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In this lecture, we will introduce the formalisms that underlie graphical models by making 

it clear with all of the graphical interpretations of concepts that will be discussed in other 

lectures. 

In particular, we introduce:

 Graphs, Bayesian networks and Causal graphs

 Chains, Forks and Colliders

 D-separation

 Flow of association

 Flow of causation

FLOW OF ASSOCIATION AND CAUSATION IN GRAPHS
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PART I

GRAPHS, BAYESIAN NETWORKS

AND CAUSAL GRAPHS

FLOW OF ASSOCIATION AND CAUSATION IN GRAPHS
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In the previous lecture we used CAUSAL GRAPHS aid intuition, while 
in the next lectures, we introduce the formalisms that underlie this 
intuition. 

ADJACENT NODES; if there is an edge between them.

COMPLETE GRAPH; if there is an edge between every pair of nodes.

GRAPH; consists of a collection of NODES (vertices) and EDGES. Figure 3.1

and as well as and are adjacent

and are not adjacent

DIRECTED AND UN-DIRECTED GRAPHS; a graph whose edges are all 
directed is said to be a directed graph while a graph whose edges 
are all un-directed is said to be an un-directed graph.

UN-DIRECTED GRAPH DIRECTED GRAPH

COMPLETE GRAPHS
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In a DIRECTED GRAPH we let

 be the PARENT SET of node 

 be the CHILD SET of node 

An PATH is any sequence of adjacent nodes, 
regardless of the direction of the edges that 
join them.

CYCLIC

ACYCLIC

 is the set of DESCENDANTS of 
node , i.e., the set of nodes which 
can be reached by .

 is the set of ANCESTORS of 
node , i.e., the set of nodes from 
which can be reached.

PATH

A path between two nodes is a DIRECTED PATH

if can be traced along the arrows, that is, if no 
node on the path has two edges on the path 
directed into it, or two edges directed out of it.

DIRECTED PATH



CAUSAL NETWORKS – FLOW OF ASSOCIATION AND CAUSATION IN GRAPHS FALL 2024 FABIO STELLA

5PART I: GRAPHS, BAYESIAN NETWORKS AND CAUSAL GRAPHS

Probabilistic Graphical Models (PGMs)

(statistical models)

Causal Graphical Models (CGMs)

(causal models)

CAUSAL NETWORKS (CNs)BAYESIAN NETWORKS (BNs)

(main models)

Assume we only care about modeling ASSOCIATION, 
without any causal modeling.

We want to model the DATA DISTRIBUTION

ଵ ଶ ଵ ଷ ଵ ଶ ௡ ଵ ௡ିଵ ଵ ௜ ଵ ௜ିଵ

௡

௜ୀଶ

ଵ ଶ ௡

ଵ ଶ ௡

CHAIN RULE

However, if we were to model 
discrete random variables, i.e., 
by using PROBABILITY TABLES, it 
would take an exponential 
number of parameters!!!

PROBABILITY

TABLE

Y 0 1
0 0,7 0,1
1 0,3 0.9

X
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Assume each ௜ to be binary and consider how we 
would model

௡ ଵ ௡ିଵ
௡ିଵ parameters

𝑃 𝑋ସ|𝑋ଵ, 𝑋ଶ, 𝑋ଷ𝑋ଷ𝑋ଶ𝑋ଵ

𝛼ଵ000

𝛼ଶ100

𝛼ଷ010

𝛼ସ110

𝛼ହ001

𝛼଺101

𝛼଻011

𝛼଼111

Table 3.1

ସିଵ

model local dependencies

quickly intractable

ସ ଵ ଶ ଷ ସ ଷ

ସ locally depends on ଷ only

Figure 3.2

n 2^(n-1)
2 2
3 4
10 512
20 524.288
21 1.048.576
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In the case of ଵ ଶ ଷ ସ , the CHAIN RULE allows us to 
write as follows

ଵ ଶ ଷ ସ ଵ ଶ ଵ ଷ ଵ ଶ ସ ଷ

Given its parents in the DAG, a node 
is independent of all its non-descendants.

LOCAL MARKOV ASSUMPTION

ଵ ଶ ଷ ସ ଵ ଶ ଵ ଷ ଵ ଶ ସ ଵ ଶ ଷ

Figure 3.2

Given a probability distribution and a DAG , 
factorizes according to if

ଵ ଶ ௡ ௜ ௜

௡

௜ୀଵ

BAYESIAN NETWORK FACTORIZATION

As important as the local Markov assumption is, it 
only gives us information about the independencies 
in that a DAG implies.

It does not even tell us that if and are adjacent 
in the DAG , then and are dependent.

This additional 
information is 
very commonly 
assumed in 
causal DAGs.

A probability distribution is said to be 
(locally) Markov with respect to a DAG if all 
nodes satisfy the local Markov assumption.

MARKOV PROBABILITY DISTRIBUTION
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To get this guaranteed dependence between adjacent nodes, 
we will generally assume a slightly stronger assumption than 
the LOCAL MARKOV ASSUMPTION.

1) Given its parents in the DAG , a node is 
independent of all its non-descendants (local Markov 
assumption).

2) Adjacent nodes in the DAG are dependent.

MINIMALITY ASSUMPTION

Figure 3.3

If is Markov with respect to a DAG , then we know that:

 satisfies a set of independencies that are specific 
to the structure of .

 If and also satisfy minimality, then this set of 
independencies is minimal in the sense that does 
not satisfy any additional independencies in .
This is equivalent to saying that adjacent nodes are 
dependent.

If the DAG simply consists of two connected 
nodes, and , as in Figure 3.3, the LOCAL

MARKOV ASSUMPTION would tell

The minimality 
assumption does not 
allow this additional 
independence.

𝑋 and 𝑌 are independent

LOCAL MARKOV ASSUMPTION

The MINIMALITY ASSUMPTION would tell us to 
factorize as , and it would 
tell us that no additional independencies 

exist in that are minimal with respect 
to Figure 3.3.
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9PART I: GRAPHS, BAYESIAN NETWORKS AND CAUSAL GRAPHS

To get this guaranteed dependence between adjacent nodes, 
we will generally assume a slightly stronger assumption than 
the LOCAL MARKOV ASSUMPTION.

1) Given its parents in the DAG , a node is 
independent of all its non-descendants (local Markov 
assumption).

2) Adjacent nodes in the DAG are dependent.

MINIMALITY ASSUMPTION

Figure 3.3

Because removing edges in a Bayesian network is equivalent 
to adding independencies, the MINIMALITY ASSUMPTION is 
equivalent to saying that we can’t remove any more edges 
from the graph .

If the DAG simply consists of two connected 
nodes, and , as in Figure 3.3, the LOCAL

MARKOV ASSUMPTION would tell

Concretely, consider that and are MARKOV COMPATIBLE,
i.e, factorizes according to , and that ’ is what we get 
when we remove some edge from . If is also Markov 
with respect to ’, then is not minimal with respect to .

In other words, we can say that every edge is “active.”

Consider the DAG in Figure 3.3. 

Assume and are Markov compatible.

Let ’ (Figure 3.4) be what we get when we 
remove the edge from (Figure 3.3).

If is also Markov with respect to ’, then 
is not minimal with respect to .

Figure 3.4
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Now that we know about the MINIMALITY ASSUMPTION and 
what it implies about how distributions factorize when they 
are Markov with respect to some DAG (LOCAL MARKOV

ASSUMPTION), we can discuss the flow of association in 
DAGs.

However, everything in this section is purely statistical, thus 
to be ready to discuss the flow of causation in DAGs, we first 
need to make causal assumptions.

Figure 3.3

If the DAG simply consists of two connected 
nodes, and , as in Figure 3.3, the LOCAL

MARKOV ASSUMPTION would tell

To get this guaranteed dependence between adjacent nodes, 
we will generally assume a slightly stronger assumption than 
the LOCAL MARKOV ASSUMPTION.

1) Given its parents in the DAG , a node is 
independent of all its non-descendants (local Markov 
assumption).

2) Adjacent nodes in the DAG are dependent.

MINIMALITY ASSUMPTION

Consider the DAG in Figure 3.3. 

Assume and are Markov compatible.

Figure 3.4

If is also Markov with respect to ’, then 
is not minimal with respect to .

Let ’ (Figure 3.4) be what we get when we 
remove the edge from (Figure 3.3).
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Up to now all we presented was about statistical models and 
modeling association. 

We now need to introduce some causal assumptions, turn 
them into causal models for allowing the study of causation. 

In order to introduce causal assumptions, we must first 
understand what it means for to be a cause of .

A variable is said to be a cause of a variable if can 
change in response to changes in .

WHAT IS A CAUSE?

In a DAG, every parent is a direct cause of all its children.

(STRICT) CAUSAL EDGES ASSUMPTION
A causal graph is a DAG that satisfies 
the strict causal edges assumption.

CAUSAL GRAPH

Figure 3.2

ଵ is a direct cause of ଶ, ଷ.

ଶ is a direct cause of ଷ.

ଷ is a direct cause of ସ.

Another phrase commonly used to describe 
this primitive is that “LISTENS” to . 
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Adding the CAUSAL EDGES ASSUMPTION, implies that 
DIRECTED PATHS in the DAG take on a very special meaning; 
they correspond to causation. 

This is in contrast to other PATHS in the graph, which 
association may flow along, but causation certainly may not.

A variable is said to be a cause of a variable if can 
change in response to changes in .

WHAT IS A CAUSE?
ଵ is a cause of ଶ, ଷ and ସ.

ଵ is a direct cause of ଶ and ଷ.

ଵ is an indirect cause of ସ.

Association flows from ଶ to ଷ

through the path ଶ ଵ ଷ, 
causation not.

In a DAG, every parent is a direct cause of all its children.

(STRICT) CAUSAL EDGES ASSUMPTION
A causal graph is a DAG that satisfies 
the strict causal edges assumption.

CAUSAL GRAPH

Figure 3.2

Another phrase commonly used to describe 
this primitive is that “LISTENS” to . 
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Moving forward, we will now think of the edges of graphs 
as causal, in order to describe concepts intuitively with 
causal language. 

However, all of the associational claims about statistical 
independence will still hold, even when the edges do not 
have causal meaning like in the vanilla Bayesian networks.

The main assumptions that we need for causal graphical 
models to tell us how association and causation flow 
between variables are the following:

Given its parents in the DAG, a node 
is independent of all its non-descendants.

LOCAL MARKOV ASSUMPTION

In a DAG, every parent is a direct cause of all its children.

(STRICT) CAUSAL EDGES ASSUMPTION
A causal graph is a DAG that satisfies 
the strict causal edges assumption.

CAUSAL GRAPH

Figure 3.2

ଵ is a cause of ଶ, ଷ and ସ.

ଵ is a direct cause of ଶ and ଷ.

ଵ is an indirect cause of ସ.

Association flows from ଶ to ଷ

through the path ଶ ଵ ଷ, 
causation not.
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PART II

CHAINS, FORKS AND COLLIDERS

FLOW OF ASSOCIATION AND CAUSATION IN GRAPHS
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To understand the difference between association flow 
and causal flow in DAGs, we need the following minimal 
building blocks

 chain

 fork

 collider

 two un-connected nodes

 two connected nodes

CHAIN

FORK COLLIDER

TWO UN-CONNECTED

NODES

TWO CONNECTED

NODES

By “FLOW OF ASSOCIATION,” we mean whether any two 

nodes in a graph are ASSOCIATED or NOT ASSOCIATED. 

In other terms, we want to know whether two nodes are 

(statistically) DEPENDENT or (statistically) INDEPENDENT. 

However, we will also study whether two nodes are 

CONDITIONALLY INDEPENDENT OR NOT.



CAUSAL NETWORKS – FLOW OF ASSOCIATION AND CAUSATION IN GRAPHS FALL 2024 FABIO STELLA

16PART II: CHAINS, FORKS AND COLLIDERS

Given a graph consisting of just two unconnected nodes, these 
nodes are not associated, because there is no edge between them. 

To show this, consider the factorization of the joint probability

that the Bayesian network factorization gives us:

Given a probability distribution and a DAG , 
factorizes according to if

ଵ ଶ ௡ ௜ ௜

௡

௜ୀଵ

BAYESIAN NETWORK FACTORIZATION

Thus, applying the Bayesian network factorization immediately 
gives us a proof that the two nodes and are unassociated
(independent). (we assume that is Markov w.r.t. the graph ).

TWO UN-CONNECTED

NODES
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On the contrary, if there is an edge between the two nodes, 
then the two nodes are associated.

We exploit the causal edges assumption

TWO CONNECTED

NODES

In a DAG, every parent is a direct cause of all its children.

(STRICT) CAUSAL EDGES ASSUMPTION

which means that is a cause of .

Now, since is a cause of , by definition

A variable is said to be a cause of a variable if can 
change in response to changes in .

WHAT IS A CAUSE?

must be able to change in response to changes in , 
so and are associated.

In general, any time two 
nodes are adjacent in a 
causal graph, they are 
associated.
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CHAINS and FORKS share the same set of DEPENDENCIES: 

 and are dependent

 and are dependent 

for the same reason that we just discussed (i.e., two 
connected nodes)

CHAIN

FORK

Adjacent nodes are always dependent when we make the 
causal edges assumption.

In a DAG, every parent is a direct cause of all its children.

(STRICT) CAUSAL EDGES ASSUMPTION

What about and ?

Does association flow from to through in chains and forks? 

Usually, yes, and are associated in both chains and forks.

CHAIN: causes changes in which then 
causes changes in .

FORK: the same value that takes on is 
used to determine both the value that 
takes on and the value that takes on.

In other words, and are associated 
through their (shared) common cause .
(mind likely dependent!!!)
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FORK

CHAIN

PART II: CHAINS, FORKS AND COLLIDERS

When we condition on in both graphs, it blocks the flow of 
association from to .

CHAIN: blocks the flow of association 
from to .

FORK: blocks the flow of association 
from to .

CHAINS and FORKS also share the same set of INDEPENDENCIES.

This is because of the

Given its parents in the DAG, a node is independent 
of all its non-descendants.

LOCAL MARKOV ASSUMPTION

Therefore, when we condition on ( ’s parent in both graphs), 
becomes independent of (and viceversa).

This independence is an instance of a BLOCKED PATH.

BLOCKED PATH UN-BLOCKED PATH
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FORK

CHAIN

PART II: CHAINS, FORKS AND COLLIDERS

CHAIN: association flows from to .

FORK: association flows from to .

It is worth noticing that association flows also from to by 
the same paths.

In general, the FLOW OF ASSOCIATION IS SYMMETRIC.

Therefore,

 not conditioning on : association flows from to 
and flows from to .

 conditioning on : association does not flow from to 
and does not flow from to , i.e., blocks the path 

from to as well as it blocks the path from to .

THIS IS JUST INTUITION!!!

To prove that , we need to show that

Given its parents in the DAG, a node 
is independent of all its non-descendants.

LOCAL MARKOV ASSUMPTION

we exploit
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We give the proof for chains. 

To prove that , we need to show that

Try to prove the 
same for forks!!!

Given a probability distribution and a DAG , 
factorizes according to if

ଵ ଶ ௡ ௜ ௜

௡

௜ୀଵ

BAYESIAN NETWORK FACTORIZATION
(Bayes Theorem)
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Flow of association is symmetric.

In a DAG, every parent is a direct cause 
of all its children.

(STRICT) CAUSAL EDGES ASSUMPTION

Flow of causation is not symmetric. 

Causation flows in a single direction, only 
along directed paths. 

Association flows along any path that does not 
contain an IMMORALITY (COLLIDER).
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A COLLIDER is a node with two or more parents.

In a COLLIDER, and are independent, i.e., 

How could it be that and are associated?

 isn’t the descendant of , and isn’t the 
descendant of , like in chains.

 and don’t share a common cause, like in forks. 

We can think of and simply as unrelated events that can 
happen, and which both contribute to some common effect ( ).

To show that              we apply the Bayesian network 
factorization and then marginalize out .

Given a probability distribution and a DAG , factorizes 
according to if

ଵ ଶ ௡ ௜ ௜

௡

௜ୀଵ

BAYESIAN NETWORK FACTORIZATION ௬

௬

௬

COLLIDER FORK

CHAIN
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The flow of information from node to 
node is blocked by node .

The collider blocks the path from node 
to node and blocks the path from node 
to node .

COLLIDERCOLLIDER

This is another example of a BLOCKED PATH, 
but this time the path is not blocked by 
conditioning; the path is UN-BLOCKED by 
conditioning (on a collider).

A COLLIDER is a node with two or more parents.

In a COLLIDER, and are independent, i.e., 

How could it be that and are associated?

 isn’t the descendant of , and isn’t the 
descendant of , like in chains.

 and don’t share a common cause, like in forks. 

We can think of and simply as unrelated events that can 
happen, and which both contribute to some common effect ( ).

To show that              we apply the Bayesian network 
factorization and then marginalize out .

Given a probability distribution and a DAG , factorizes 
according to if

ଵ ଶ ௡ ௜ ௜

௡

௜ୀଵ

BAYESIAN NETWORK FACTORIZATION
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Consider a simultaneous (independent) toss of two fair 
coins and and a bell that rings whenever at least 
one of the coin lands on heads.

If we do not know whether the bell rings or not, the 
two coins, and , are independent, i.e., when we
know that the coin turned out to be head, the coin

still has probability equal to 0.5 to turn out head, 
when tossed. 

The same applies when we know that the coin
turned out to be tail. 

The same applies when we swap what we know 
about coin with what we know about coin .

What happens when we know that the bell rings?

We know that the two coins and are fair, thus each 
of them has probability equal to 0.5 to turn out head, 
when tossed.

WHAT WE KNOW WHAT WE INFER?

Figure 3.5



CAUSAL NETWORKS – FLOW OF ASSOCIATION AND CAUSATION IN GRAPHS FALL 2024 FABIO STELLA

26PART II: CHAINS, FORKS AND COLLIDERS

To summarize, conditioning on a collider can turn a blocked path 
into an UN-BLOCKED PATH. 

The parents and are not associated (no association flow) in 
the general population, but when we condition on their shared 
child taking on a specific value ( ), they become 
associated.

This is sometimes referred to as the SELECTION BIAS.

COLLIDER

 Not conditioning on the collider ( ) blocks 
association to flow along the path .

 Conditioning on the collider ( ) allows 
association to flow along the path .

BLOCKED PATH

not conditioning 
on 

( )

COLLIDER

conditioning 
on 

( )

UN-BLOCKED PATH
What we have discussed in these last slides was based on our

intuition, but what about some quantitative example to better

understand what we just stated?
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Consider the following DATA GENERATING PROCESS

COLLIDERWe know that that are independent. 

However, for matter of clarity, let’s compute their 
covariance in the case where we know 
nothing about the value of ( ): 

(zero mean)

(independence)

(*)

ଶ

(*)

Let’s compute the covariance of and in the 
case where we know that takes on value 
( ), i.e., let us compute : 

Therefore, and are associated conditionally 
on .

(**)

(**) by property of moments ଶ ଶ

COLLIDER
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Conditioning on DESCENDANTS OF A COLLIDER also induces 
association in between the parents of the collider.

COLLIDER

The intuition is that if we learn something about a collider’s 
descendant, we usually also learn something about the 
collider itself because there is a direct causal path from the 
collider to its descendants, and we know that nodes in a 
chain are usually associated assuming MINIMALITY.

1) Given its parents in the DAG , a node is 
independent of all its non-descendants (local Markov 
assumption).

2) Adjacent nodes in the DAG are dependent.

MINIMALITY ASSUMPTION

A descendant of a collider works as a proxy for that collider, 
so conditioning on one of the descendants of a collider is 
similar to conditioning on the collider itself.

When we learn something about the collider’s 
descendant , we also learn something about 
the collider itself because there is a direct 
causal path from the collider to 
its descendant , and nodes in a chain are 
usually associated assuming minimality.

Figure 3.6
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COLLIDERFORKCHAIN

is independent on 

is not independent on 

is independent on given 

is not independent on given 

Dashed lines represent association flow. Continuous lines represent causal flow.
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PART III

D-SEPARATION AND THE FLOW OF

ASSOCIATION AND CAUSATION

FLOW OF ASSOCIATION AND CAUSATION IN GRAPHS
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Two variables, and , are conditionally independent given , 
if there is only one directed path between and , and is 
any set of variables that intercepts that path.

CONDITIONAL INDEPENDENCE IN CHAINS

FORK

If a variable is a common cause of variables and , and 
there is only one path between and , then and are 
independent conditional on .

CONDITIONAL INDEPENDENCE IN FORKS

COLLIDER

If a variable is the collision node between two variables 
and , and there is only one path between and , then 
and are unconditionally independent but are dependent 
conditional on and any descendants of .

CONDITIONAL INDEPENDENCE IN COLLIDERS
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We now give one of the most relevant definitions of this topic, 
i.e., we introduce the concept of “D-SEPARATION”.

A path is blocked by a set of nodes if and only if

1) contains a chain of nodes or a fork 
such that the middle node is in (i.e., is conditioned on), 

2) or contains a collider such that the collision 
node is not in , and no descendant of is in .

If blocks every path between two nodes and , then and 
are d-separated, conditional on , and thus are independent 
conditional on .

D-SEPARATION

The variables might be discrete, continuous, or a mixture of the two; 
the relationships between them might be linear, exponential, or any 
of an infinite number of other relations. 

No matter the model, however, D-SEPARATION will always provide 
the same set of independencies in the data the model generates.

Figure 3.7
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We now give one of the most relevant definitions of this topic, 
i.e., we introduce the concept of “D-SEPARATION”.

In particular, let’s look at the relationship between and .

empty CONDITIONING SET

= {}
and are 

d-separated
Because there is no un-blocked 
path between and .

A path is blocked by a set of nodes if and only if

1) contains a chain of nodes or a fork 
such that the middle node is in (i.e., is conditioned on), 

2) or contains a collider such that the collision 
node is not in , and no descendant of is in .

If blocks every path between two nodes and , then and 
are d-separated, conditional on , and thus are independent 
conditional on .

D-SEPARATION

Figure 3.8
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We now give one of the most relevant definitions of this topic, 
i.e., we introduce the concept of “D-SEPARATION”.

In particular, let’s look at the relationship between and .

and are 
d-separated

Because there is no un-blocked 
path between and .

The only path connecting to , 
, is blocked by 

the collider .

blocks the path

Z → W ← X → Y

collision node

A path is blocked by a set of nodes if and only if

1) contains a chain of nodes or a fork 
such that the middle node is in (i.e., is conditioned on), 

2) or contains a collider such that the collision 
node is not in , and no descendant of is in .

If blocks every path between two nodes and , then and 
are d-separated, conditional on , and thus are independent 
conditional on .

D-SEPARATION

Figure 3.9

empty CONDITIONING SET

= {}
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We now give one of the most relevant definitions of this topic, 
i.e., we introduce the concept of “D-SEPARATION”.

In particular, let’s look at the relationship between and .

and are 
d-separated

and are 
unconditionally 
independent

Because there is no un-blocked 
path between and .

The only path connecting to , 
, is blocked by 

the collider .

blocks the path

Z → W ← X → Y

collision node

A path is blocked by a set of nodes if and only if

1) contains a chain of nodes or a fork 
such that the middle node is in (i.e., is conditioned on), 

2) or contains a collider such that the collision 
node is not in , and no descendant of is in .

If blocks every path between two nodes and , then and 
are d-separated, conditional on , and thus are independent 
conditional on .

D-SEPARATION

Figure 3.9

empty CONDITIONING SET

= {}
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We now give one of the most relevant definitions of this topic, 
i.e., we introduce the concept of “D-SEPARATION”.

In particular, let’s look at the relationship between and .

and are not 
d-separated

and are 
conditionally 
dependent

The only path connecting to , 
, is un-blocked 

by conditioning on the collider .

un-blocks the path 

Z → W ← X → Y

collision node

fork

A path is blocked by a set of nodes if and only if

1) contains a chain of nodes or a fork 
such that the middle node is in (i.e., is conditioned on), 

2) or contains a collider such that the collision 
node is not in , and no descendant of is in .

If blocks every path between two nodes and , then and 
are d-separated, conditional on , and thus are independent 
conditional on .

D-SEPARATION

condition on

= { }
Figure 3.10

CONDITIONING SET

= { }
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We now give one of the most relevant definitions of this topic, 
i.e., we introduce the concept of “D-SEPARATION”.

In particular, let’s look at the relationship between and .
The only path connecting to , 

, is un-blocked 
by conditioning on the 
descendant of the collider .

un-blocks the path

Z → W ← X → Y

collision node

fork

and are not 
d-separated

and are 
conditionally 
dependent

A path is blocked by a set of nodes if and only if

1) contains a chain of nodes or a fork 
such that the middle node is in (i.e., is conditioned on), 

2) or contains a collider such that the collision 
node is not in , and no descendant of is in .

If blocks every path between two nodes and , then and 
are d-separated, conditional on , and thus are independent 
conditional on .

D-SEPARATION

= { }
condition on

Figure 3.11

CONDITIONING SET

= { }
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We now give one of the most relevant definitions of this topic, 
i.e., we introduce the concept of “D-SEPARATION”.

In particular, let’s look at the relationship between and .

and are 
d-separated

and are 
conditionally 
independent

The only path connecting to , 
, is un-blocked 

by conditioning on the collider 
and then is blocked by conditioning 
on the fork .

un-blocks the path

Z → W ← X → Y
= { }

A path is blocked by a set of nodes if and only if

1) contains a chain of nodes or a fork 
such that the middle node is in (i.e., is conditioned on), 

2) or contains a collider such that the collision 
node is not in , and no descendant of is in .

If blocks every path between two nodes and , then and 
are d-separated, conditional on , and thus are independent 
conditional on .

D-SEPARATION

collision node

blocks the path

Z → W ← X → Y

Figure 3.12

CONDITIONING SET

= { }
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We now give one of the most relevant definitions of this topic, 
i.e., we introduce the concept of “D-SEPARATION”.

Let’s look at the relationship between and , in this new graph.

and are not 
d-separated

and are 
unconditionally 

dependent

The path connecting to , 
, is blocked, 

while the path connecting to 
is un-blocked

A path is blocked by a set of nodes if and only if

1) contains a chain of nodes or a fork 
such that the middle node is in (i.e., is conditioned on), 

2) or contains a collider such that the collision 
node is not in , and no descendant of is in .

If blocks every path between two nodes and , then and 
are d-separated, conditional on , and thus are independent 
conditional on .

D-SEPARATION

Figure 3.13

empty CONDITIONING SET

= {}
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We now give one of the most relevant definitions of this topic, 
i.e., we introduce the concept of “D-SEPARATION”.

Let’s look at the relationship between and , in this new graph.

CONDITIONING SET

= { }
and are not 
d-separated

and are 
conditionally 
dependent

The path connecting to , 
, is blocked, 

by conditioning on = { }, 
while the path connecting to 

is un-blocked.

A path is blocked by a set of nodes if and only if

1) contains a chain of nodes or a fork 
such that the middle node is in (i.e., is conditioned on), 

2) or contains a collider such that the collision 
node is not in , and no descendant of is in .

If blocks every path between two nodes and , then and 
are d-separated, conditional on , and thus are independent 
conditional on .

D-SEPARATION

= { }

Figure 3.14
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We now give one of the most relevant definitions of this topic, 
i.e., we introduce the concept of “D-SEPARATION”.

Let’s look at the relationship between and , in this new graph.

CONDITIONING SET

= { }
and are 

d-separated

and are 
conditionally 
independent

= { }

The path connecting to , 
, is blocked, 

by conditioning on = { }, 
and the path connecting to 

is blocked by 
conditioning on . 

A path is blocked by a set of nodes if and only if

1) contains a chain of nodes or a fork 
such that the middle node is in (i.e., is conditioned on), 

2) or contains a collider such that the collision 
node is not in , and no descendant of is in .

If blocks every path between two nodes and , then and 
are d-separated, conditional on , and thus are independent 
conditional on .

D-SEPARATION

Figure 3.15
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We now give one of the most relevant definitions of this topic, 
i.e., we introduce the concept of “D-SEPARATION”.

In this graph, and are D-CONNECTED conditional on

W, T, {W, T}, {W, Q}, {T, Q}, {W, T, Q}, {W, X}, {T, X}, {W, T, X}.

A path is blocked by a set of nodes if and only if

1) contains a chain of nodes or a fork 
such that the middle node is in (i.e., is conditioned on), 

2) or contains a collider such that the collision 
node is not in , and no descendant of is in .

If blocks every path between two nodes and , then and 
are d-separated, conditional on , and thus are independent 
conditional on .

D-SEPARATION

Figure 3.13
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We now give one of the most relevant definitions of this topic, 
i.e., we introduce the concept of “D-SEPARATION”.

and are D-SEPARATED conditional on:

Q, {X, Q}, {W, X, Q}, {T, X, Q}, {W, T, X, Q}.

Q is in every CONDITIONING SET that d-separates and .

is in every conditioning set that D-SEPARATES

and because is the only node in a path 
that unconditionally D-CONNECTS and , so 
unless it is conditioned on, and will always 
be D-CONNECTED.

A path is blocked by a set of nodes if and only if

1) contains a chain of nodes or a fork 
such that the middle node is in (i.e., is conditioned on), 

2) or contains a collider such that the collision 
node is not in , and no descendant of is in .

If blocks every path between two nodes and , then and 
are d-separated, conditional on , and thus are independent 
conditional on .

D-SEPARATION

Figure 3.13
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D-SEPARATION is an extremely important concept, because it 
implies CONDITIONAL INDEPENDENCE.

and are D-SEPARATED in the graph when 
conditioning on the CONDITIONING SET .𝒢 

and are INDEPENDENT in the distribution 
when conditioning on the CONDITIONING SET .௉ 

Given that is Markov with respect to 
(satisfies the local Markov assumption), if and 

are d-separated in conditioned on , then 
and are independent in conditioned on . 
We can write this succinctly as follows:

GLOBAL MARKOV ASSUMPTION

𝒢 ௉

Given its parents in the DAG, 
a node is independent of all its 
non-descendants.

LOCAL MARKOV ASSUMPTION

implies

implies
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D-SEPARATION is an extremely important concept, because it 
implies CONDITIONAL INDEPENDENCE.

Given its parents in the DAG, 
a node is independent of all its 
non-descendants.

LOCAL MARKOV ASSUMPTION

implies

implies
Given a probability distribution and a DAG , 

factorizes according to if

ଵ ଶ ௡ ௜ ௜

௡

௜ୀଵ

BAYESIAN NETWORK FACTORIZATION

and are D-SEPARATED in the graph when 
conditioning on the CONDITIONING SET .𝒢 

and are INDEPENDENT in the distribution 
when conditioning on the CONDITIONING SET .௉ 
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Given its parents in the DAG, a node is independent of all its 
non-descendants.

LOCAL MARKOV ASSUMPTION

Given that is Markov with respect to (satisfies the local Markov 
assumption), if and are d-separated in conditioned on , then and 

are independent in conditioned on . We can write this succinctly as 
follows:

GLOBAL MARKOV ASSUMPTION

𝒢 ௉

Given a probability distribution and a DAG , factorizes according 
to if

ଵ ଶ ௡ ௜ ௜

௡

௜ୀଵ

BAYESIAN NETWORK FACTORIZATION

Therefore, we will use the 

slightly shortened phrase 

MARKOV ASSUMPTION, to refer to 

these concepts as a group, or 

we will simply write “ is Markov 

with respect to ” to convey the 

same meaning.

THEY ARE ALL EQUIVALENT!!!
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ASSOCIATION and CAUSATION flow in directed graphs.

In causal graphs, causation flows along directed paths.

Not only is association not causation, but causation is 
a sub-category of association, thus association and 
causation both flow along directed paths.

flow of association 
along directed paths

non-causal association 
that makes total 
association not causation

causal 
association

confounding 
association

causal 
association

BAYESIAN NETWORKS are purely statistical models, 
so we can only talk about the flow of association in 
Bayesian networks. 

Association still flows in exactly the same way in 
BAYESIAN NETWORKS as it does in CAUSAL GRAPHS, 
though.

causal path

confounding path

In BNs and CNs, 

 association flows along chains and forks, unless a 
node is conditioned on, 

 a collider blocks the flow of association, unless it is 
conditioned on.

We can tell if two nodes are not associated (no 
association flows between them) by whether or not 
they are d-separated.

Figure 3.16
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CAUSAL NETWORKS are special in that we additionally assume that the EDGES HAVE CAUSAL MEANING

In a DAG, every parent is a direct cause 
of all its children.

(STRICT) CAUSAL EDGES ASSUMPTION

This assumption introduces causality into our 
models, and it makes one type of path take on 
a whole new meaning: DIRECTED PATHS.

BAYESIAN

NETWORK

CAUSAL

NETWORK+ =

This assumption is asymmetric!!!

Endows directed paths with the unique role of 
carrying causation along them. 

“ is a cause of ”.“ is a cause of ”

ASSOCIATION IS SYMMETRIC

CAUSATION IS ASYMMETRIC

causal 
association

Figure 3.17
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We have the tools to measure association, how can we 
isolate causation?

causal path

association path

How can we ensure that the association we measure is 
causation, say, for measuring the causal effect of on ?

 We can do that by ensuring that there is no 
non-causal association flowing between 
and .

 This is true if and are D-SEPARATED in 
the AUGMENTED GRAPH where we remove 
outgoing edges from . 

 This is because all of ’s causal effect on 
would flow through it’s outgoing edges, so 
once those are removed, the only association 
that remains is purely non-causal association 
(association path). causal path

association path

Figure 3.18

Figure 3.19
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We illustrate (Figure 3.20) what each assumptions gives in terms of interpreting the flow of association. 

1. LOCAL/GLOBAL MARKOV ASSUMPTION, tell us which nodes are unassociated. The Markov assumption 
tells along which paths the association does not flow. 

2. Strengthening the Markov assumption brings to the MINIMALITY ASSUMPTION. This gives which paths 
association does flow along (except in intransitive edges cases). 

3. Strengthening further adds in the causal edges assumption, we get that causation flows along 
directed paths.

STATISTICAL

INDEPENDENCIES

MINIMALITY

ASSUMPTION
STATISTICAL

DEPENDENCIES

CAUSAL EDGES

ASSUMPTION
CAUSAL

DEPENDENCIES

MARKOV

ASSUMPTION

Figure 3.20

Therefore, the following two assumptions 
are essential for graphical causal models:

1. Markov assumption
2. Causal edges assumption

Recall that the first part of the minimality assumption is 
just the local Markov assumption and that the second 
part is contained in the causal edges assumption.


