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CAUSAL MODELS 1

In this lecture you will learn about fundamental concepts and notations needed to clearly

describe causal models.

In particular, the lecture presents and discusses the following:

= do-operator

= Observational and interventional study/data

Pre-intervention and post-intervention distribution

Modularity

Backdoor criterion and adjustment
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N

THE DO-OPERATOR AND
INTERVENTIONAL DISTRIBUTIONS
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PART I: THE DO-OPERATOR AND INTERVENTIONAL DISTRIBUTIONS 4

Causal models are essential for identification of causal We update to the following version of the
quantities. IDENTIFICATION-ESTIMATION FLOWCHART

From the IDENTIFICATION-ESTIMATION FLOWCHART

CAUSAL CAUSAL
CAUSAL ESTIMAND MODEL

ESTIMAND

the process of moving
IDENTIFICATION —> from a causal estimand

to a statistical estimand STATISTICAL
ESTIMAND
STATISTICAL
ESTIMAND
To do this step we must
have a causal model. -
ESTIMATION ESTIMATE Figure 4.1

In this lecture we explain how to
identify causal quantities and formalize
causal models.

[ ESTIMATE ]
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PART I: THE DO-OPERATOR AND INTERVENTIONAL DISTRIBUTIONS

When we collect data on factors When we perform a study on a
associated with wildfires, we are new cancer drug, we are trying to
actually searching for something identify how a patient’s illness

we can INTERVENE upon in order responds when we INTERVENE

to decrease wildfire frequency. upon it by medicating the patient.

THE ULTIMATE AIM OF MANY STATISTICAL STUDIES

IS TO PREDICT THE EFFECTS OF INTERVENTIONS

When we research the

correlation between violent
television and acts of
aggression in children, we are
trying to determine whether
INTERVENING to reduce
children’s access to violent
television will reduce their

aggressiveness.
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PART I: THE DO-OPERATOR AND INTERVENTIONAL DISTRIBUTIONS

As you have undoubtedly heard many times in statistics classes,

“CORRELATION IS NOT CAUSATION”

A mere association between two variables does not necessarily

mean that one of those variables causes the other.

VYiolent Crime Index

lce Cream Sales

Cumulative Distribution Function [CDF]

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

CORRELATION
COES tAOT INAFLY

The famous example of this property
is that an increase in ice cream sales
IS correlated with an increase in
violent crime—not because ice cream
causes crime, but because both ice
cream sales and violent crime are

more common in hot weather.
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PART I: THE DO-OPERATOR AND INTERVENTIONAL DISTRIBUTIONS -

For this reason, the RANDOMIZED CONTROLLED EXPERIMENT iS
considered the golden standard of statistics.

In a properly randomized controlled experiment, all FACTORsS factor 1 =———>
that influence the oUTCOME variable are either static, or vary Ao pee—
at random, except for one—so any change in the outcome ~ factor n——
variable must be due to that one input variable (factor).

Unfortunately, many questions do not lend themselves to
randomized controlled experlments

outcome

We cannot control the
weather, so we can'’t

“| randomize the variables
/| that affect wildfires.

| Even randomized drug
trials can run into We could conceivably randomize the participants in

problems when a study about violent television, but it would be
participants drop out, fail difficult to effectively control how much television

to take their medication, each child watches, and nearly impossible to know
or misreport their usage. whether we were controlling them effectively or not.
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In cases where randomized controlled experiments are not INTERVENING CONDITIONING
practical, researchers instead perform OBSERVATIONAL STUDIES, on variable X on variable X
in which they merely record data, rather than controlling it of model M of model M

(INTERVENTIONAL OR EXPERIMENTAL STUDIES).

The problem of such studies is that it is difficult to untangle the
causal from the merely correlative.

The difference between INTERVENING on a variable and we change nothing; we

CONDITIONING on that variable should, hopefully, be obvious. Es th | ¢ merely narrow our focus
Ixthe value of X to the subset of cases in

temperature (X = x) which the variable takes
7 Consider, for instance, Figure 4.2 jche value we are
that shows a graphical model of interested in, i.e., X = x.
our ice cream sales example,
with
= X as ice cream sales
_ “ Y e we change the system, what changes, then, is
|cesec]::r::m f;'t"gs = Z as temperature and the values of other  our perception about
variables often change  the world, not the world
Figure 4.2 as a result itself
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PART I: THE DO-OPERATOR AND INTERVENTIONAL DISTRIBUTIONS 9

In cases where randomized controlled experiments are not
practical, researchers instead perform OBSERVATIONAL STUDIES,
in which they merely record data, rather than controlling it
(INTERVENTIONAL OR EXPERIMENTAL STUDIES).

The problem of such studies is that it is difficult to untangle the
causal from the merely correlative.

The difference between INTERVENING on a variable and
CONDITIONING on that variable should, hopefully, be obvious.

temperature temperature

VA VA

O

X )4 X = low Y
ice cream crime ice cream crime
sales rates sales rates
Figure 4.2 Figure 4.3

When we intervene to fix the value of a
variable, we curtail the natural tendency of
that variable to vary in response to other
variables in nature.

This amounts to performing a kind of
SURGERY ON THE GRAPHICAL MODEL, removing
all edges directed into that variable.

If we were to intervene to make ice cream

sales X low, i.e., X = low, (say, by shutting
down all ice cream shops), we would have
the graphical model shown in Figure 4.3.

When we examine correlations in this new
graph (Figure 4.3), we find that crime rates Y
are, totally independent of (i.e., uncorrelated
with) ice cream sales X since the latter is no
longer associated with temperature Z.

In other words, even if we vary the level at
which we hold X (ice cream sales) constant,
that variation will not be transmitted to
variable Y (crime rates).
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PART I: THE DO-OPERATOR AND INTERVENTIONAL DISTRIBUTIONS

10
We introduce the operator to represent INTERVENTION.
In the regular notation for probability, we have conditioning,
but that isn’t the same as intervening.
CONDITIONING on X = x just means that we are restricting our
focus to the subset of the population to those who received

treatment X = x.

POPULATION SUB-POPULATIONS
In contrast, an INTERVENTION would be to take the whole

population and give everyone treatment X = x.

We denote INTERVENTION with the DO-OPERATOR do(X = x).
This is the notation commonly used in GRAPHICAL CAUSAL
MODELS, and it has equivalents in POTENTIAL OUTCOMES

NOTATION, as follows:

P(Y(x) =y) £ P(Y = y|do(X = x)) £ P(y|do(x))

The ATE (average treatment effect), when the treatment is
binary, can be written as follows:

ElY|do(X = 1)] — E[Y|do(X = 0)] INTERVENING CONDITIONING
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PART I: THE DO-OPERATOR AND INTERVENTIONAL DISTRIBUTIONS

OBSERVATIONAL DATA

OBSERVATIONAL DISTRIBUTION

P(Y|X = x) = P(y|x)

All the units of this
subpopulation are
treated X = 1

All the units of this
subpopulation are
not treated X = 0

CONDITIONING

POPULATION

INTERVENTIONAL OR
EXPERIMENTAL DATA

INTERVENTIONAL DISTRIBUTION

P(Y|do(X = x)) £ P(y|do(x))

All the units of
the population
are treated X = 1

All the units of the
population are not
treated X =0

INTERVENING
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PART I: THE DO-OPERATOR AND INTERVENTIONAL DISTRIBUTIONS 12

An expression Q with do in it is said to be an INTERVENTIONAL EXPRESSION.
An expression Q without a do in it is said to be an OBSERVATIONAL EXPRESSION.
An interventional expression which can be reduced to an observational expression is said to be IDENTIFIABLE.

An ESTIMAND is said to be
" CAUSAL, whether it does contain the do-operator
" STATISTICAL, whether it does not contain the do-operator

Whenever, do(x) appears in expression Q after the conditioning bar, it means that everything in that
expression Q is in the POST-INTERVENTION WORLD where intervention do(x) occurs.

E|Y|do(x),Z = z] E|Y|Z = z]

Refers to the expected outcome Y in the Refers to the expected outcome Y in

(POST-INTERVENTION) sub-population where the (PRE-INTERVENTION) population

Z = z after the whole sub-population has where individuals take whatever

taken treatment X = x. treatment X they would normally take.
P(Y|do(x),Z = z) P(Y|X,Z = 7)

POST-INTERVENTION DISTRIBUTION PRE-INTERVENTION DISTRIBUTION
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PART I1

MODULARITY AND
ADJUSTMENT FORMULA
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14

Before we can describe a very important assumption, we must specify
WHAT A CAUSAL MECHANISM IS.

There are a few different ways to think about causal mechanisms. In the
following we let a CAUSAL MECHANISM to be a mechanism that generates
X; as the conditional distribution of X; given its parents (causes) pa(X;),

i.e., the following conditional distribution P(X;|pa(X;)).

The main assumption we need to progress toward CAUSAL NETWORKS is
that INTERVENTIONS ARE LOCAL.

In particular, we assume that intervening on a variable X; only changes
the causal mechanism for X;; it does not change the causal mechanisms
that generate any other variables X;.

MODULARITY — INDEPENDENCE MECHANISM — INVARIANCE

1. IfX; ¢S, then P(X;
2. IfX; €S, then P(X;

/If we intervene on a set of nodes/variables S, setting them to constants
then for all X; € {X, X,, ...

G to by the intervention do(X; = x); otherwise P(X; = x|pa(X;)) = 0.

\

,X,,}, we have the following:

x|pa(X;)) remains unchanged,

x|pa(X;)) = 1, if x is the value that X; was set

5

Figure 4.4(a)

CAUSAL NETWORKS — CAUSAL MODELS

FALL 2024

FABIO STELLA



PART II: MODULARITY AND ADJUSTMENT FORMULA 15

We could write condition 2) below as follows:

= P(X; = x|pa(X;)) =1 if x is consistent with the intervention

= P(X; = x|pa(X;)) =0 otherwise.

In the future we say that, if X; € S, a value x Aof X; IS CONSISTENT WITH

THE INTERVENTION on X;, if x equals the value that X; was set to in the
intervention, i.e., do(X; = x).

The causal graph for interventional (experimental) distributions is simply
the same graph that was used for the observational joint distribution, but
with all of the edges to the intervened node(s) removed.

MODULARITY — INDEPENDENCE MECHANISM — INVARIANCE

\

/If we intervene on a set of nodes/variables S, setting them to constants,
then for all X; € {X;,X,, ..., X;}, we have the following:

1. IfX; ¢S, then P(X; = x|pa(X;)) remains unchanged,

2. IfX; €S, then P(X; = x|pa(X;)) = 1, if x is the value that X; was set

& to by the intervention do(X; = x); otherwise P(X; = x|pa(X;)) = 0. . Figure 4.4(a)
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PART II: MODULARITY AND ADJUSTMENT FORMULA 16

We could write condition 2) below as follows:

= P(X; = x|pa(X;)) =1 if x is consistent with the intervention

= P(X; = x|pa(X;)) =0 otherwise.

In the future we say that, if X; € S, a value x ‘of X; IS CONSISTENT WITH

THE INTERVENTION on X;, if x equals the value that X; was set to in the
intervention, i.e., do(X; = x).

The causal graph for interventional (experimental) distributions is simply
the same graph that was used for the observational joint distribution, but
with all of the edges to the intervened node(s) removed. do(X; = x)

MODULARITY — INDEPENDENCE MECHANISM — INVARIANCE

\

G‘ we intervene on a set of nodes/variables S, setting them to constants,
then for all X; € {X;,X,, ..., X;}, we have the following:

1. IfX; ¢S, then P(X; = x|pa(X;)) remains unchanged,

2. IfX; €S, then P(X; = x|pa(X;)) = 1, if x is the value that X; was set

& to by the intervention do(X; = x); otherwise P(X; = x|pa(X;)) = 0. . Figure 4.4(b)
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We could write condition 2) below as follows:

= P(X; = x|pa(X;)) =1 if x is consistent with the intervention

= P(X; = x|pa(X;)) =0 otherwise.

In the future we say that, if X; € S, a value x of X; iS CONSISTENT WITH

THE INTERVENTION on X;, if x equals the value that X; was set to in the
intervention, i.e., do(X; = x).

The causal graph for interventional (experimental) distributions is simply
the same graph that was used for the observational joint distribution, but
with all of the edges to the intervened node(s) removed.

MODULARITY — INDEPENDENCE MECHANISM — INVARIANCE

G‘ we intervene on a set of nodes/variables S, setting them to constants,\
then for all X; € {X{,X,, ..., X,,}, we have the following:

1. IfX; ¢S, then P(X; = x|pa(X;)) remains unchanged,
2. IfX; €S, then P(X; = x|pa(X;)) = 1, if x is the value that X; was set

& to by the intervention do(X; = x); otherwise P(X; = x|pa(X;)) = 0'j

MANIPULATED GRAPH

Figure 4.5
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PART II: MODULARITY AND ADJUSTMENT FORMULA

X3
X5
X
INTERVENTIONAL INTERVENTIONAL
OBSERVATIONAL (EXPERIMENTAL) (EXPERIMENTAL)
DISTRIBUTION DISTRIBUTION DISTRIBUTION
Figure 4.6(a) Figure 4.6(b) Figure 4.6(c)
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What would it mean for the
MODULARITY ASSUMPTION to
be violated?

causal
mechanism
modular

INTERVENTIONAL
(EXPERIMENTAL)
DISTRIBUTION

Figure 4.6(b)

changes
P(X4 = x|X3)

causal
mechanism
not modular

INTERVENTIONAL
(EXPERIMENTAL)
DISTRIBUTION

Figure 4.7

CAUSAL NETWORKS — CAUSAL MODELS

FALL 2024

FABIO STELLA



PART II: MODULARITY AND ADJUSTMENT FORMULA

Using do-expressions and graph surgery, we can begin to untangle the causal relationships from the purely
associative.

We now learn methods that can, astoundingly, tease out causal information from purely observational data,
assuming of course that the graph constitutes a valid representation of reality.

It is worth noting here that we are making a tacit assumption that

The INTERVENTION has “NO SIDE EFFECTS,” that is, that assigning the value x for the variable X, i.e.,
setting X = x, for an individual does not alter subsequent variables in a direct way.

For example, temperature
* being “assigned” a drug might have a different effect on recovery than VA

» being forced to take the drug against one’s religious objections.

When side effects are present, they need to be specified explicitly in the model.

The ice cream example represents an extreme case in which the association X Y

between X and Y was totally spurious from a causal perspective, because there e e

was no causal path from X to Y. sales rates
Figure 4.2
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PART II: MODULARITY AND ADJUSTMENT FORMULA

Let us come back to the Drug No Drug
SIMPSON’S PARADOX, wWhere X patients  recovered % recovered patients recovered % recovered
stands for drug usage, Y stands Men 87 81 93% 270 234 87%
for recovery, and Z stands for Women 263 192 73% 80 55 69%
gender. Combined data 350 273 78% 350 289 83%

To find out how effective the drug is in the population, we imagine a
gender hypothetical intervention by which we administer the drug uniformly to the
g = 1) 7 entire population do(X = 1) and compare the recovery rate to what would
dot obtain under the complementary intervention, where we prevent everyone
& from using the drug do(X = 0).

e=b P(¥ — I{do(X = 1))

X Y

drug recovery
gendes [P(Y = lldo(X = 1)) — P(Y = l{do(X = 0))]
1o = 4
& AVERAGE TREATMENT EFFECT (ATE)
=>P(Y = 1|do(X = 0))

X Y

drug recovery
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PART II: MODULARITY AND ADJUSTMENT FORMULA

Let us come back to the
SIMPSON’S PARADOX, wWhere X
stands for drug usage, Y stands
for recovery, and Z stands for
gender.

gender

a0 =) Z

Y

X Figure48 Y

drug recovery

gender

M

X Figure49 Y

drug recovery

Drug No Drug
patients recovered % recovered patients recovered % recovered
Men 87 81 93% 270 234 87%
Women 263 192 73% 80 55 69%
Combined data 350 273 78% 350 289 83%

The data itself was not sufficient even for determining whether the effect of
the drug was positive or negative.

But with the aid of the graph in Figure 4.8, we can compute the magnitude
of the causal effect from the data (we generalize to more than two drugs
and more than two outcomes).

To do so, we simulate the intervention in the form of a graph surgery on
the ORIGINAL MODEL (Figure 4.8) just as we did in the ice cream example.

The intervention do(X = x) brings to the MANIPULATED MODEL in Figure 4.9,
which in turns allows us to write the following equality:

PY = Jldo(X =) ) =P (V= y|X = x)

However, to draw the above conclusion we need to assume
MODULARITY — INDEPENDENCE MECHANISM — INVARIANCE.
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PART II: MODULARITY AND ADJUSTMENT FORMULA

Let us come back to the
SIMPSON’S PARADOX, wWhere X
stands for drug usage, Y stands
for recovery, and Z stands for
gender.

gender

a0 =) Z

Y

X Figure48 Y

drug recovery P(Z|da(X = x)) = B, (Z|x) = P(Z)

gender

Z
G P(Y|do(X = %),Z) = P..(Y|x.Z) = P(Y|x,2)

X Figure49 Y

drug recovery

2
Drug No Drug
patients recovered % recovered patients recovered % recovered
Men 87 81 93% 270 234 87%
Women 263 192 73% 80 55 69%
Combined data 350 273 78% 350 289 83%

In other terms to computing the causal effect we assume that the
MANIPULATED PROBABILITY (manipulated model or post-intervention model

in Figure 4.9), shares two essential properties with the ORIGINAL

PROBABILITY (pre-intervention probability), that prevails in the original
model or pre-intervention model of Figure 4.8, i.e.,:

The marginal probability P(Z) is invariant under
the intervention, because the process determining
Z is not affected by removing the arrow from Z to
X. (proportions of males and females remain the
same, before and after the intervention).

The conditional probability P(Y|x, Z) is invariant
under the intervention, because the process by
which Y responds to X and Z remains the same,

regardless of whether X changes spontaneously
or by deliberate manipulation.
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PART II: MODULARITY AND ADJUSTMENT FORMULA

We know that the following equalities hold:

Po(Z =wlX=we)ya Bl = 7) = P{Z—7)
pre-intervention

distribution P Po(Y=ylX —wilecrz) — POV X =7 — 7
gender
e i@ 7
l=>P(Y = ydalX. — x)) =Pt = viX=3) (by definition)

X Figure48 Y
drug recovery — me(y e le s L Z) Pm(Z s Z|X == x)
z

- Epm(y =y|X =x,Z = 2) Py(Z = 2)

— z BY =yIX = xZ=7P(Z=72) (modularity)
X Figure49 Y Z

drug recovery
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We know that the following equalities hold:
Computes the association

_ | PAZ =z|X=in) =Pl = 7) = P{Z-=7) between X and Y for each
sret-'_gtet{'ventm < e = = value z of Z, then averages
istribution P P.(Y =yl X =l = PV =i = v .7 — 7) aver those values.
gender
a0 =) Z
& ADJUSTMENT FORMULA
ADJUSTING FOR Z

=>|P(Y = y|do(X = x)) =ZP(Y=y|X=x,Z=z)P(Z=z) or
Z CONTROLLING FOR Z

X Figure48 Y

drug recovery
It can be estimated directly from the data, since it consists only of conditional

probabilities, i.e., by the PRE-INTERVENTION or OBSERVATIONAL DISTRIBUTION P.

THIS CAUSAL EXPRESSION
IS IDENTIFIABLE
\

s
G CAUSAL ESTIMAND IDENTIFICATION STATISTICAL ESTIMAND
> = . cnnal 7
X Figure49 Y P(Y =yido(X = x)) ZP(Y =y¥ =% 7=2P(Z=2)
drug recovery (% 5
FABIO STELLA
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PART II: MODULARITY AND ADJUSTMENT FORMULA 26

We now show that the To demonstrate the working of the adjustment formula, let us apply it numerically to
Adjustment Formula Simpson’s story, with
works, while using the

_ » X =1 standing for the patient taking the drug
Simpson’s paradox.

» 7 =1 standing for the patient being male

” » Y =1 standing for the patient recovering
gender

Z
ADJUSTMENT FORMULA

BlY = ylda(X —3)) = ZP(Y =X = r T =y P77
X Figure48 Y 2

drug recovery
PlY=tldotx — 1 - Pl 1l = 1 2= P(F — 1)+t P(Y = 11X =1,7Z=0)P(Z=0)
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PART II: MODULARITY AND ADJUSTMENT FORMULA 27

We now show that the Drug No Drug

Adjustment Formula patients patients % recovered
works, while using the Men 87 270 87%
Simpson’s paradox. Waomen e 80 69%

gender

Z
ADJUSTMENT FORMULA

BlY = ylda(X —3)) = ZP(Y =X = r T =y P77
X Figure48 Y 2

drug recovery
PlY=tldotx — 1 - Pl 1l = 1 2= P(F — 1)+t P(Y = 11X =1,7Z=0)P(Z=0)
(87 + 270) (263 + 80)
= s =): X 3 X =
P(¥r=1ldo(X =1))=0.93 - + 0.73 5 0.832
87270 263 + 80
P{Y = dido(X = B)) = 087 % ( ) + 0.69 X ( ) = (.7818

700 ' 700
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PART II: MODULARITY AND ADJUSTMENT FORMULA 7

We now show that the Drug No Drug
Adjustment Formula patients  recovered % recovered patients recovered % recovered
works, while using the Men 87 81 93% 270 234 87%
: : ) )
Simpson’s paradox. Women 263 192 73% 80 55 69%
Combined data 350 273 78% 350 289 83%

gender
VA

ADJUSTMENT FORMULA

BlY = ylda(X —3)) = z PY =y X e x L= Pl 7)
X Figure48 Y 2

drug recovery
PlY=tldotx — 1 - Pl 1l = 1 2= P(F — 1)+t P(Y = 11X =1,7Z=0)P(Z=0)
P(Y = 1|do(X = 1)) = 0.93 x (87;:)(2)70) + 0.73 % (26?;(;;80) — 0.832 Qdﬂjﬁ{a‘;ft'gve
P{Y = lidu(X — 0)) =087 X A7) + 0.69 x (505 20) = (0.7818 e
700 700 {}

[ATE =P(Y = 1ldotX = 1))— P(¥ — 1|do(X =0)} =0.832 — 0.7818 = 0.0502]
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PART II: MODULARITY AND ADJUSTMENT FORMULA

29
We see that the ADJUSTMENT FORMULA instructs us to
= condition on gender Z,
» find the benefit of the drug separately for males and females,
gender = average the result using the percentage of males and females in the population.

ADJUSTMENT FORMULA

BlY = ylda(X —3)) = ZP(Y =X = r T =y P77
X Figure48 Y 2

drug recovery
probability to recover probability to recover
for male drug-takers : for female drug-takers :
average using average using
‘ percentage male ‘ percentage female

Py = 1o =1} :ED(Y —1X=1,7Z= 1)]1)(2 =1) +ED(Y —1X=1,Z= O)JP(Z = 0)

condition on gender condition on gender
(male) (female)
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PART II: MODULARITY AND ADJUSTMENT FORMULA

It also thus instructs us to ignore the aggregated population data
PiY =X = 1) PLY — L= 1))

from which we might (falsely) conclude that the drug has a negative effect overall.

gender

ADJUSTMENT FORMULA

BlY = ylda(X —3)) = ZP(Y =X = r T =y P77
X Figure48 Y 2

drug recovery

Drug No Drug
patients recovered % recovered patients recovered % recovered
Men 87 81 93% 270 234 87%
Women 263 192 73% 80 9% 69%
Combined data 350 273 78% 350 289 83%
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PART II: MODULARITY AND ADJUSTMENT FORMULA

It also thus instructs us to ignore the aggregated population data

PiY =X = 1) PLY — L= 1))
from which we might (falsely) conclude that the drug has a negative effect overall.
The drug
gender [ ATE=P(¥ = 11X¥ — 1) = P(¥ = 1|X=0)=0.78—0.83 = —0.05 ] o> appears to
be harmful
VA
ADJUSTMENT FORMULA
BlY = ylda(X —3)) = z PY =9ylX =y L=\ PFie 7)
X Figure48 Y 2
drug recovery
Drug No Drug
patients recovered % recovered patients recovered % recovered
Men 87 81 93% 270 234 87%
Women 263 192 73% 80 55 69%
Combined data 350 273 78% 350 289 83%
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PART II: MODULARITY AND ADJUSTMENT FORMULA 32

These simple examples might give us the impression that whenever we face the dilemma of whether to condition
on a third variable Z, the adjustment formula prefers the Z-specific analysis over the nonspecific analysis.

But what about the blood pressure example of Simpson’s paradox?
blood pressure

/ No Drug Drug

patients recovered % recovered patients recovered % recovered

Low BP 87 81 93% 270 234 87%

High BP 263 192 73% 80 55 69%

Combined data 350 273 78% 350 289 83%

X Y
treatment reCOVEY  The more sensible method would be not to condition on blood pressure, but to
Figure 4.10 examine the unconditional population table directly.
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These simple examples might give us the impression that whenever we face the dilemma of whether to condition
on a third variable Z, the adjustment formula prefers the Z-specific analysis over the nonspecific analysis.

But what about the blood pressure example of Simpson’s paradox?
blood pressure

/ No Drug Drug

patients recovered % recovered patients recovered % recovered

Low BP 87 81 93% 270 234 87%

High BP 263 192 73% 80 55 69%

Combined data 350 273 78% 350 289 83%

X Y
treatment reCOVEY  The more sensible method would be not to condition on blood pressure, but to
Figure 4.10 examine the unconditional population table directly.

PlY = ljdo(X = 1)) =7

How would the adjustment formula cope with situations like that?
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These simple examples might give us the impression that whenever we face the dilemma of whether to condition
on a third variable Z, the adjustment formula prefers the Z-specific analysis over the nonspecific analysis.

But what about the blood pressure example of Simpson’s paradox?

blood pressure

do(X = ) 7 No Drug Drug

patients recovered % recovered patients recovered % recovered

Low BP 87 81 93% 270 234 87%

High BP 263 192 73% 80 55 69%

Combined data 350 273 78% 350 289 83%

X Y
treatment recove . : : :
o = \We simulate an intervention and then examine the ADJUSTMENT FORMULA that
Figure 4.10 emanates from the simulated intervention.

X has no entering edges

No surgery needed —=——p P(Y = 1ldo(X = 1)) = POY X = 1)

= |n graphical models, an intervention is simulated by severing all arrows that
l enter the manipulated variable X.

pre-intervention distribution P is the same as the post-intervention distribution B,
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We are now in a position to understand what variable Z, or set of variables Z, can legitimately be included in
the ADJUSTMENT FORMULA.

The intervention procedure, which led to the ADJUSTMENT FORMULA, dictates that Z should coincide with

the parents pa(X) of X, because it is the influence of these parents that we neutralize when we fix X by
external manipulation do(X = x).

We can therefore write a general ADJUSTMENT FORMULA and summarize it in a rule:

THE CAUSAL EFFECT RULE

/Given a graph G in which a set of variables pa(X) are designated as the parents of X, \
the causal effect of X on Y is given by

P(Y = yldo(X = x)) = Z BEY = X — 4pa () =) P(pal) = )

\where u ranges over all the combinations of values that the variables in pa(X) can take)
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P =y X=rpalX}—=u)
P(Y yldo(X = x)) z P(X = <

A §
PROPENSITY SCORE: displays the role played by the parents pa(X)
of X in predicting the results of interventions, the advantages of
expressing P(y|do(x)) in this form will be not discussed here.

THE CAUSAL EFFECT RULE

/Given a graph G in which a set of variables pa(X) are designated as the parents of X, \

the causal effect of X on Y is given by If we multiply and

divide the summand
by the probabilit
P(Y = yldo(Xi = x)) — 7 P(Y =y|X =x,pa(X) =u) P(pa(X) = u)| PSEX o E)c|pa(X) i/u),
we get a more
convenient form:

\where u ranges over all the combinations of values that the variables in pa(X) can take)

FABIO STELLA
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- PlY-=w X vna( X — ) gender
P(Y = yldo(X = il = Z P(X = x[pa(X) = u) 7

PROPENSITY SCORE: displays the role played by the parents pa(X)
of X in predicting the results of interventions, the advantages of

expressing P(y|do(x)) in this form will be not discussed here. X V
We can appreciate now what role the causal graph plays in resolving Simpson’s drug ety
paradox, and, more generally, what aspects of the graph allow us to predict causal Figure 4.8

effects from purely observational data.

We need the graph in order to determine the identity of X’s parents pa(X)—the set
of factors that, under non-experimental conditions (observational data), would be
sufficient for determining the value of X, or the probability of that value. 7

blood pressure

Using graphs and their underlying assumptions, we were able to identify causal
relationships in purely observational data.

But, from this discussion, readers may be tempted to conclude that the role of
graphs is fairly limited; once we identify the parents pa(X) of X, the rest of the X 1%
graph can be discarded, and the causal effect can be evaluated mechanically treatment recovery
from the ADJUSTMENT FORMULA.

The next part of the lecture shows that things may not be so simple.

Figure 4.10
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PART 111

TRUNCATED FACTORIZATION
AND BACKDOOR ADJUSTMENT
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In deriving the adjustment formula, we assumed
= an intervention on a single variable X,
= whose parents were disconnected,

so as to simulate the absence of their influence

ADJUSTMENT FORMULA

P(Y = yldo(X = 2]} — zP(Y =yIX =7 =g Pl o

after intervention. gender
However, social/medical policies occasionally yA
involve MULTIPLE INTERVENTIONS, such as PRE-INTERVENTION DISTRIBUTION
those that dictate the value of several P(x,¥,2) = P(2) Plxlz) Plyly. 2)
variables simultaneously, or those that control
a variable over time. X Figure48 Y
Then, it is useful to start from the: POST-INTERVENTION DISTRIBUTION drug recovery
BAYESIAN NETWORK FACTORIZATION P(2,y|do(x)) = Pn(2) P (x|2) P (y|x, 2) = P(2) P(y|x, 2)
s e S t gender
Given a probability distribution P and a B lxlz) =1
DAG @, P factorizes according to G if Z
n P(y|do(x)) = z P(z,y|do(x))
P(Xl,Xz, ---;Xn) 3 HP(Xllpa(Xl)) ¢ O
=i =) P@POID PG X Figure49 Y
e L
z drug recovery
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ADJUSTMENT FORMULA The previous consideration also allows us

to generalize the ADJUSTMENT FORMULA to
MULTIPLE INTERVENTIONS, that is,
interventions that fix the values of a set of
variables S to constants s.

P(Y = yldo(X = 2]} — zP(Y =yIX =7 =g Pl o

We simply write down the FACTORIZATION of the PRE-INTERVENTION

DISTRIBUTION and strike out all factors that correspond to variables
in the INTERVENTION SET S.

TRUNCATED FACTORIZATION — G-FORMULA

NVe assume that P and G satisfy the Markov assumption and )
modularity. Given, a set of intervention nodes S (intervention - S
set), if x; is consistent with the intervention S = s, then Given a probability distribution P and a

DAG g, P factorizes according to G if

BAYESIAN NETWORK FACTORIZATION

P(xl,xz, o xaldo(8 = S)) = 1—[ P(Xl- - xl-lpa(Xl-))

n
Xi€S e o, ) = HP(Xi|pa(Xi))
cherwise P(xl,xz, X ot — s)) =oAL = o i=q )
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PRE-INTERVENTION DISTRIBUTION
A
4 \
P(Z1:ZZ»W:3’|d0(X = Xlis — 23)) = P(z1) P(23) P(x|24,23) P(23]21,2,) P(w|x) P(y|w, 25, 23)
\ )
¥ — P(z.) P(z 1 1 P(w|x)P z
do(S = s) ( 1) ( 2) ( | ) ()’|W; 2;23)

TRUNCATED FACTORIZATION — G-FORMULA

NVe assume that P and G satisfy the Markov assumption and )
modularity. Given, a set of intervention nodes S (intervention
set), if x; is consistent with the intervention S = s, then

n
P(xl,xz, wrxsldo(S = s)) = 1_[ P(Xl- = xl-|pa(Xl-)) W
Xi¢S
\ otherwise P(xiix, o xp|dofS =51 =0 . Figure 4.11
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PRE-INTERVENTION DISTRIBUTION
A

4 \
P(Z1:ZZ»W:3’|d0(X = Xlis — 23)) = P(z1) P(23) P(x|24,23) P(23]21,2,) P(w|x) P(y|w, 25, 23)
\ )
do(S= o) e AIBGE | 1 PWwlx) P(y|w, 23, 25)
POST-INTERVENTION DISTRIBUTION Zq
P(Z1;Zz;W;Y|d0(X = X, 43 = 23)) = P(z1) P(z;) P(W|x) P(y|w, 23, 73) O Z;

TRUNCATED FACTORIZATION — G-FORMULA

NVe assume that P and G satisfy the Markov assumption and )
modularity. Given, a set of intervention nodes S (intervention
set), if x; is consistent with the intervention S = s, then

n
P(xl,xz, wrxsldo(S = s)) = 1_[ P(Xl- = xl-|pa(Xl-)) W
Xi¢S
\ otherwise P(xiix, o xp|dofS =51 =0 . Figure 4.12
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It is interesting to note that combining
gender
P(x,v,z) =P(2) E(x|z) FLis ¢ 2 (pre-intervention) ~
and

P(z,y|d0(x)) =P (z)P:(3lx,2) =iPlz) Ply & 7) (post-intervention)

we get a simple relation between the pre-and post-intervention distributions:

It tells us that the conditional probability P(x|z)is X Figure4.8 Y
P(x,¥,2)  all we need to know in order to predict the effect drug recovery
P(xlz) of an intervention do(x) from non-experimental
data governed by the distribution P(x, y, z).

P(Z,y|d0(x)) =

TRUNCATED FACTORIZATION — G-FORMULA

NVe assume that P and G satisfy the Markov assumption and )
modularity. Given, a set of intervention nodes S (intervention
set), if x; is consistent with the intervention S = s, then

P(xl,xz, o xaldo(8 = S)) = l_[ P(Xl- - xi|pa(Xl-))

Xi¢S
cherwise P(xl,xz, X ot — s)) =oAL o
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THE CAUSAL EFFECT RULE

/ \ Ki{ ) e unmeasured
Given a graph G in which a set of variables pa(X) are designated

as the parents of X, the causal effect of X on Y is given by

P(Y-= yldbfX = 1)) = z P(Y = y|X = x,pa(X) = u) P(pa(X) = u)

where u ranges over all the combinations of values that the
\variables in pa(X) can take.

i

We came to the conclusion that, given a variable X, we should adjust for it’s i 413
parents pa(X), when trying to determine the effect of X on another variable Y. e

But often, we know, or believe, that the variables have UNMEASURED PARENTS (LATENT) that, though represented
in the graph, may be inaccessible for measurement.

In those cases, we need to find an alternative set of variables to adjust for.

Under what conditions does a causal story permit us to compute the causal effect of one variable on another,
from data obtained by passive observations, with no interventions?
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Since we have decided to represent causal stories with graphs, the
question becomes a graph-theoretical problem:

Under what conditions, is the structure of the causal graph

sufficient for computing a causal effect from a given data set? 2 S “-_“ﬂmmﬁ?m-“h
The answer to that question is long enough—and important peam (T I o N S
enough—that we will spend the rest of the lecture addressing it. e ;ﬁ"’ s s
A | FH- | e e

But one of the most important tools we use to determine whether 1~ e S
we can compute a causal effect is a simple test called the =L T o win e
BACKDOOR CRITERION. | km*h?,‘:ﬁf i} i
CEe b bl Bakat el

Using it, we can determine, for any two variables X and Y in a ' ;ﬁ:ﬂ;ﬂrﬁ“

causal model represented by a DAG G, which set of variables S in - ® NS N RON S
that model should be conditioned on when searching for the causal LR '
relationship between X and Y.

THE BACKDOOR CRITERION

(Given an ordered pair of variables (X,Y) in a DAG G, a set of
variables S satisfies the backdoor criterion relative to (X,Y) if no
node in S is a descendant of X, and S blocks every path between
\X and Y that contains an arrow into X.

J
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If a set of variables S satisfies the BACKDOOR CRITERION 1. block all spurious paths between Xand Y.
for X and Y, then the causal effect of X on Y is given by

the formula We want the conditioning set S to block any

BACKDOOR PATH in which one end has an arrow
THE BACKDOOR ADJUSTMENT FORMULA Into X, because such paths may make X andY
dependent, but are obviously not transmitting

p(y = yldo(X = x)) e z P(Y =y|X = xS =5) P(S = 5) causal influences from X, and if we do not block
S

them, they will confound the effect that X hason Y.

just as when we adjust for pa(X). Z: Zo
(Note that pa(X) always satisfies the backdoor criterion)
The logic behind the BACKDOOR CRITERION is fairly
straightforward.

In general, we would like to condition on a set of nodes S
(CONDITIONING SET) such that we: X

1. block all spurious paths between X and Y

2. leave all directed paths from X to Y unperturbed w ¥
3. create no new spurious paths Figure 4.14
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THE BACKDOOR CRITERION 1. block all spurious paths between X and Y.

We want the conditioning set S to block any
BACKDOOR PATH in which one end has an arrow
Into X, because such paths may make X andY
dependent, but are obviously not transmitting
causal influences from X, and if we do not block

¥ them, they will confound the effect that X hason Y.

(Given an ordered pair of variables (X,Y) in a DAG g,\
a set of variables S satisfies the backdoor criterion
relative to (X,Y) if no node in S is a descendant of X,
and S blocks every path between X and Y that

\contains an arrow into X.

Z4

backdoor
The logic behind the BACKDOOR CRITERION is fairly path

straightforward.

In general, we would like to condition on a set of nodes S
(CONDITIONING SET) such that we: X

1. block all spurious paths between X and Y

2. leave all directed paths from X to Y unperturbed ¥
3. create no new spurious paths Figure 4.15
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THE BACKDOOR CRITERION 1. block all spurious paths between X and Y.

We want the conditioning set S to block any
BACKDOOR PATH in which one end has an arrow
Into X, because such paths may make X andY
dependent, but are obviously not transmitting
causal influences from X, and if we do not block

¥ them, they will confound the effect that X hason Y.

(Given an ordered pair of variables (X,Y) in a DAG g,\
a set of variables S satisfies the backdoor criterion
relative to (X,Y) if no node in S is a descendant of X,
and S blocks every path between X and Y that

\contains an arrow into X.

backdoor
path

The logic behind the BACKDOOR CRITERION is fairly
straightforward.

In general, we would like to condition on a set of nodes S

(CONDITIONING SET) such that we: X :
\‘~\.\\~,-"\\ \\\\
1. block all spurious paths between X and Y :‘ %
2. leave all directed paths from X to Y unperturbed ¥
3. create no new spurious paths Figure 4.16
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THE BACKDOOR CRITERION 1. block all spurious paths between X and Y.

We want the conditioning set S to block any
BACKDOOR PATH in which one end has an arrow
Into X, because such paths may make X andY
dependent, but are obviously not transmitting
causal influences from X, and if we do not block

¥ them, they will confound the effect that X hason Y.

(Given an ordered pair of variables (X,Y) in a DAG g,\
a set of variables S satisfies the backdoor criterion
relative to (X,Y) if no node in S is a descendant of X,
and S blocks every path between X and Y that

\contains an arrow into X.

. backdoor

The logic behind the BACKDOOR CRITERION is fairly
straightforward.

In general, we would like to condition on a set of nodes S

(CONDITIONING SET) such that we: X :
\‘~\.\\~,-"\\ \\\\
1. block all spurious paths between X and Y :‘ %
2. leave all directed paths from X to Y unperturbed ¥
3. create no new spurious paths Figure 4.17
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THE BACKDOOR CRITERION 1. block all spurious paths between X and Y.

We want the conditioning set S to block any
BACKDOOR PATH in which one end has an arrow
Into X, because such paths may make X andY
dependent, but are obviously not transmitting
causal influences from X, and if we do not block

¥ them, they will confound the effect that X hason Y.

(Given an ordered pair of variables (X,Y) in a DAG g,\
a set of variables S satisfies the backdoor criterion
relative to (X,Y) if no node in S is a descendant of X,
and S blocks every path between X and Y that

\contains an arrow into X.

.. backdoor s
. pathoooo

The logic behind the BACKDOOR CRITERION is fairly
straightforward.

In general, we would like to condition on a set of nodes S
(CONDITIONING SET) such that we:

1. block all spurious paths between X and Y

2. leave all directed paths from X to Y unperturbed

3. create no new spurious paths Figure 4.18
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THE BACKDOOR CRITERION 1. block all spurious paths between X and Y.

We want the conditioning set S to block any
BACKDOOR PATH in which one end has an arrow
Into X, because such paths may make X andY
dependent, but are obviously not transmitting
causal influences from X, and if we do not block

¥ them, they will confound the effect that X hason Y.

(Given an ordered pair of variables (X,Y) in a DAG g,\
a set of variables S satisfies the backdoor criterion
relative to (X,Y) if no node in S is a descendant of X,
and S blocks every path between X and Y that

\contains an arrow into X.

conditioning on Z;
: blocks the backdoor
pathfrom X toY
(fork)

The logic behind the BACKDOOR CRITERION is fairly
straightforward.

In general, we would like to condition on a set of nodes S

(CONDITIONING SET) such that we: X
1. block all spurious paths between X and Y
2. leave all directed paths from X to Y unperturbed

3. create no new spurious paths

Figure 4.19
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THE BACKDOOR CRITERION 1. block all spurious paths between X and Y.

We want the conditioning set S to block any
BACKDOOR PATH in which one end has an arrow
Into X, because such paths may make X andY
dependent, but are obviously not transmitting
causal influences from X, and if we do not block

¥ them, they will confound the effect that X hason Y.

(Given an ordered pair of variables (X,Y) in a DAG g,\
a set of variables S satisfies the backdoor criterion
relative to (X,Y) if no node in S is a descendant of X,
and S blocks every path between X and Y that

\contains an arrow into X.

conditioning on Z;
/ blocks the backdoor path
1 from X to Y (chain)

The logic behind the BACKDOOR CRITERION is fairly
straightforward.

In general, we would like to condition on a set of nodes S

(CONDITIONING SET) such that we: X
1. block all spurious paths between X and Y
2. leave all directed paths from X to Y unperturbed

3. create no new spurious paths

Figure 4.20
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THE BACKDOOR CRITERION 1. block all spurious paths between X and Y.

We want the conditioning set S to block any
BACKDOOR PATH in which one end has an arrow
Into X, because such paths may make X andY
dependent, but are obviously not transmitting
causal influences from X, and if we do not block

¥ them, they will confound the effect that X hason Y.

(Given an ordered pair of variables (X,Y) in a DAG g,\
a set of variables S satisfies the backdoor criterion
relative to (X,Y) if no node in S is a descendant of X,
and S blocks every path between X and Y that

\contains an arrow into X.

conditioning on Z;
blocks the backdoor Z
path from X to Y

(chain)

The logic behind the BACKDOOR CRITERION is fairly
straightforward.

In general, we would like to condition on a set of nodes S
(CONDITIONING SET) such that we:

1. block all spurious paths between X and Y

2. leave all directed paths from X to Y unperturbed

3. create no new spurious paths Figure 4.23
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THE BACKDOOR CRITERION 1. block all spurious paths between X and Y.

We want the conditioning set S to block any
BACKDOOR PATH in which one end has an arrow
Into X, because such paths may make X andY
dependent, but are obviously not transmitting
causal influences from X, and if we do not block

¥ them, they will confound the effect that X hason Y.

(Given an ordered pair of variables (X,Y) in a DAG g,\
a set of variables S satisfies the backdoor criterion
relative to (X,Y) if no node in S is a descendant of X,
and S blocks every path between X and Y that

\contains an arrow into X.

conditioning on Z,

blocks the backdoor

path from X to Y \ ZZ
(fork)

The logic behind the BACKDOOR CRITERION is fairly
straightforward.

In general, we would like to condition on a set of nodes S
(CONDITIONING SET) such that we:

1. block all spurious paths between X and Y

2. leave all directed paths from X to Y unperturbed

3. create no new spurious paths Figure 4.24
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THE BACKDOOR CRITERION 1. block all spurious paths between X and Y.

We want the conditioning set S to block any
BACKDOOR PATH in which one end has an arrow
Into X, because such paths may make X andY
dependent, but are obviously not transmitting
causal influences from X, and if we do not block

¥ them, they will confound the effect that X hason Y.

(Given an ordered pair of variables (X,Y) in a DAG g,\
a set of variables S satisfies the backdoor criterion
relative to (X,Y) if no node in S is a descendant of X,
and S blocks every path between X and Y that

\contains an arrow into X.

conditioning on Z5
blocks the backdoor
pathfrom X toY

e fork “a
MIND THE o)

The logic behind the BACKDOOR CRITERION is fairly CASE!!] ¥
straightforward. !

In general, we would like to condition on a set of nodes S
(CONDITIONING SET) such that we: X

1. block all spurious paths between X and Y

2. leave all directed paths from X to Y unperturbed

3. create no new spurious paths

Figure 4.25
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60
THE BACKDOOR CRITERION 2. leave all directed paths from X to Y unperturbed
(Given an ordered pair of variables (X, Y) in a DAG g,\ However, we don’'t want to condition on any nodes
. st e that are descendants of X.
a set of variables S satisfies the backdoor criterion
relative to (X,Y) if no node in S is a descendant of X, Descendants of X would be affected by an
and S blocks every path between X and Y that intervention on X and might themselves affect Y;
\contains an arrow into X. . conditioning on them would block those pathways.
Zl ZZ

The logic behind the BACKDOOR CRITERION is fairly
straightforward.

In general, we would like to condition on a set of nodes S
(CONDITIONING SET) such that we: X

1. block all spurious paths between X and Y
2. leave all directed paths from X to Y unperturbed w ¥

3. create no new spurious paths Figure 4.14
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THE BACKDOOR CRITERION

\contains an arrow into X.

(Given an ordered pair of variables (X,Y) in a DAG g,\
a set of variables S satisfies the backdoor criterion
relative to (X,Y) if no node in S is a descendant of X,
and S blocks every path between X and Y that

Bt

The logic behind the BACKDOOR CRITERION is fairly

straightforward.

In general, we would like to condition on a set of nodes S

(CONDITIONING SET) such that we:

1. block all spurious paths between X and Y
2. leave all directed paths from X to Y unperturbed

3. create no new spurious paths

2. leave all directed paths from X to Y unperturbed

However, we don’t want to condition on any nodes
that are descendants of X.

Descendants of X would be affected by an
intervention on X and might themselves affect Y;
conditioning on them would block those pathways.

conditioning on W W
blocks the directed path
from X to Y (chain)

Figure 4.26
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THE BACKDOOR CRITERION

\contains an arrow into X.

(Given an ordered pair of variables (X,Y) in a DAG g,\
a set of variables S satisfies the backdoor criterion
relative to (X,Y) if no node in S is a descendant of X,
and S blocks every path between X and Y that

Bt

The logic behind the BACKDOOR CRITERION is fairly

straightforward.

In general, we would like to condition on a set of nodes S

(CONDITIONING SET) such that we:

1. block all spurious paths between X and Y
2. leave all directed paths from X to Y unperturbed

3. create no new spurious paths

2. leave all directed paths from X to Y unperturbed

However, we don’t want to condition on any nodes
that are descendants of X.

Descendants of X would be affected by an
intervention on X and might themselves affect Y;
conditioning on them would block those pathways.

conditioning on W W
blocks the directed path
from X to Y (chain)

Figure 4.26

CAUSAL NETWORKS — CAUSAL MODELS

FALL 2024

FABIO STELLA



PART III: TRUNCATED FACTORIZATION AND BACKDOOR ADJUSTMENT 63
THE BACKDOOR CRITERION 3. create no spurious paths
(Given an ordered pair of variables (X,Y) in a DAG g,\ SR il i e tnird requirement, we

should refrain from conditioning on any collider

a set of variables S satisfies the backdoor criterion that would unblock a new path between X and Y.

relative to (X,Y) if no node in S is a descendant of X,
and S blocks every path between X and Y that
\contains an arrow into X.

Bt

The logic behind the BACKDOOR CRITERION is fairly
straightforward.

In general, we would like to condition on a set of nodes S
(CONDITIONING SET) such that we: X

1. block all spurious paths between X and Y
2. leave all directed paths from X to Y unperturbed w ¥

3. create no new spurious paths Figure 4.14
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THE BACKDOOR CRITERION 3. create no spurious paths
(Given an ordered pair of variables (X,Y) in a DAG g,\ SR il i e tnird requirement, we

should refrain from conditioning on any COLLIDER

a set of variables S satisfies the backdoor criterion that would unblock a new path between X and Y.

relative to (X,Y) if no node in S is a descendant of X,
and S blocks every path between X and Y that
\contains an arrow into X.

Bt

conditioning on Z; Z
(collider) makes Z, 2
and Z, dependent.

Zq (

MIND THE

The logic behind the BACKDOOR CRITERION is fairly CAselll

straightforward.

In general, we would like to condition on a set of nodes S é Z3
(CONDITIONING SET) such that we: X

1. block all spurious paths between X and Y : f
2. leave all directed paths from X to Y unperturbed ¥
3. create no new spurious paths Figure 4.27
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THE BACKDOOR CRITERION

(Given an ordered pair of variables (X,Y) in a DAG g,\
a set of variables S satisfies the backdoor criterion
relative to (X,Y) if no node in S is a descendant of X,
and S blocks every path between X and Y that

\contains an arrow into X.

Bt

The logic behind the BACKDOOR CRITERION is fairly
straightforward.

In general, we would like to condition on a set of nodes S
(CONDITIONING SET) such that we:

1. block all spurious paths between X and Y

2. leave all directed paths from X to Y unperturbed

3. create no new spurious paths

3. create no spurious paths

Finally, to comply with the third requirement, we
should refrain from conditioning on any COLLIDER
that would unblock a new path between X and Y.

conditioning on Z;
(collider) un-blocks
the backdoor path
fromXtoY

Z4

MIND THE
CASE!!!

Figure 4.28
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THE BACKDOOR CRITERION 3. create no spurious paths

Finally, to comply with the third requirement, we
should refrain from conditioning on any collider
that would unblock a new path between X and Y.

(Given an ordered pair of variables (X,Y) in a DAG g,\
a set of variables S satisfies the backdoor criterion
relative to (X,Y) if no node in S is a descendant of X,

and S blocks every path between X and Y that The requirement of excluding descendants of X,

contains an arrow into X. l.e. de(X), also protects us from conditioning on

. / children of intermediate nodes between X and Y
(e.g., Q).

Z4

Figure 4.29
The logic behind the BACKDOOR CRITERION is fairly

straightforward.

In general, we would like to condition on a set of nodes S
(CONDITIONING SET) such that we: X

1. block all spurious paths between X and Y intermediate node
4 between X and Y W Y
2. leave all directed paths from X to Y unperturbed
3. create no new sburious paths descendant of an intermediate
P P node between X and Y > Q
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THE BACKDOOR CRITERION 3. create no spurious paths

Finally, to comply with the third requirement, we
should refrain from conditioning on any collider
that would unblock a new path between X and Y.

(Given an ordered pair of variables (X,Y) in a DAG g,\
a set of variables S satisfies the backdoor criterion
relative to (X,Y) if no node in S is a descendant of X,

and S blocks every path between X and Y that The requirement of excluding descendants of X,

contains an arrow into X. l.e. de(X), also protects us from conditioning on

. / children of intermediate nodes between X and Y
(e.g., Q).

Figure 4.30
The logic behind the BACKDOOR CRITERION is fairly

straightforward.

In general, we would like to condition on a set of nodes S
(CONDITIONING SET) such that we: X

1. block all spurious paths between X and Y

4

2. leave all directed paths from X to Y unperturbed
_ conditioning on Q
3. create no new spurious paths creates a
spurious path
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THE BACKDOOR CRITERION 3. create no spurious paths

Finally, to comply with the third requirement, we
should refrain from conditioning on any collider
that would unblock a new path between X and Y.

(Given an ordered pair of variables (X,Y) in a DAG g,\
a set of variables S satisfies the backdoor criterion
relative to (X,Y) if no node in S is a descendant of X,

and S blocks every path between X and Y that The requirement of excluding descendants of X,
contains an arrow into X. l.e. de(X), also protects us from conditioning on
o / children of intermediate nodes between X and Y
(€.9., Q).
Figure 4.31 : s
The logic behind the BACKDOOR CRITERION is fairly a - &

straightforward.

In general, we would like to condition on a set of nodes S
(CONDITIONING SET) such that we: e

1. block all spurious paths between X and Y

4

2. leave all directed paths from X to Y unperturbed
_ conditioning on Q
3. create no new spurious paths creates a
spurious path
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THE BACKDOOR CRITERION THE BACKDOOR ADJUSTMENT FORMULA

@iven an ordered pair of variables (X,Y) in a = @iven the modularity assumption, that, S satisfies the B
DAG @, a set of variables S satisfies the backdoor criterion, and positivity, we can identify the causal
backdoor criterion relative to (X,Y) if no node effect of X on Y as follows:
in S is a descendant of X, and S blocks every
path between X and Y that contains an arrow P(Y = yldo(X = x)) = Z PY =y|X=x,S=5)P(S=5s)

\into X. e s v
We can use the backdoor adjustment formula if, S d-separates X from Y in association path

the AUGMENTED GRAPH (obtained by removing all outgoing edges from X). sign

In previous lectures we mentioned that we would be able to isolate the
causal association if X is d-separated from Y in the AUGMENTED GRAPH.

“Isolation of the causal association” is identification.

We can also isolate the causal association if X is d-separated from Y in
the AUGMENTED GRAPH, conditional on S.

This is what the first part of the backdoor criterion is about and what we’'ve causal path
codified in the backdoor adjustment.
Figure 4.32
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We can derive this from the more general
backdoor adjustment in a few steps.

First, we take an expectation over Y:

E[Y[dofX= o))~ z E[Y|X =x,7= 2] P(Z=2)

Then, we notice that the sum over z and
P(Z = z) is an expectation (for discrete Z,
but just replace with an integral if not):

E[Y|do(X = x)] = Ez|E[Y|X = x, Z]|

And finally, we look at the difference between
X =1and X:=

E[Y|do(X = 1)] = Ez|E[Y|X = 1,Z]] S

E[Y|do(X = 0)] = Ez[E[Y|X = 0,Z]]

THE BACKDOOR ADJUSTMENT FORMULA

@iven the modularity assumption, that, S satisfies the
backdoor criterion, and positivity, we can identify the causal
effect of X on Y as follows:

P(¥ — yldo(X = x)) = ZP(Y = W=y S —5)P(S=75)
\ S

-\

./

>

Since the do-notation
E[Y|do(X = x)] is just
another notation for

the potential outcome
E[Y(x)], we are done!

<

ADJUSTMENT FORMULA (POTENTIAL OUTCOMES)

Given the assumptions of unconfoundedness, positivity,
consistency, and no interference, we can identify the ATE:

E[Y(1) — Y(0)] = Eg|E[Y|X = 1,Z] — E[Y|X = 0, Z]|

%%

N

b/
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CONDITIONAL EXCHANGEABILITY
— UNCONFOUNDEDNESS

(Y(D),Y(0))LX|Z

where Z. are the covariate variables.
& i

However, we had no way of knowing
how to choose Z, or knowing that Z,
actually gives us conditional
exchangeability.

Well, using graphical causal models, we
know how to choose a valid Z: we simply
choose Z, so that it satisfies the backdoor
criterion.

Then, under the assumptions encoded in the
causal graph, conditional exchangeability
provably holds; the causal effect is provably
identifiable.

THE BACKDOOR ADJUSTMENT FORMULA

@iven the modularity assumption, that, S satisfies the
backdoor criterion, and positivity, we can identify the causal
effect of X on Y as follows:

P(¥ — yldo(X = x)) = ZP(Y = W=y S —5)P(S=75)
\ S

-\

./

>

<

ADJUSTMENT FORMULA (POTENTIAL OUTCOMES)

Given the assumptions of unconfoundedness, positivity,
consistency, and no interference, we can identify the ATE:

E[Y(1) — Y(0)] = Eg|E[Y|X = 1,Z] — E[Y|X = 0, Z]|

%%

N

b/
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