginalizing out Z as follows goes by many names:

— unconfoundedness,
E[Y(1) — Y (0)] = EzE[Y (1) — ¥Y(0)|Z] e :
— conditional ignorability,
— [EZ[[E[Yl)( —1,Z] — ElY|X =0, Z]] — no unobserved confounding,
: _ _ — selection on observables,
We can now introduce an important result for causal inference, that : : _
we will formally prove in next lectures. — Nno omitted variable bias

ADJUSTMENT FORMULA s GG,

| will use the term

(s : i :
Given the assumptions of unconfoundedness, positivity, consistency,
and no interference, we can identify the ATE: UNCONFOUNDEDNESS
E[Y(1) — Y(0)] = E4|E[Y|X = 1,Z] — E[Y|X = 0,Z]]
\oh e,
We moved from the assumption of ignorability — exchangeability to that
of unconfoundedness because it seems more realistic.
However, we often cannot know for certain if unconfoundedness holds!!!
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There may be some UNOBSERVED CONFOUNDERS (W in Figure 2.3B)
that are not part of Z = {M}, meaning UNCONFOUNDEDNESS IS VIOLATED.

Fortunately, that is not a problem in RANDOMIZED EXPERIMENTS.

Unfortunately, it is something that we must always be conscious of in
OBSERVATIONAL DATA.

Intuitively, the best thing we can do is to observe and fit (adjust for) as X Figure 2.3B Y
many covariates into Z as possible to try to ensure unconfoundedness.

M

However, we will see in next lectures, that it is not necessarily true that
conditioning on more covariates Z always helps our causal estimates to
be less biased.

Indeed, it can be the case we obtain more biased estimates when
adjusting for the “wrong covariates” in Z = {M, N}. N

In Figure 2.3C, adjusting for M provides unbiased estimates, while
adjusting for N results in biased estimates. X Figure 2.3C Y
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Conditioning on many covariates is attractive for POSITIVITY — OVERLAP — COMMON SUPPORT

achieving unconfoundedness, but it can be detrimental

for another reason that has to do with POSITIVITY. For all values z of covariates Z present in the
population of interest (i.e., z such that P(Z = z) > 0)

Positivity is the condition that all subgroups of the data
with different value z for covariates Z have some D= B — |7 —7) <1
probability of receiving any value of treatment X. \_ i

If we have a POSITIVITY VIOLATION, then we will be conditioning on a zero probability event.

To clearly see how a positivity violation translates to division by zero, let’s rewrite the right-hand side of
E[Y(1) — Y(0)] = Ez|E[Y|X = 1,Z] — E[Y|X = 0,Z]]

in the case of discrete covariate variables Z, to obtain

=2P(Z=2)<zyP(Y=y|X= 1,Z=Z)-—ZyP(Y=yIX= 0,Z=Z)>
z y K

Py X =17 —2) L= 0 T=2)
z P(Z = 2) Z .
PX=1Z=2)P(Z=2) P(X—O|Z—z)P(Z—z)
y
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Conditioning on many covariates is attractive for POSITIVITY — OVERLAP — COMMON SUPPORT

achieving unconfoundedness, but it can be detrimental
for another reason that has to do with POSITIVITY.

e : :
For all values z of covariates Z present in the

e e population of interest (i.e., z such that P(Z = z) > 0)
Positivity is the condition that all subgroups of the data

with different value z for covariates Z have some D= Bx — 1|7 =27) <1
probability of receiving any value of treatment X. \_ i

If we have a POSITIVITY VIOLATION, then we will be conditioning on a zero probability event.

To clearly see how a positivity violation translates to division by zero, let’s rewrite the right-hand side of

E[Y(1) - Y(0)] = Eg[E[Y]X = 1,Z] — E[Y|X = 0,Z]] POSITIVITY IS ESSENTIAL TO
in the case of discrete covariate variables Z, to obtain DEFINE CAUSAL EFFECT!!!

=ZP(Z=Z)<ZyP(Y=y|X= 1,Z=Z)—zyP(Y=y|X= 0,Z=Z)>
Z y 224

PV X = 17— %) By X077
Z P(Z = 2) Z y
PX=1Z=2)P(Z=2) P(X— 0|Z = z)P(Z = z)
y
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POSITIVITY — OVERLAP — COMMON SUPPORT

It wouldn’t make any sense to_be able to estimat-e_ the (For all values z of covariates Z present in the
causal effect of treatment (X = 1) vs. control (X = 0) population of interest (i.e., z such that P(Z = z) > 0)
In subgroup Z = z, since we see only treatment
(X = 1) or only control (X = 0), i.e., we never see the 0< P(X — 1|Z — Z) <=7
alternative in subgroup Z = z. % )
» (fziP(X=lll =)=l s it d i =t =7) = 1
All units belonging to subgroup Z = z do not All units belonging to subgroup Z = z do
receive the treatment (X = 0). receive the treatment (X = 1).

= i = 4
T o

X=1 X=0
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Positivity is also referred to as OVERLAP, in the
sense we want the covariate distribution of the
treatment group (X = 1)

P(Z|X = 1)

to overlap with the covariate distribution of the
control group (X = 0)

P(Z|X = 0)

This is why another common alias for positivity
IS COMMON SUPPORT.

NO POSITIVITY — NO OVERLAP — NO COMMON SUPPORT

BrZix=1
Opr(Z|X = 0)

-lIII-I_I ]

10-15 16-20 21-25 26-30 31-35 36-40 41-45 46-50 51-55 56-60 61-65 66-70 71-75
AGE

e : :
For all values z of covariates Z present in the

R i

POSITIVITY — OVERLAP — COMMON SUPPORT

population of interest (i.e., z such that P(Z = z) > 0)
D= Bx — 1|7 =27) <1

In the case where the covariates Z consist of a single

variable Z (i.e., Age) we have the following graphical
representation of positivity, overlap, and common
support:

POSITIVITY — OVERLAP — COMMON SUPPORT

B x=1 O P(Z|X =0)

HHHHHHHHHHHHH

10-15 16-20 21-25 26-30 31-35 36-40 41-45 46-50 51-55 56-60 61-65 66-70 71-75
AGE
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v ) e POSITIVITY — OVERLAP — COMMON SUPPORT
adjusting (conditioning)

on more covariates Z (For all values z of covariates Z present in the
could could population of interest (i.e., z such that P(Z = z) > 0)
lead to lead to
. | D= B — |7 —7) <1
higher chance of higher chance of 2 )
satisfying violating positivity
unconfoundedness

increase the
“dimension” of the
covariates Z

:> makes the subgroups for any

- I:> CURSE OF DIMENSIONALITY
level z of the covariates Z smaller

As each subgroup Z = z gets smaller, there is a higher and higher chance that either the whole subgroup
Z = z will have treatment (X = 1) or the whole subgroup Z = z will have control (X = 0).

size of any subgroup Z = z equal to 1 |:> positivity is guaranteed to not hold

CAUSAL NETWORKS — POTENTIAL OUTCOMES FALL 2024 FABIO STELLA



PART II: THE FUNDAMENTAL PROBLEM OF CAUSAL INFERENCE 43

adjusting (conditioning)

could
lead to g

higher chance of
satisfying
unconfoundedness

o
on more covariates Z For all values z of covariates Z present in the
could population of interest (i.e., z such that P(Z = z) > 0)
lead to
| D= 2X — 11Z—27) <1
higher chance of

POSITIVITY — OVERLAP — COMMON SUPPORT

R i

violating positivity
inputs to the model E[Y|X, Z] are (x, z) pairs, while
@ the output is the outcome y.

B E[Y|X =1,7Z] O E[Y|X = 0,Z]
demanding too much from
models and getting very

bad behavior in return P(X = O|]AGE = 26 — 30) = 0

Brzix=1) ﬂ [0 Pz|X = 0)

HHl!niiiﬂD

10-15 16-20 21-25 26-30 31-35 36-40 41-45 46-50 51-55 56-60 61-65 66-70 71-75

extrapolation

Jl

extrapolation

fit a model to E[Y|X, Z] Jl H

using the available
data (x,y, z)
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Another assumption is that of NO INTERFERENCE.

NO INTERFERENCE

Rather, the outcome Y; of each unit "i" is

(The outcome Y; of each unit "i" is unaffected by anyone
only a function of treatment X;.

else’s treatment X;, j # i.

Yi(xl: X, i X X M e N xn) — Yi(xi) We have implicitly made this assumption
\i i till now.

This assumption could be violated.

(1 7 4 V
TREATMENT X = “GET A DOG 9 0.4

5 5 me my friend
OUTCOME Y = “MY HAPPYNESS e Q I hang out more y

; ),e 3 ; “
Violations of the no interference assumption are almost @ T “
sure in network data. \\@

FABIO STELLA
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The last assumption is CONSISTENCY.

CONSISTENCY SUTVA
mthe treatment is X, then the observed outcome Y is\ /The Stable Unit-Treatment Value Assumption \
the potential outcome under treatment X. Formally, (SUTVA) is satisfied if unit (individual) i’s
o . outcome Y; is simply a function of unit i's
X =x ==k = kir) treatment X;.
We could write this also as follows: SUTVA is a combination of consistency and no
interference (and also deterministic potential
& Y =Y(X) " \outcomes). 5
It might seem like consistency is obviously true, but “no multiple versions of treatment.”
that is not always the case. ﬁ
& because | needed i :
- Vo S Y (1) is not well defined,
“ . / an energetic friend since it will be 1 or 0,
X = {1 - ge e dog” X =1 depending on something
0 Aoty y — o because I gotan old that is not captured by the
~ ~ and low energy dog treatment X specification.
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TYING IT ALL TOGETHER
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PART IlI: TYING IT ALL TOGETHER

The following assumptions are all needed for solving the problem of causal inference:

POSITIVITY — OVERLAP — COMMON SUPPORT

CONDITIONAL EXCHANGEABILITY — UNCONFOUNDEDNESS
\

& . :
For all values z of covariates Z present in

[ (Y(l)' Y(O)) Il X | Z, Z are the covariate variables. J the population of interest (i.e., z such that
P(Z = z) > 0)

Qe PX=1Z=2)<1

¥

SUTVA
/ CONSISTENCY \

NO INTERFERENCE mthe treatment is X, then the observed \
- outcome Y is the potential outcome under
The outcome Y; of each unit "i" is unaffected by anyone treatment X. Formally,
else’s treatment X;,j # i.
7 X=x=7Y=Y()
e Yi(X1, X2, ooe) Xim1, Xy Xi1) o) X1, Xn) = Yi (%) . We could write this also as follows:
% Y =Y (X )
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ADJUSTMENT FORMULA AVERAGE TREATMENT EFFECT - ATE
(Given the assumptions of unconfoundedness, positivity, - Ghe average treatment effect (ATE) is B
consistency, and no interference, we can identify the ATE: obtained by taking an average over the
ITES:
E[Y(1) — Y(0)] = Ez|E[Y|X = 1,Z] — E[Y|X = 0, Z]|
¢ e Bl B(0)] = E[Y(1) — Y(0)]
NO INTERFERENCE justifies where we recall that the average is over
that the quantity we We now come back to give a formal the individuals “i” if Y; (x) is deterministic.
should be looking at for proof of the ADJUSTMENT FORMULA. N 7

causal inference is All of these assumptions tie together

Q give us identifiability of the ATE.
E[Y(1) —Y(0)] = E[Y(1)] — E[Y(0)] (linearity of expectations)
= [E; IE Y(1)|Z] — E Y(O)IZ]] (law of iterated expectations)

= Ez|E[Y(1)|X = 1,Z] — E[Y(0)|X = 0,Z]| (unconfoundedness and positivity)

= Ez|E[Y|X = 1,Z] — E[Y|X = 0,Z]] (consistency)
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We need to introduce some terminology that will help clarify the discussion.

ESTIMAND

[An estimand is a quantity that we want to estimate.] [EZ[IE IY|X =1,Z] — E[]Y|X =0, Z]]

estimand we care about for estimating the ATE
ESTIMATE

An approximation of some estimand, which we get
using data.

J Given an estimand «a, we let & be its estimate.

ESTIMATOR ESTIMATION

A function that maps a dataset to an estimate of The process that we use to go from data + estimand
the estimand. to a concrete number is known as estimation.

" CAUSAL ESTIMAND refers to any estimand that contains a potential outcome in it.

" STATISTICAL ESTIMAND refers to any estimand that does not contain a potential outcome in it.
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In the following formula

E[Y(1) — Y(0)] = Eg|E[Y|X = 1,Z] — E[Y|X = 0,Z]]

E[Y(1) — Y(0)] isthe cAUSAL ESTIMAND that we are interested in

To actually estimate this causal estimand, we
must translate it into a STATISTICAL ESTIMAND

Ez|E[Y|X = 1,Z] — E[Y|X = 0,Z]|

IDENTIFICATION ESTIMATION
The process of moving from a causal estimand The process of moving from a statistical estimand
to an equivalent statistical estimand. to an estimate.

IDENTIEICATION ESTIMATION
TATISTICAL
CAUSAL ¢ > SULEE . $3 ESTIMATE
ESTIMAND ESTIMAND

Figure 2.5
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How do we do when we go to actually estimate quantities such as

E|E[Y|X = 1,Z] — E[Y|X = 0, Z]|

We will often use a model (e.g., linear regression or some more flexible predictor from machine learning) in
place of the conditional expectations

i 5 We will refer to estimators that use models
E[Y|X = x,Z = 7] like this as MODEL-ASSISTED ESTIMATORS.

We now need to discuss estimation.
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We now give an example complete with estimation().

Sodium intake is a continuous variable, so to easily apply
E[Y(1) —Y(0)] = IEZ[]E[YIX =1,Z] — E[Y|X = 0, Z]]
which is specified for binary treatment, we binarize X

X = 1if daily sodium intake = 3.5 gr.

“systolic blood pressure”  “daily sodium intake” X = 0if daily sodium intake < 3.5 gr.

We estimate the causal effect of sodium intake on blood pressure.

The data also include the following _
covariates Z for each individual: Because we are using data from a
simulation, we know that the true ATE  E[Y (1) — Y (0)] = 1.05

" Age of sodium on blood pressure is 1.05.

=  Amount of protein in the urine
* Miguel Angel Luque-Fernandez, Michael Schomaker, Daniel Redondo-Sanchez, Maria Jose Sanchez Perez, Anand Vaidya, and Mireille E Schnitzer.

‘Educational Note: Paradoxical collider effect in the analysis of non-communicable disease epidemiological data: a reproducible illustration and web
application’. In: International Journal of Epidemiology 48.2 (Dec. 2018), pp. 640-653. doi: 10.1093/ije/dyy275 (cited on pages 16, 45).
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How do we actually estimate the ATE?

1)

We assume consistency, positivity,
and unconfoundedness given Z. E[Y(1) — Y(0)] = Ez|E[Y]|X = 1,Z] — E[Y|X = 0,Z]]
This means that ATE is identified by

2) We then take that outer expectation :

over Z = {Age, A t of protei 1
v {Age, Amount of proteine} SN[EIYIX = 1,Z = 2] - E[Y|X = 0,Z = z,]]

and replace it with an empirical mean n 2
over the data, giving us the following: o

3) To complete our estimator, we then fit a MACHINE LEARNING MODEL to the conditional expectation E[Y|x, z].
We can plug in any machine learning model for E[Y |x, z], which gives us a MODEL-ASSISTED ESTIMATOR.
We use LINEAR REGRESSION, which works out E[Y(1) — Y(0)] = 0.856
nicely since blood pressure is generated as a
linear combination of other variables (daily sodium 10.856 — 1.05|
intake, age and amount of protein in the urine). %error = 10t X 100% = 18%
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So, if we use linear regression, which works out nicely since blood pressure is generated as a linear
combination of other variables (daily sodium intake, age and amount of protein in the urine).

10.856 — 1.05|
E[Y(1) —Y(0)] = 0.856 %error = e X 100% = 18%
However, if we were to naively regress
Y on only X (daily sodium intake) we
would get
|5.37 — 1.05]
E[Y(1) —Y(0)] = 5.37 %error = e X 100% = 411%
All of the above is obtained using the ADJUSTMENT
FORMULA with MODEL-ASSISTED ESTIMATION, where: ADJUSTMENT FORMULA
(- )
1) we fit a model M for the conditional Given the assumptions of unconfoundedness, positivity,
expectation E[Y|x, z] consistency, and no interference, we can identify the ATE:
2) we take an empirical mean over Z using E[Y(1) — Y(0)] = Ez|E[Y|X = 1,Z] — E[Y|X = 0, Z]]
model M X £
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Potential Outcomes
Alessio Zanga, Fabio Stella
March 27, 2021

hhcapture
[Pip install networkx numpy pandas statsmodels

import networkx as nx

import numpy as np

i pandas as pd _ Assuming linear relationships between the variables and gaussian noise, a data generation pro-
import statsmedels.api as sm cess that is consistent with the represented causal graph follows directly.

from typing import Set
RS P [4]: def sample_data(size: int = int{le8), seed: int = 31):

# Set random gemerator seed for resulis reproducibility
np.random. seed(seed)

1 Potential OQutcomes # Sample age with mean 65 and std 5

age = np.random.normal(65, 5, size)

# Sample sodium with additive notse

sod = 0.056 * age + np.random.normal(0, 1, size)

By Alessio Zanga and Fabio Stella

# Binarize sodium following cutaff
1.1 Abstract sod = (sod > 3.5).astype(int)

# Sample systolic blood pressure
This notebook illustrates a step-by-step example on estimating the average causal effect (ACE) of sbp = 1.05 *+ sod + 2 + age + np.random.mormal(0, 1, size)
sodium on blood pressure following Luque-Fernandez et al. (2018). The main focus of this work # Sample urinary protein

is to highlight the differences between a naive estimate and the adjusted estimate. pro = 0.4 * sod + 0.3 * sbp + np.random.normal(0, 1, size)
' # Create a dataframe from sampled wvariables
return pd.DataFrame({"AGE": age, "SOD": sod, "SEP": sbp, "PRO": prol)
1.2 Introduction

Exceeding the recommendations for 24-h dietary sodium (SOD) intake is associated with in- Bl the e ACT s givai by Wt GosiRckink L O el sl g SHE o valie! give 508),

creased levels of systolic blood pressure (SBP). Furthermore, with advancing age, the adaptive : data = sample_data()
mechanism responsible for maintaining the composition and volume of the extracellular fluid is data.describe ()

compromised. Age is a common cause of both high systolic blood pressure and impaired sodium i S5 D i
homeostasis, acting as a -::Ionfour.lder. Howrexter, high lev.'eis of 24-h exclretlc:-n of ur.mary protein R B s L e ks b
(PRO) are caused by sustained high SBP and increased dietary SOD, acting as a collider. i 65.001134 559905 130583161 39396720
- std 4.993518 497184 10.161539 3.263477
[3]: G = nx.DiGraph() i 40.9064418 000000 82.816817 24421988
G.add_edges from([("SOD", "SEP"), ("AGE", "SOD"), ("AGE", "SBP"}, ("30D",_ 25Y 61.627703 .000000 .720103 37.190745
"PRO"), ("SBP", "PRO")1) 50% 65.009236 .000000 .697297 30.402344
75Y% 68.372794 .000000 .445514 41.602773

nx.draw_circular(G, node_size=1000, node_color="white", with_labels=True)
max 87.717317 . 000000 708462 54.573313
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1.3 Methods

Assuming consistency, positivity, and unconfoundedness, the average causal effect (ACE) is de- Th e aSSOCiated note bOOk iS ava i Ia b I e he re
fined:

t=E[Y(1) - Y(0)] = Ez[E[Y(1) — Y(0)|Z]] = Ez[E[Y|X = 1, Z] - E[Y|X =0,Z]] 2 -
e e oo https://colab.research.google.com/github/AlessioZanga/CaMo/blob/

= 1y B [E[Y|X =1,Z = z;] — E[Y]X = 0,Z = 2] develop/examples/potential outcomes.ipynb

noa=i=1

1

It is possible to choose any machine learning model for E[Y|X,Z

model, which works out nicely since blood pressure is generated as a linear combination of other

| COLAB EXECUTABLE

such as a linear regression

d [ e

: Set[strl):

I
AR
: 01D

1.4 Results
The true ACE is:
ace = 1.05
The estimated ACE adjusting for AGE and PRO is:

(data, = e ["AGE",

f"Estimated A § }, Re Error: {(np.abs({(t-ace)/ace#
'"Estimated ACE: 0.856, Relative Error: 18.46%'

While the naive estimated ACE without adjustment is:

« &=
Error: {(np.abs((t-ace)/ace#

'Estimated ACE: 5.37, Helative Error: 411.5%'

1.5 Conclusions

Applying a naive regression model without adjustment leads to an estimated ACE which is four
times off. A regression model with a valid adjustment set reduce the relative error to only
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