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In this lecture, we will introduce the formalisms that underlie graphical models by making
it clear with all of the graphical interpretations of concepts that will be discussed in other

lectures.

In particular, we introduce:

» Graphs, Bayesian networks and Causal graphs

Chains, Forks and Colliders

= D-separation

Flow of association

Flow of causation
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PART 1

GRAPHS, BAYESIAN NETWORKS
AND CAUSAL GRAPHS
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In the previous lecture we used CAUSAL GRAPHS aid intuition, while A —~ B

in the next lectures, we introduce the formalisms that underlie this G _ O
intuition. X 1% 7
GRAPH; consists of a collection of NODES (vertices) and EDGES. Figure 3.1

ADJACENT NODES; if there is an edge between them.

X Y.
X and Y as well as Y and Z are adjacent 7 C\ />

X and Z are not adjacent

COMPLETE GRAPH; if there is an edge between every pair of nodes.

DIRECTED AND UN-DIRECTED GRAPHS; a graph whose edges are all C/ \>
directed is said to be a directed graph while a graph whose edges %$ Y Z 44
are all un-directed is said to be an un-directed graph. COMPLETE GRAPHS
O O O . 9 0
/ o/
X Y Z: X e 74
UN-DIRECTED GRAPH DIRECTED GRAPH
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In a DIRECTED GRAPH we let 04 () ,O
AN

patX) =¥

= pa(X) be the PARENT SET of node X oV X Y /A
PATH
ch(Y) = X, Z} eV 7
ch(Y) be the CHILD SET of node Y ChiY) = ¢
7 An PATH is any sequence of adjacent nodes, G >G >O
regardless of the direction of the edges that
join them. X Y A
A path between two nodes is a DIRECTED PATH DIRECTED PATH
if can be traced along the arrows, that is, if no X —>oY o7

node on the path has two edges on the path
CYCLIC :
X Y directed into it, or two edges directed out of it.
de(Y)=1X,Z, W
VA » de(Y) is the set of DESCENDANTS of )= )
node Y, i.e., the set of nodes which an(Z) = {X, Y}

can be reached by Y.

= an(Z) is the set of ANCESTORS of
node Z, i.e., the set of nodes from
X ACYCLIC Y which Z can be reached.
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Probabilistic Graphical Models (PGMs) Causal Graphical Models (CGMs)

(statistical models) (causal models) X
BAYESIAN NETWORKS (BNs) I:> CAUSAL NETWORKS (CNs) n“
0] 1

(main models)
O 0,7 | 0,1 | PROBABILITY
0,3| 0.9 | TABLE

Assume we only care about modeling ASSOCIATION, 1
without any causal modeling.

However, if we were to model

We want to model the DATA DISTRIBUTION | it ndomvaniables e,
by using PROBABILITY TABLES, it
P XX ouX, : ’
i n) would take an exponential
CHAIN RULE number of parameters!!!
A
o S

n
P(X1, Xp, - Xn) = P(X2) POKaIXy) POHaIXy, Xo) o+ Pyl X, s X y) = POXD) | | PO, - X )
(=2
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Assume each X; to be binary and consider how we
would model

model local dependencies

PXolXy ook ) 21 parameters S -
2 g 3 @ q P(X4|X1,X5,X3) = P(X4]X3)
X1 Xz X3 P(X4|X1,X5,X5) ( ) IDEA X, locally depends on X5 only
FREE 0 it
o 3 4 A
Dog @2 10 | 512
Osidlie 39 a3 20 | 524.288
0.+ faeed ay 21 |1.048.576
{0079 s X1 Xz
10 g ?
1 g St a- ]
1 1iied a
- Eoas X3 *O X4
Table 3.1 quickly intractable

Figure 3.2
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In the case of P(Xy, X,, X3, X,), the CHAIN RULE allows us to
write as follows

P(X1, X2, X3, X4) = P(X1)P(X2|X1)P(X3]|Xy, X5) P(X4|X1, X3, X3)

LOCAL MARKOV ASSUMPTION
[Given its parents pa(X) in the DAG, a node X J

is independent of all its non-descendants.

BAYESIAN NETWORK FACTORIZATION

éiven a probability distribution P and a DAG g,\
P factorizes according to G if

P(Xl'XZJ "'JXTL) s HP(XLIPCL(XL))
< = o

P(X1;X2;X3»X4) = P(X1)P(X2|X1)P(X3|X1;X2)P(X4|X3)

This additional
information is
very commonly

assumed in
causal DAGs.

MARKOV PROBABILITY DISTRIBUTION

KA probability distribution P is said to be
(locally) Markov with respect to a DAG g if all

\nodes X satisfy the local Markov assumption.

5/

As important as the local Markov assumption is, it
only gives us information about the independencies
in P that a DAG G implies.

It does not even tell us that if X and Y are adjacent
in the DAG G, then X and Y are dependent.

X, X,

~Q x,

Figure 3.2

X3
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To get this guaranteed dependence between adjacent nodes,

we will generally assume a slightly stronger assumption than
the LOCAL MARKOV ASSUMPTION.

MINIMALITY ASSUMPTION

[ )
1) Given its parents pa(X) in the DAG G, a node X is

independent of all its non-descendants (local Markov
assumption).

6) Adjacent nodes in the DAG G are dependent.

If P is Markov with respect to a DAG g, then we know that:

= P satisfies a set of independencies that are specific
to the structure of g.

= If P and G also satisfy minimality, then this set of
independencies is minimal in the sense that P does
not satisfy any additional independencies in G.

This is equivalent to saying that adjacent nodes are
dependent.

If the DAG G simply consists of two connected
nodes, X and Y, as in Figure 3.3, the LOCAL
MARKOV ASSUMPTION would tell

xO—Qv
Figure 3.3
LOCAL MARKOV ASSUMPTION

$ J

PLX. Y = PXYP¥IX) ot Yy = PLXYOPY)
X and Y are independent

The minimality
assumption does not
allow this additional
independence.

The MINIMALITY ASSUMPTION would tell us to
factorize P(X,Y) as P(X)P(Y|X), and it would
tell us that no additional independencies
(X1Y) exist in P that are minimal with respect
to Figure 3.3.
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9

To get this guaranteed dependence between adjacent nodes,
we will generally assume a slightly stronger assumption than
the LOCAL MARKOV ASSUMPTION.

MINIMALITY ASSUMPTION

[ )

1) Given its parents pa(X) in the DAG G, a node X is
independent of all its non-descendants (local Markov
assumption).

6) Adjacent nodes in the DAG G are dependent. 4

Because removing edges in a Bayesian network is equivalent

to adding independencies, the MINIMALITY ASSUMPTION is

equivalent to saying that we can’'t remove any more edges

from the graph G.

In other words, we can say that every edge is “active.”

Concretely, consider that P and G are MARKOV COMPATIBLE,
i.e, P factorizes according to G, and that G’ is what we get
when we remove some edge from G. If P is also Markov
with respect to G', then P is not minimal with respect to G.

If the DAG G simply consists of two connected
nodes, X and Y, as in Figure 3.3, the LOCAL
MARKOV ASSUMPTION would tell

XO——Qvr

Figure 3.3

Consider the DAG G in Figure 3.3.

Assume P and G are Markov compatible.

x O Oy

Figure 3.4
Let G’ (Figure 3.4) be what we get when we
remove the edge from G (Figure 3.3).

If P is also Markov with respectto G’, then P
Is not minimal with respect to G.
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To get this guaranteed dependence between adjacent nodes,
we will generally assume a slightly stronger assumption than
the LOCAL MARKOV ASSUMPTION.

MINIMALITY ASSUMPTION

[ )
1) Given its parents pa(X) in the DAG G, a node X is
independent of all its non-descendants (local Markov
assumption).

2) Adjacent nodes in the DAG G are dependent.

Now that we know about the MINIMALITY ASSUMPTION and
what it implies about how distributions P factorize when they
are Markov with respect to some DAG G (LOCAL MARKOV
ASSUMPTION), we can discuss the flow of association in
DAGsS.

However, everything in this section is purely statistical, thus
to be ready to discuss the flow of causation in DAGs, we first
need to make causal assumptions.

If the DAG G simply consists of two connected
nodes, X and Y, as in Figure 3.3, the LOCAL
MARKOV ASSUMPTION would tell

XO——Qvr

Figure 3.3

Consider the DAG G in Figure 3.3.

Assume P and G are Markov compatible.

x O Oy

Figure 3.4

Let G’ (Figure 3.4) be what we get when we
remove the edge from G (Figure 3.3).

If P is also Markov with respectto G’, then P
Is not minimal with respect to G.
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Up to now all we presented was about statistical models and
. b X1 X2
modeling association.
We now need to introduce some causal assumptions, turn :
. : : Figure 3.2
them into causal models for allowing the study of causation.
In order to introduce causal assumptions, we must first @
understand what it means for X to be a cause of Y. X3 X4
WHAT IS A CAUSE? ; _
X, is a direct cause of X,, X;.
A variable X is said to be a cause of a variable Y if Y can : .
: ; X, is a direct cause of Xj.
change in response to changes in X.
X; is a direct cause of X,.
Another phrase commonly used to describe
this primitive is that Y "LISTENS™ to X.
CAUSAL GRAPH
(STRICT) CAUSAL EDGES ASSUMPTION
A causal graph is a DAG that satisfies
[In a DAG, every parent is a direct cause of all its children. ] the strict causal edges assumption.
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Adding the CAUSAL EDGES ASSUMPTION, implies that X1 X2
DIRECTED PATHS in the DAG take on a very special meaning;

they correspond to causation. Figure 3.2

This is in contrast to other PATHS in the graph, which
association may flow along, but causation certainly may not. @

X3 %9

WHAT IS A CAUSE? X, is a cause of X;, X3 and X,.

A variable X is said to be a cause of a variable Y if Y can Xy Is a direct cause of X, and X3.
change in response to changes in X. X, is an indirect cause of X,.

Association flows from X, to X;
through the path X, «— X; — X3,
causation not.

Another phrase commonly used to describe
this primitive is that Y "LISTENS™ to X.

CAUSAL GRAPH

(STRICT) CAUSAL EDGES ASSUMPTION

A causal graph is a DAG that satisfies
[In a DAG, every parent is a direct cause of all its children. ] the strict causal edges assumption.
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Moving forward, we will now think of the edges of graphs e X
as causal, in order to describe concepts intuitively with
causal language.

However, all of the associational claims about statistical Figure 3.2

independence will still hold, even when the edges do not
have causal meaning like in the vanilla Bayesian networks. X3 ’O Xy

The main assumptions that we need for causal graphical

models to tell us how association and causation flow X, Is a cause of X,, X5 and X,.

between variables are the following: X, is a direct cause of X, and X;.

X, is an indirect cause of X,.
LOCAL MARKOV ASSUMPTION

Association flows from X, to X5
Given its parents pa(X) in the DAG, a node X through the path X, «— X; — Xj,
is independent of all its non-descendants. causation not.

CAUSAL GRAPH
(STRICT) CAUSAL EDGES ASSUMPTION

A causal graph is a DAG that satisfies
[In a DAG, every parent is a direct cause of all its children. ] the strict causal edges assumption.
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PART I1

CHAINS, FORKS AND COLLIDERS
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To understand the difference between association flow O ><> >O
and causal flow in DAGs, we need the following minimal
building blocks X Y YA
= chain CHAIN
= fork
= collider
¥ X VA

= two un-connected nodes

= two connected nodes

By “FLOW OF ASSOCIATION,” we mean whether any two X A Y

nodes in a graph are ASSOCIATED or NOT ASSOCIATED. FORK COLLIDER

In other terms, we want to know whether two nodes are

(statistically) DEPENDENT or (statistically) INDEPENDENT. O O O ’O
4 X Y

X

However, we will also study whether two nodes are TWO UN-CONNECTED TWO CONNECTED

CONDITIONALLY INDEPENDENT OR NOT. NODES NODES
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Given a graph consisting of just two unconnected nodes, these
nodes are not associated, because there is no edge between them.

To show this, consider the factorization of the joint probability
P(X,Y)
that the Bayesian network factorization gives us:

BAYESIAN NETWORK FACTORIZATION

(Given a probability distribution P and a DAG g,\
P factorizes according to G if

PEX., X . %= HP(Xilpa(Xi))
\ 5 c

P(X,Y) = P(X)P(Y) O O
X

Thus, applying the Bayesian network factorization immediately Y
gives us a proof that the two nodes X and Y are unassociated ~ TWO UN-CONNECTED
(independent). (we assume that P is Markov w.r.t. the graph G). NOLES
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On the contrary, if there is an edge between the two nodes,
then the two nodes are associated.

We exploit the causal edges assumption

(STRICT) CAUSAL EDGES ASSUMPTION

[In a DAG, every parent is a direct cause of all its children.

which means that X is a cause of Y. In general, any time two
nodes are adjacent in a

Now, since X is a cause of Y, by definition causal graph, they are
associated.

WHAT IS A CAUSE?

A variable X is said to be a cause of a variable Y if Y can

change in response to changes in X. O >O

X ¥
Y must be able to change in response to changes in X, TWO CONNECTED
so Y and X are associated. NODES
CAUSAL NETWORKS — FLOW OF ASSOCIATION AND CAUSATION IN GRAPHS FALL 2024 FABIO STELLA



PART II: CHAINS, FORKS AND COLLIDERS

CHAINS and FORKS share the same set of DEPENDENCIES:
= X and Y are dependent
» Y and Z are dependent

for the same reason that we just discussed (i.e., two
connected nodes)

Adjacent nodes are always dependent when we make the
causal edges assumption.

(STRICT) CAUSAL EDGES ASSUMPTION

[In a DAG, every parent is a direct cause of all its children. ]

What about X and Z?

Does association flow from X to Z through Y in chains and forks?

Usually, yes, X and Z are associated in both chains and forks.

s R Ay (L . e —————
e, i e =~

CHAIN

CHAIN: X causes changes in Y which then
causes changes in Z.

FORK

FORK: the same value that Y takes on is
used to determine both the value that X
takes on and the value that Z takes on.

In other words, X and Z are associated
through their (shared) common cause Y.
(mind likely dependent!!!)
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CHAINS and FORKS also share the same set of INDEPENDENCIES.

When we condition on Y in both graphs, it blocks the flow of
association from X to Z.

This is because of the

LOCAL MARKOV ASSUMPTION

Given its parents pa(X) in the DAG, a node X is independent
of all its non-descendants.

Therefore, when we condition on Y (Z's parent in both graphs),
Z becomes independent of X (and viceversa).

This independence is an instance of a BLOCKED PATH.

T o s Y
] -~

X ¥ A
BLOCKED PATH

-————
- ~

X Y /
CHAIN
CHAIN: Y blocks the flow of association
from X to Z.

FORK

FORK: Y blocks the flow of association
from X to Z.

—— ———
i — - —
- D - ~ o~

UN-BLOCKED PATH
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——
’—_ A

It is worth noticing that association flows also from Z to X by é »C\S ’C\D
the same paths.

—-——
’—‘ e

In general, the FLOW OF ASSOCIATION IS SYMMETRIC. X Y A
CHAIN
Therefore, CHAIN: association flows from Z to X.

* not conditioning on Y: association flows from X to Z
and flows from Z to X.

= conditioning on Y: association does not flow from X to FORK
Z and does not flow from Z to X, i.e., Y blocks the path
from X to Z as well as it blocks the path from Z to X.
THIS IS JUST INTUITION!!! FORK: association flows from Z to X.
To prove that X 1l Z |Y, we need to show that LOCAL MARKOV ASSUMPTION

P(X,ZIY) = PCX|Y)P{2]}) we exploit |

> Given its parents pa(X) in the DAG, a node
X is independent of all its non-descendants.
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To prove that X 1L Z |Y, we need to show that
P(X,Z|Y) = P(X|Y)P(Z|Y)

We give the proof for chains.

G ’O ’O P(X,Y,Z) = P(X)P(Y[X)P(Z|Y)
X I 4

P(X.Y.7)
P(X,Z|Y) = P(Y) (Bayes Theorem)
BAYESIAN NETWORK FACTORIZATION
6iven a probability distribution P and a DAG g,\ o PX)P(Y|X)P(Z]Y)
P factorizes according to G if 2LY)
n c BUX, Y)P(Z]Y) Try to prove the
P(X1, Xy, - Xn) = | | P(Xilpa()) D § ol
_ 2 - = P(X|Y)P(Z|Y)
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-
ey o

>€§ 3 (STRICT) CAUSAL EDGES ASSUMPTION
A

-
e _~

In a DAG, every parent is a direct cause

X 4 of all its children.

o6 & o -0 o

X Y 7 X ¥ A

Flow of association is symmetric. Flow of causation is not symmetric.
Association flows along any path that does not Causation flows in a single direction, only
contain an IMMORALITY (COLLIDER). along directed paths.
X Z
¥
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A COLLIDER is a node with two or more parents.
In a COLLIDER, X and Z are independent, i.e., X 1 Z X Z ¥

How could it be that X and Z are associated?
= X isn’t the descendant of Z, and Z isn’t the

descendant of X, like in chains. ¥ X Z
= X and Z don’t share a common cause, like in forks. COLLIDER v FORK
We can think of X and Z simply as unrelated events that can X O ’G ’O
happen, and which both contribute to some common effect (Y). Z
To show that X 1l Z we apply the Bayesian network saAlN
factorization and then marginalize out Y. P(X,7) = Z POCY — v.7)
BAYESIAN NETWORK FACTORIZATION y
(Given a ility distributi izes )
probability distribution P and a DAG g, P factorizes = z -
according to G if = R ) 7)
y

- P(X)P(Z)Z: P(Y = y|X,2)
y
\id ) = P(X)P(Z)
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P(XerZr ""Xn) o HP(Xllpa(Xl))
=




PART II: CHAINS, FORKS AND COLLIDERS 24

A COLLIDER is a node with two or more parents.
In a COLLIDER, X and Z are independent, i.e., X 1l Z

How could it be that X and Z are associated?

= X isn’t the descendant of Z, and Z isn’t the
descendant of X, like in chains.

= X and Z don’t share a common cause, like in forks. COLLIDER COLLIDER

We can think of X and Z simply as unrelated events that can

happen, and which both contribute to some common effect (Y). _ _
: The flow of information from node X to
To show that X 1l Z we apply the Bayesian network node 7 is blocked by node Y.

factorization and then marginalize out Y.
The collider Y blocks the path from node X
to node Z and blocks the path from node Z

(Given a probability distribution P and a DAG g, P factorizes\ to node X.
according to G if

BAYESIAN NETWORK FACTORIZATION

This is another example of a BLOCKED PATH,
but this time the path is not blocked by

n
PX X o) = H P(Xilpa(Xi)) conditioning; the path is UN-BLOCKED by
& S . conditioning (on a collider).
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Consider a simultaneous (independent) toss of two fair

coins X and Z and a bell Y that rings whenever at least WL Z X,Z € thead, tail}

one of the coin lands on heads. !
We know that the two coins X and Z are fair, thus each
of them has probability equal to 0.5 to turn out head,
when tossed. !l ' Y € {silence,rings}
If we do not know whether the bell Y rings or not, the Figure 3.5
two coins, X and Z, are independent, i.e., when we
know that the coin X turned out to be head, the coin
: 3 ; WHAT WE KNOW WHAT WE INFER?
Z still has probability equal to 0.5 to turn out head, 9
when tossed. X = head 7 =7?
The same applies when we know that the coin X X :__' ;’;alld Z i,)
turned out to be tail. Z = nea X =:
7 = tail X =7
The same applies when we swap what we know
about coin X with what we know about coin Z. Y=nings X = tail 7 = head
What happens when we know that the bell Y rings? ke r%ngs,Z = fa gl _
Y = silence X2 — il
CAUSAL NETWORKS — FLOW OF ASSOCIATION AND CAUSATION IN GRAPHS FALL 2024 FABIO STELLA
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To summarize, conditioning on a collider can turn a blocked path X 7
into an UN-BLOCKED PATH.

The parents X and Z are not associated (no association flow) in

the general population, but when we condition on their shared % v 7
child Y taking on a specific value y (Y = y), they become St
S ; not conditioning
This is sometimes referred to as the SELECTION BIAS. onY
—
= Not conditioning on the collider Y (Y =?) blocks =0
association to flow along the path X — Y « Z.
Z
= Conditioning on the collider Y (Y = y) allows X
association to flow along the path X — Y « Z.
| | | 1 e </
What we have discussed in these last slides was based on our
COLLIDER UN-BLOCKED PATH
intuition, but what about some quantitative example to better e
conditioning
understand what we just stated? onY
Wi=y)
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Consider the following DATA GENERATING PROCESS X 74 X A

X~N(0,1) Z~N(0,1) Y=X+7Z (%)

Yi=7 e —Y
We know that X that Z are independent. COLLIDER COLLIDER
However, for matter of clarity, let's compute their Let's compute the covariance of X and Z in the
covariance Cov(X, Z) in the case where we know case where we know that Y takes on value y
nothing about the value of Y (Y =?); (Y = y), i.e., let us compute Cov(X,Z|Y = y):
Cov(X,Z) = E[(X — E[X]D(Z — E|Z])] Cov(X ZIY =) =EXZlY = vy]

= hiXZ] (zero mean) = EX(y—X)] - )

= E[X]E|Z] (independence) = yE[X] — E[X?]

- = )
(**) by property of moments Ells el - 21| '(I)'rr]le;e:fo)rf, X and Z are associated conditionally
CAUSAL NETWORKS — FLOW OF ASSOCIATION AND CAUSATION IN GRAPHS FALL 2024 FABIO STELLA
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Conditioning on DESCENDANTS OF A COLLIDER also induces
association in between the parents of the collider.

The intuition is that if we learn something about a collider’s
descendant, we usually also learn something about the
collider itself because there is a direct causal path from the
collider to its descendants, and we know that nodes in a
chain are usually associated assuming MINIMALITY.

MINIMALITY ASSUMPTION

£ R
1) Given its parents pa(X) in the DAG G, a node X is

independent of all its non-descendants (local Markov
assumption).

E) Adjacent nodes in the DAG G are dependent. When we learn something about the collider’s Y

descendant K, we also learn something about
the collider itself Y because there is a direct
causal path Y — W — K from the collider Y to
Its descendant K, and nodes in a chain are
usually associated assuming minimality.

A descendant of a collider works as a proxy for that collider,
so conditioning on one of the descendants of a collider is
similar to conditioning on the collider itself.
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Dashed lines represent association flow. Continuous lines represent causal flow.
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X1 Z X is independent on Z X1l Z|Y Xisindependenton Z given Y
XU Z X is not independent on Z XU Z|Y Xisnotindependenton Z given Y
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PART Il

D-SEPARATION AND THE FLOW OF
ASSOCIATION AND CAUSATION
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CONDITIONAL INDEPENDENCE IN CHAINS

& 2
G ’G ’O Two variables, X and Z, are conditionally independent given Y,
X } £ VA

if there is only one directed path between X and Z, and Y is

any set of variables that intercepts that path.
9 J

Y CONDITIONAL INDEPENDENCE IN FORKS

/= D
If a variable Y is a common cause of variables X and Z, and

there is only one path between X and Z, then X and Z are

X Z independent conditional on Y.
FORK K 5/

CONDITIONAL INDEPENDENCE IN COLLIDERS

X Z -
If a variable Y is the collision node between two variables X
and Z, and there is only one path between X and Z, then X
% and Z are unconditionally independent but are dependent
\conditional on Y and any descendants of Y. o)

COLLIDER
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We now give one of the most relevant definitions of this topic,
i.e., we introduce the concept of “D-SEPARATION”.

D-SEPARATION

Kpath p is blocked by a set of nodes S if and only if \

1) p contains achainofnodesA — B — Corafork A« B — C
such that the middle node B is in S (i.e., is conditioned on),

2) or p contains a collider A — B «— C such that the collision
node B is notin S, and no descendant of B is in S.

If S blocks every path between two nodes X and Y, then X and Y

are d-separated, conditional on S, and thus are independent T Fiqure 3.7
@nditional on S. J 9 '
The variables might be discrete, continuous, or a mixture of the two;
the relationships between them might be linear, exponential, or any
of an infinite number of other relations.
No matter the model, however, D-SEPARATION will always provide
the same set of independencies in the data the model generates.
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We now give one of the most relevant definitions of this topic,
i.e., we introduce the concept of “D-SEPARATION”.

D-SEPARATION

Kpath p is blocked by a set of nodes S if and only if \

1) p contains achainofnodesA — B — Corafork A« B — C
such that the middle node B is in S (i.e., is conditioned on),

2) or p contains a collider A — B <« C such that the collision
node B is not in S, and no descendant of B is in S.

If S blocks every path between two nodes X and Y, then X and Y
are d-separated, conditional on S, and thus are independent

@nditional on S. J

In particular, let’s look at the relationship between Z and Y.

empty CONDITIONING SET ZandY are Because there is no un-blocked
S = {2 P d-separated path between Z and Y.
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We now give one of the most relevant definitions of this topic,
i.e., we introduce the concept of “D-SEPARATION”.

D-SEPARATION

Kpath p is blocked by a set of nodes S if and only if \

1) p contains achainofnodesA — B — Corafork A« B — C
such that the middle node B is in S (i.e., is conditioned on),

2) or p contains a collider A — B «— C such that the collision W () <— collision node
node B is not in S, and no descendant of B is in S. blocks the path
If S blocks every path between two nodes X and Y, then X and Y R Y VI Y AV
are d-separated, conditional on S, and thus are independent T Fiqure 3.9
@nditional on S. J S :
. : : The only path connecting Z to Y,
In particular, let’s look at the relationship between Z and Y. 7 — W «— X — Y, is blocked by
the collider /.
emply CONBRRE S > ZandY are Because there is no un-blocked
S = {2 d-separated path between Z and Y.
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We now give one of the most relevant definitions of this topic,
i.e., we introduce the concept of “D-SEPARATION”.

D-SEPARATION

Kpath p is blocked by a set of nodes S if and only if \

1) p contains achainofnodesA — B — Corafork A« B — C
such that the middle node B is in S (i.e., is conditioned on),

2) or p contains a collider A — B «— C such that the collision W <— collision node
node B is not in S, and no descendant of B is in S. blocks the path
If S blocks every path between two nodes X and Y, then X and Y R Y VI Y AV
are d-separated, conditional on S, and thus are independent T Fiqure 3.9
@nditional on S. J J :
; : _ The only path connecting Z to Y,
In particular, let’s look at the relationship between Z and Y. 7 — W «— X — Y, is blocked by
the collider W.
empty CONRENCINIEE S SER > ZandY are > Z ailon aig Because there is no un-blocked
S ={<} d-separated Rcancalioney path between Z and Y.
Independent
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We now give one of the most relevant definitions of this topic,
i.e., we introduce the concept of “D-SEPARATION”.

D-SEPARATION

Kpath p is blocked by a set of nodes S if and only if \
1) p contains achainofnodesA — B — Corafork A« B — C
such that the middle node B is in S (i.e., is conditioned on),
2) or p contains a collider A — B «— C such that the collision W 4; collision node
node B is not in S, and no descendant of B is in S. / un-blocks the path
If S blocks every path between two nodes X and Y, then X and Y elyleljilelgRely Z ey
are d-separated, conditional on S, and thus are independent S ={W} 5 Figure 3.10

@nditional on S. J

In particular, let’s look at the relationship between Z and Y.

CONDITIONING SET E 7 and Y are The only path connecting Z to Y,

= ———3 conditionally Z —> W «— X — Y, Is un-blocked
S ={w) d-separated dependent by conditioning on the collider W'
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We now give one of the most relevant definitions of this topic,
i.e., we introduce the concept of “D-SEPARATION”.

D-SEPARATION

Kpath p is blocked by a set of nodes S if and only if

such that the middle node B is in S (i.e., is conditioned on),

2) or p contains a collider A — B <« C such that the collision
node B is not in S, and no descendant of B is in S.

are d-separated, conditional on S, and thus are independent
@nditional on S.

1) p contains achainofnodesA — B — Corafork A« B — C

If S blocks every path between two nodes X and Y, then X and Y

£

-

In particular, let’s look at the relationship between Z and Y.

7 &
condition on un-blocks the path
I ; Figure 3.11

The only path connecting Z to Y,

Z = — X —Y, I1s un-block
CONDITIONING SET S Tl Z andY are Lol , Is un-blocked
— ——p conditionally by conditioning on the
S ={T} d-separated P i
dependent descendant T of the collider V.
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We now give one of the most relevant definitions of this topic,
i.e., we introduce the concept of “D-SEPARATION”. blocks the path
Z—-W—X->Y
D-SEPARATION *
Kpath p is blocked by a set of nodes S if and only if \

1) p contains achainofnodesA — B — Corafork A« B — C
such that the middle node B is in S (i.e., is conditioned on),

2) or p contains a collider A — B <« C such that the collision
node B is not in S, and no descendant of B is in S.

un-blocks the path

If S blocks every path between two nodes X and Y, then X and Y L S oWE N oy
are d-separated, conditional on S, and thus are independent .
& I Figure 3.12
@ndltlonal onS. J
In particular, let’s look at the relationship between Z and Y. The only path connecting Z to Y,
Z—> W — X — Y, is un-blocked
CONDITTONI S 1 et 7 and Y are by condltlpnlng on the CO||Id.eI.‘ W
> » conditionally and then is blocked by conditioning
S ={W, X} d-separated : on the fork X
; independent :
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We now give one of the most relevant definitions of this topic,
i.e., we introduce the concept of “D-SEPARATION”.

D-SEPARATION

Kpath p is blocked by a set of nodes S if and only if \

1) p containsachainofnodes4A — B — Corafork A«<— B — C
such that the middle node B is in S (i.e., is conditioned on),

2) or p contains a collider A — B «— C such that the collision
node B is notin S, and no descendant of B is in S.

If S blocks every path between two nodes X and Y, then X and Y
are d-separated, conditional on S, and thus are independent T Figure 3.13

@nditional on S. J

Let’s look at the relationship between Z and Y, in this new graph.

The path connecting Zto Y,

empty CONDITIONING SET ¥ sod v are ot Z and Y are g ! " biocked,
0 ——3 unconditionally while the path connectingZto Y
S ={J} d-separated dependent Z «— Q — Y is un-blocked
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We now give one of the most relevant definitions of this topic,
i.e., we introduce the concept of “D-SEPARATION”.

D-SEPARATION

Kpath p is blocked by a set of nodes S if and only if \

1) p containsachainofnodes4A — B — Corafork A«<— B — C
such that the middle node B is in S (i.e., Iis conditioned on),

2) or p contains a collider A — B «— C such that the collision
node B is notin S, and no descendant of B is in S.

If S blocks every path between two nodes X and Y, then X and Y

are d-separated, conditional on S, and thus are independent :
& I Figure 3.14
@ndltlonal on S. J
Let’s look at the relationship between Z and Y, in this new graph. The path connecting Z to Y,

Z—> W — X —Y,is blocked,

CONDITIONING SET S 7 and Y are by conditioning on S = {W, X},
iy q fod ———p conditionally while the path connecting Zto Y
S ={W,X} £ yalel e dependent Z «— Q — Y is un-blocked.
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We now give one of the most relevant definitions of this topic,
i.e., we introduce the concept of “D-SEPARATION”.

D-SEPARATION

Kpath p is blocked by a set of nodes S if and only if \

1) p containsachainofnodes4A — B — Corafork A«<— B — C
such that the middle node B is in S (i.e., Iis conditioned on),

2) or p contains a collider A — B < C such that the collision W < S={W, X, 0}
node B is notin S, and no descendant of B is in S.

If S blocks every path between two nodes X and Y, then X and Y
are d-separated, conditional on S, and thus are independent T

@nditional on S. J
The path connecting Z to Y,

Let’s look at the relationship between Z and Y, in this new graph. Z—> W X —Y,is blocked,
by conditioning on S = {W/, X},

Figure 3.15

CONDITIONING SET e 7 and Y are and the path _Connecting ZtoY
i | ey —» conditionally Z — Q — Y is blocked by
S = {W; X, Q} i independent Conditioning on Q.
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We now give one of the most relevant definitions of this topic,
i.e., we introduce the concept of “D-SEPARATION”.

D-SEPARATION

Kpath p is blocked by a set of nodes S if and only if \

1) p contains achainofnodesA — B — Corafork A« B — C
such that the middle node B is in S (i.e., is conditioned on),

2) or p contains a collider A — B «— C such that the collision
node B is notin S, and no descendant of B is in S.

If S blocks every path between two nodes X and Y, then X and Y
are d-separated, conditional on S, and thus are independent T Figure 3.13

@nditional on S. J

In this graph, Z and Y are b-CONNECTED conditional on

W, T, {W, T}, {W, Q}, {T, Q}, {W, T, Q}, {W, X}, {T, X}, {W, T, X].
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We now give one of the most relevant definitions of this topic,
i.e., we introduce the concept of “D-SEPARATION”.

D-SEPARATION

Kpath p is blocked by a set of nodes S if and only if \

1) p contains achainofnodesA — B — Corafork A« B — C
such that the middle node B is in S (i.e., is conditioned on),

2) or p contains a collider A — B «— C such that the collision
node B is notin S, and no descendant of B is in S.

If S blocks every path between two nodes X and Y, then X and Y

are d-separated, conditional on S, and thus are independent :
& I Figure 3.13
@ndltlonal on S. J
Z and Y are D-SEPARATED conditional on: Q Is in every conditioning set that D-SEPARATES
Z and Y because Q is the only node in a path
Q, {X, Q}, {W, X, Q},{T, X, Q}, {W, T, X, Q}. that unconditionally D-CONNECTS Z and Y, so
unless it is conditioned on, Z and Y will always
Q is in every CONDITIONING SET that d-separates Z and Y. be D-CONNECTED.
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D-SEPARATION is an extremely important concept, because it
implies CONDITIONAL INDEPENDENCE.

e J-Lg Y|S —> X an(IJIIY are D-SEPARATED in the graph G when
conditioning on the CONDITIONING SET S.
X and Y are INDEPENDENT in the distribution P

X p¥lS b when conditioning on the CONDITIONING SET S.

GLOBAL MARKOV ASSUMPTION . : LOCAL MARKOV ASSUMPTION
implies
(Given that P is Markov with respect to G o > Given its parents pa(X) in the DAG,
(satisfies the local Markov assumption), if X and a node X is independent of all its
Y are d-separated in G conditioned on S, then X < ] |non-descendants.
and Y are independent in P conditioned on S. implies

We can write this succinctly as follows:

Xl .v|is=>x 1l ¥[8

N o
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D-SEPARATION is an extremely important concept, because it

implies CONDITIONAL INDEPENDENCE.

Xl XS

XU,Y|S >

BAYESIAN NETWORK FACTORIZATION

X and Y are D-SEPARATED in the graph G when
conditioning on the CONDITIONING SET S.

X and Y are INDEPENDENT in the distribution P
when conditioning on the CONDITIONING SET S.

LOCAL MARKOV ASSUMPTION

implies
(Given a probability distribution P and a DAG g, | Given its parents pa(X) in the DAG,
P factorizes according to G if a node X is independent of all its
= < o ] |non-descendants.
implies
P(Xi s ﬂP(Xilpa(Xi))
S 5 v,
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46

LOCAL MARKOV ASSUMPTION

Given its parents pa(X) in the DAG, a node X is independent of all its
non-descendants.

GLOBAL MARKOV ASSUMPTION

Given that P is Markov with respect to G (satisfies the local Markov

Y are independent in P conditioned on S. We can write this succinctly as

assumption), if X and Y are d-separated in G conditioned on S, then X and

=

Therefore, we will use the
slightly shortened phrase

MARKOV ASSUMPTION, to refer to

follows:
XU Y|[S=>X1UpY|S these concepts as a group, or
L . e ok
we will simply write “P is Markov
BAYESIAN NETWORK FACTORIZATION
. = with respect to G’ to convey the
Given a probability distribution P and a DAG g, P factorizes according :
to G if same meaning.
n
PXo. X5 X HP(Xilpa(Xi))
N e 5
THEY ARE ALL EQUIVALENT!!!
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ASSOCIATION and CAUSATION flow in directed graphs. Moo Z Y
In causal graphs, causation flows along directed paths. confounding path

Not only is association not causation, but causation is
a sub-category of association, thus association and
causation both flow along directed paths.

flow of association | causal
along directed paths association Figure 3.16
non-causal association Lan
that makes total [ > S tiong association
association not causation In BNs and CNs,

= association flows along chains and forks, unless a
BAYESIAN NETWORKS are purely statistical models, node is conditioned on,
so we can only talk about the flow of association in = a collider blocks the flow of association, unless it is
Bayesian networks. conditioned on.
Association still flows in exactly the same way in We can tell if two nodes are not associated (nQ
BAYESIAN NETWORKS as it does in CAUSAL GRAPHS, association flows between them) by whether or not
though. they are d-separated.
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CAUSAL NETWORKS are special in that we additionally assume that the EDGES HAVE CAUSAL MEANING

(STRICT) CAUSAL EDGES ASSUMPTION

Figure 3.17

BAYESIAN In a DAG, every parent is a direct cause - CAUSAL
NETWORK of all its children. = NETWORK

This assumption introduces causality into our &
models, and it makes one type of path take on S &
a whole new meaning: DIRECTED PATHS.

causal
Endows directed paths with the unique role of association
carrying causation along them.
This assumption is asymmetric!!! ASSOCIATION IS SYMMETRIC
“X is a cause of Y” # ‘Y is a cause of X”. CAUSATION IS ASYMMETRIC
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We have the tools to measure association, how can we association path
isolate causation?

-~

How can we ensure that the association we measure is

causation, say, for measuring the causal effect of X on Y? llie .18
= We can do that by ensuring that there is no
non-causal association flowing between X
and Y. causal path
= Thisis true if X and Y are D-SEPARATED in association path
the AUGMENTED GRAPH where we remove ity
outgoing edges from X.
= This is because all of X’s causal effect on Y Figure 3.19

would flow through it’s outgoing edges, so
once those are removed, the only association
that remains is purely non-causal association
(association path).

causal path
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We illustrate (Figure 3.20) what each assumptions gives in terms of interpreting the flow of association.

1. LOCAL/GLOBAL MARKOV ASSUMPTION, tell us which nodes are unassociated. The Markov assumption
tells along which paths the association does not flow.

2. Strengthening the Markov assumption brings to the MINIMALITY ASSUMPTION. This gives which paths
association does flow along (except in intransitive edges cases).

3. Strengthening further adds in the causal edges assumption, we get that causation flows along
directed paths.

Therefore, the following two assumptions Recall that the first part of the minimality assumption is
are essential for graphical causal models: just the local Markov assumption and that the second

1. Markov assumption part is contained in the causal edges assumption.

2. Causal edges assumption

MARKOV MINIMALITY CAUSAL EDGES
ASSUMPTION
: > STATISTICAL : ASSUMPT'°N> STATISTICAL @ g NE DN > CAUSAL
INDEPENDENCIES DEPENDENCIES DEPENDENCIES
Figure 3.20
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