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Abstract

This study investigates disparities in access to sustainable transportation across socioeconomic and de-
mographic groups in Milan, with the aim of assessing transportation equity at the neighborhood level. We
construct a Milan Accessibility Index (MAI) that integrates spatial and service-based metrics—such as prox-
imity to public transit, density of public transports, and infrastructure coverage for cycling and walking.
Using a combination of GTFS transit data, cycling infrastructure maps and detailed neighborhood-level
socioeconomic statistics, we conduct a geospatial and statistical analysis of accessibility patterns.

Preliminary hypotheses suggest that lower-income and socially vulnerable populations face lower acces-
sibility to sustainable mobility options, despite having a higher dependency on them. Our methodology
applies spatial mapping and regression modeling to identify the social groups systematically underserved
by sustainable transport infrastructure. By leveraging Milan’s extensive open data repositories, we aim to
provide policy-relevant insights into the structural inequalities shaping urban mobility, contributing to the
broader discourse on just and inclusive transportation systems.
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1 Introduction to the topic

1.1 Transportation equity: a today’s problem

Transportation equity has emerged as a critical urban justice issue, particularly as cities pursue sustainable mo-
bility transitions, representing a fundamental challenge in contemporary urban planning where the benefits and
burdens of transport systems are unevenly distributed across different social groups. Contemporary transport
systems are characterized by systematic injustices that favor motorized transport while placing environmental
and social burdens on sustainable alternatives and vulnerable populations, creating what scholars term ”trans-
port injustices” that manifest across three key dimensions: exposure to traffic risks and pollutants, distribution
of space, and valuation of transport time (Schwanen, 2023) [1]. The importance of addressing these inequali-
ties cannot be overstated, as transportation provides access to opportunity and serves as a key component in
addressing poverty, unemployment, and equal opportunity goals, with mobility disparities directly impacting
human behavior, economic mobility, and urban sustainability (Schwanen, 2023) [1].

Smart city mobility approaches have increasingly recognized the need for comprehensive accessibility mea-
surement, with cities worldwide adopting standardized approaches to ensure better comparability of key mobility
indicators such as affordability and accessibility (European Commission, 2024) [2].

However, the implementation of smart city technologies, particularly sensors and digital mobility systems,
can potentially affect socio-economic and spatial inequalities, creating ”sensor deserts” and ”mobility divides”
that disproportionately impact vulnerable populations (Turing Institute, 2018) [3].

Recent research has highlighted the potential risk of smart cities exacerbating social inequality and dimin-
ishing quality of life, particularly as digital mobility infrastructure often prioritizes affluent, mobile populations.
This dynamic can intensify gentrification and the proliferation of short-term rentals, which displace long-term
residents and erode local communities, disproportionately affecting those who are less digitally competent and
more place-dependent (Cocola-Gant et al., 2023) [4].

The development of innovative data-driven approaches for mapping sustainable transport equity has become
increasingly important, with researchers developing two-dimensional urban indicator approaches that assess both
the supply of transport infrastructure and the actual demand for these services by local residents, providing more
accurate pictures of where transport inequality exists (Liverpool City Council and the University of Sydney,
2024) [5].

1.2 Why Milan?

Milan stands out as a leading European city in advancing transportation equity, thanks to its comprehensive
policy commitments and innovative initiatives that make it an ideal case study for urban mobility research.
The city’s Sustainable Urban Mobility Plan (PUMS) [6] explicitly prioritizes “equity, security, and social
inclusion” as core strategic objectives, aiming to ensure that all residents, regardless of socioeconomic status,
have equitable access to mobility services. This commitment is further demonstrated by the ”Full Electric
2030” [7] initiative, which plans to convert the entire public transport fleet to electric vehicles, deploying 1,200
electric buses and building new depots to reduce emissions and improve air quality. Additionally, Milan’s Area
C congestion charge has successfully decreased city center traffic by around 30%, with revenues reinvested into
sustainable transport infrastructure. The city’s multimodal transport network—including metro, tram, bus
combined with open-access spatial and demographic data, offers researchers a robust platform to study how
mobility systems can either alleviate or reinforce social exclusion.

1.3 Objectives of the Project

Transportation equity has emerged as a critical urban justice issue, particularly as cities pursue sustainable
mobility transitions. This study investigates disparities in access to sustainable transportation across socioe-
conomic groups in Milan, Italy, examining how infrastructure availability translates to actual accessibility for
different populations.

We develop a novel Milan Accessibility Index (MAI) that integrates multiple mobility modes through
spatial analysis of GTFS data, cycling infrastructure networks and neighborhood-level socioeconomic statistics
from ISTAT and Milan’s open data portal.

Using a 500m² spatial analysis grid, we construct accessibility metrics for 406 analysis cells across Milan,
calculating cycling infrastructure availability, and multimodal connectivity. Our methodology addresses critical
gaps in transportation equity research by measuring actual access rather than merely mapping infrastructure
presence, while incorporating newer mobility options often overlooked in equity assessments.
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2 Related work

2.1 Transport Equity: Theoretical Frameworks and Dimensions

Equity in transport refers to the fair distribution of transport resources and opportunities among different
societal groups, addressing disparities in access to mobility. Scientific frameworks approach transport equity
from two complementary perspectives (Bruzzone et al., 2023)[8]:

Horizontal Equity (Spatial Equity) ensures transportation resources are evenly distributed across geo-
graphical areas. (Welch and Mishra 2013)[9] analyzed spatial equity through transit connectivity measures,
while (Monzón et al. 2013)[10] investigated territorial accessibility using population/GDP and travel time met-
rics along transport corridors. (Kim and Sultana 2015) [11] examined spatial equity impacts of high-speed rail
extensions across different geographical regions.

Vertical Equity (Social Equity) focuses on fair distribution based on socio-economic factors, supporting
vulnerable populations including low-income communities, elderly, and disabled individuals. (Camporeale et al.
2019) [12] developed mathematical models addressing both dimensions with emphasis on vulnerable categories,
while (Litman et al. 2021) [13] distinguished vertical equity into ”equity in mobility” (addressing need and
ability) and ”socioeconomic equity” (focusing on income disparities).

Recent research adopts integrated approaches considering both dimensions simultaneously. (Martens et al.
2019)[14] developed multidimensional equity assessment across income, ethnicity, gender, age, and mode choice,
while (El-Geneidy et al. 2016)[15] examined ”the cost of equity” using total travel cost to bridge spatial and
social dimensions.

2.2 Policy Interventions and Effectiveness

Urban transport policies fundamentally shape mobility patterns and can inadvertently ”enhance existing, and
create new, inequalities in both realized everyday mobility and opportunities for such mobility” (Schwanen et
al. 2022, p.3)[16]. The Capability Approach framework (Sen et al. 2009)[17] provides an analytical lens for
assessing policy measures based on their potential to expand individuals’ real mobility opportunities.

Policy effectiveness demonstrates strong context-dependency, with comprehensive policy packages combining
regulatory constraints and incentive mechanisms proving more effective than isolated interventions (Givoni et
al., 2009 [18]; Kotilainen et al., 2020 [19]). Contemporary interventions encompass three categories with varying
effectiveness:
Enabling Command-and-Control and Economic Measures demonstrate the strongest potential for re-
ducing mobility inequalities. City-center ciclovias effectively increase mobility options for disadvantaged pop-
ulations (Sarmiento et al., 2017 [20]; Mejia-Arbelaez et al., 2017 [21]), while fare-free public transport policies
show substantial promise in improving accessibility among vulnerable groups (Cats et al., 2020 [22]; Kbowski
et al. 2019 [23]).
Planning and Design Interventions present complex equity outcomes. Bus Rapid Transit (BRT) systems
and cycling infrastructure typically generate the greatest benefits for middle-range mobility distributions, poten-
tially leaving most vulnerable populations less affected ( Venter et al., 2018 [24]). Moreover, BRT systems can
displace informal transport services serving low-income groups through flexibility and affordability (Ehebrecht
et al., 2014 [25]). Transit-oriented densification carries gentrification and displacement risks without careful
affordable housing protection measures.
Information and Education Measures offer targeted capability enhancement. Personalized Travel Planning
(PTP) effectively improves mobility capabilities, particularly when combined with complementary incentives
such as temporary fare-free access (Chatterjee, 2010 [26]; Tørnblad et al., 2014 [27]).

The fundamental policy challenge involves implementing dual strategies that simultaneously lift up the bot-
tom of the capability distribution while constraining excessive mobility consumption at the top end, recognizing
that high mobility levels enjoyed by privileged minorities often occur at the expense of opportunities for less
privileged groups (Schwanen, 2022 [16]).
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3 Variables and Index

3.1 Infrastructures

The goal of this section is to describe the data used in the analysis in a way that helps the reader understand
the context and how the different variables are related. The focus is not on technical details, but on giving a
clear picture of the data and its role in the study.

3.1.1 Network Infrastructure and Scale

Milan’s transit network is large, well-connected, and combines several types of transport to move people effi-
ciently across the city. It includes 4,690 surface stops served by 423 routes across 142 lines, along with 5
metro lines that run underground. Buses cover the most ground, with 121 lines stretching over 1,100 kilometers,
while trams and filobuses cover add another 188 kilometers of electric service. The city also has 475 kilometers
of cycling paths that fill in the gaps and support short-distance travel.

Figure 1: Milan Surface Transit Network. Bus (blue), tram (orange), and filobus (green) routes overlaid on the
city boundary (red), illustrating the city’s multimodal surface transport coverage.

Over one-third of all stops (1,752 locations) serve multiple lines, creating natural transfer points that enable
seamless journeys across the city. The most connected node, ”Via Comasina”, accommodates eight different
lines, exemplifying the system’s efficiency.

Service density varies across the network. Lines average 49.5 stops each, with overall density reaching 6.1
stops per kilometer. The longest routes, such as Line 903 connecting Linate Airport to San Donato over 25
kilometers, serve intercity and airport functions, while highly dense local services like Line 201 provide 18.4
stops per kilometer in suburban Rozzano.

3.1.2 Bus Network: Comprehensive Urban Coverage

Milan’s bus network forms the system’s backbone, providing extensive coverage that reaches every corner of
the metropolitan area. With 121 lines handling 83.7% of all transit connections, buses ensure universal
accessibility while maintaining operational flexibility that allows rapid route adjustments to meet changing
urban demands.

The network’s flagship route, Line 151 connecting Cairoli to Quartiere Olmi, serves 112 stops and exemplifies
comprehensive urban coverage. Similarly, Line 78 with 83 stops and Line 220 with 82 stops demonstrate how
buses bridge diverse neighborhoods while maintaining frequent service. Strategic routes like Line 901 provide
crucial airport connectivity, linking San Donato metro station to Linate Airport.
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Bus operations excel in suburban connectivity, with routes extending up to 25 kilometers to serve peripheral
communities. Local circulation services achieve remarkable efficiency, with routes in Rozzano and Cologno
providing over 17 stops per kilometer to ensure neighborhood-level accessibility.

Figure 2: Milan Bus Transit Network: routes categorized by lengths in short, medium, and long routes are
distinguished by color, highlighting the network’s capacity for both neighborhood accessibility and broader
metropolitan coverage.
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3.1.3 Tram Network: High-Capacity Urban Corridors

Milan’s tram system, while representing only 11.1% of total network length, provides high-frequency service
along the city’s most demanding corridors. Seventeen lines serve 973 stops with superior density of 7.06 stops
per kilometer, reflecting their role in dense urban areas where frequent boarding is essential.

The tram network’s efficiency becomes evident through lines like Line 14, which serves 87 stops between
Cimitero Maggiore and Lorenteggio, and Line 19, connecting Castelli to Lambrate with 84 stops. These routes
traverse Milan’s historic center and high-density residential areas, providing rapid transit along dedicated tracks
that bypass street congestion.

Figure 3: Milan Tram Network by Route Length. Tram lines are categorized as short (5 km, red), medium
(5–10 km, orange), and long (10 km, dark red)

3.1.4 Bus and Tram: A Comparison

The relationship between buses and trams reveals complementary service strategies. Buses provide geographic
coverage and flexibility, reaching every area of the metropolitan region with 1,105 kilometers of routes. Trams
concentrate on high-demand corridors, achieving superior service density and passenger capacity along 144
kilometers of dedicated infrastructure.

Table 1: Bus vs Tram Network Comparison

Metric Bus Network Tram Network Advantage

Network Coverage 1,105 km (85.4%) 144 km (11.1%) Bus
Service Density 5.95 stops/km 7.06 stops/km Tram
Average Route Length 9.1 km 8.5 km Bus
Stops per Line 48.1 stops 57.2 stops Tram
Geographic Reach Comprehensive Urban core Bus
Service Frequency Variable Generally higher Tram

This division enables buses to handle diverse mobility needs from suburban connections to airport links, while
trams focus on high-volume urban corridors where dedicated infrastructure justifies the investment. Trolleybuses
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fill specific gaps with electric operation and high capacity, averaging 58.5 stops per line despite comprising only
four routes.

3.1.5 Metro and Trains

Milan’s integrated metro and train network forms the other part of the backbone of the city’s public trans-
portation system, providing essential connectivity across the metropolitan area. Our analysis examined the
walkability and accessibility of this combined network through a comprehensive spatial analysis of 468 sta-
tions (444 metro access points + 24 train stations).

Network Infrastructure Characteristics The Milan metro network spans 683.36 km of total track length
across 5 main lines (M1-M5), with an average station spacing of 1.54 km. A high station density of 1.11 per
square kilometer reflects a well-developed and concentrated urban transit network.

The integration of 24 strategic train stations enhances regional connectivity, particularly for longer-
distance commutes and inter-city travel. This combined network creates a comprehensive public transportation
grid that serves both local and regional mobility needs.

Figure 4: Milan Metro and Train Network Coverage with Station Locations

To evaluate the practical accessibility of Milan’s metro and train network, we employed a dual-methodology
approach comparing Euclidean (direct distance) and network-based (actual walking routes) accessibility
measurements.

The Euclidean buffer analysis provides theoretical accessibility under ideal conditions, while the network-
based analysis accounts for real-world constraints such as street layouts, barriers, and routing inefficiencies.
For the network analysis, we implemented a simplified model using a 75% scaling factor (following suggested
Pedestrian Route Directness range from ”Measuring Network Connectivity for Bicycling and Walking - Jennifer
Dill, Ph.D. Portland State University” [28]) to account for street network constraints when full routing analysis
proved computationally intensive.

Accessibility Results and Spatial Patterns Our walkability analysis reveals significant spatial disparities
in metro and train accessibility across Milan. Using Euclidean distance measurements, 13.2% of the analyzed
area (221 grid cells, 55.3 km²) demonstrates excellent walkability with stations accessible within a 5-minute
walk, this area is represented by the Milan Inner Circle and North Center areas. An additional 15.2% (255
cells, 63.8 km²) shows good accessibility with stations reachable within 10 minutes. However, the majority of
the study area—71.7% (1,204 cells, 301.0 km²)—exhibits poor walkability, requiring more than 10 minutes to
reach the nearest station.
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Figure 5: Metro and Train Station Walkability Classification across Milan

The network-based analysis, which better reflects real-world walking conditions, shows more conservative
results: 9.8% excellent accessibility, 12.1% good accessibility, and 78.1% poor accessibility. This 6.4 percentage
point increase in poorly accessible areas highlights the impact of street network constraints on actual transit
accessibility.

Geographic Distribution and Accessibility Hotspots High-accessibility areas are mostly found near the
historic city center, major transfer stations such as Milano Centrale and Cadorna, and along busy transit lines,
especially the M1 and M2. The radial structure of Milan’s metro system creates spoke-like patterns of high
accessibility extending from the center.

In contrast, significant accessibility gaps persist in the southeastern and northwestern quadrants of the
metropolitan area. These underserved zones represent strategic opportunities for network expansion and in-
frastructure development. The analysis identified approximately 328.0 km² of area with poor network-based
accessibility, indicating substantial portions of Milan’s population may face barriers to sustainable transit use.

Although 28.3% of the analyzed area enjoys good or excellent transit accessibility, the substantial majority of
Milan’s urban space remains poorly served by walkable transit infrastructure. This spatial distribution suggests
that residents in peripheral areas may face systematic disadvantages in accessing sustainable transportation
options.

The 6.4% difference between Euclidean and network-based accessibility measurements underscores the im-
portance of considering real-world walking conditions in transportation planning. Street network constraints,
physical barriers, and routing inefficiencies significantly impact actual accessibility, particularly affecting vul-
nerable populations who may have limited mobility options or resources for alternative transportation modes.

Figure 6: Comparison of Euclidean vs Network-Based Accessibility Analysis

8



Implications for Transportation Equity These findings contribute directly to our MAI calculation by
providing precise spatial measurements of metro and train accessibility across Milan’s urban grid. The inte-
gration of both theoretical and practical accessibility measures ensures our composite index accurately reflects
the lived experience of Milan residents while identifying priority areas for infrastructure investment and policy
intervention.

Table 2: Milan Metro and Train Network Accessibility Summary
Accessibility Category Euclidean Analysis Network Analysis Difference
Excellent (5min walk) 13.2% 9.8% -3.4%
Good (5-10min walk) 15.2% 12.1% -3.1%
Poor (10min walk) 71.7% 78.1% +6.4%
Total Well-Served Area 28.3% 21.9% -6.4%

3.1.6 Bike

Figure 7: Geographical distribution bike lanes

Milan’s cycling network includes 4,062 segments, covering 332.8 km across the metropolitan area.
There is a clear difference in quality across the network. Only 36.2% (120.4 km) are high-quality bike lanes

(“ciclabile sede propria”) that have full physical separation from traffic. These high-quality lanes also tend to
be longer on average (83.3 m) compared to medium-quality lanes marked only by signs (40.9 m), indicating
more continuous and better-connected cycling routes.

Table 3: Infrastructure quality analysis with category counts, lengths, and distribution.

Quality Category Count Total Length (m) Avg Length (m) Total Length (km) Percentage (%)

High Quality 1.445 120 368 83.30 120.368 36.2
Medium Quality 1.942 79 419 40.90 79.419 23.9
Mixed Traffic 270 71 532 264.93 71.532 21.5
Shared Space 405 61 444 151.71 61.444 18.5

The remaining infrastructure presents accessibility challenges: 23.9% consists of medium-quality signage-
only bike lanes (”ciclabile segnaletica”), while a substantial 40% combines mixed traffic situations (”promiscuo
veicoli”) (21.5%) and shared pedestrian (”promiscuo pedoni”) spaces (18.5%).
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These shared arrangements, while extending nominal coverage, may compromise cycling safety and accessi-
bility, particularly for vulnerable users including elderly cyclists and families with children.

However, most bike lane segments are quite short, with a median length of just 27 meters. This suggests
possible gaps in connectivity that could interrupt the flow of cycling and make longer trips less efficient. The
large difference between the longest segment (2.35 km) and the average segment lengths highlights an uneven
development of the cycling infrastructure across the city.

3.2 Milan Accessibility Index (MAI)

3.2.1 Introduction

The Milan Accessibility Index (MAI) is a comprehensive transportation accessibility metric that adapts
the proven Public Transport Accessibility Level (PTAL) [29] methodology to Milan’s multimodal urban
context. Developed in 1992 by the Borough of Hammersmith and Fulham in London, PTAL evaluates public
transport accessibility based on walking distances to transit stops and service frequencies during peak hours,
assigning scores from 1a (poor) to 6b (excellent).

In our work, we extend the original PTAL framework by incorporating cycling infrastructure as a
distinct accessibility layer, using a methodology based on infrastructure density rather than service frequency.
This addition enables the MAI to capture the role of bike networks in shaping urban accessibility, providing a
more holistic and mode-inclusive evaluation.

Traditional accessibility measures focus solely on proximity to transit stops—essentially answering ”how long
it takes me to be on public transport?” MAI goes beyond this simple distance-based approach by integrating
four critical factors: service frequency, walking distances, mode reliability, and cycling infrastructure. This
comprehensive methodology provides a realistic assessment of mobility options available to residents.

The index addresses a fundamental limitation in urban mobility assessment: the difference between theo-
retical access and practical accessibility. MAI quantifies not just where transportation services exist, but how
usable they are in practice, accounting for real-world factors such as service frequency, waiting times, and the
integration of multiple transportation modes.

3.2.2 Theoretical Framework

The fundamental principle is elegant: transform the complex relationship between location, service frequency,
and accessibility into a single, comparable score ranging from 0 (no access) to 40+ (exceptional access).

This transformation process operates through four interconnected components:

1. Spatial discretization: Systematic analysis using a regular grid at neighborhood scale

2. Service accessibility: Distance-weighted access evaluation for each transportation service

3. Frequency integration: Incorporation of real-time service availability during peak periods

4. Modal aggregation: Synthesis of accessibility across all transportation modes

3.2.3 Calculation Methodology

Step 1: Spatial Grid Framework The analysis begins by systematically dividing Milan into a regular
500m × 500m grid system, creating approximately 1,500 analysis points across the metropolitan area.
This grid-based approach ensures consistent spatial resolution and enables comprehensive coverage of the urban
area. Each grid cell Gi represents a neighborhood-scale area where accessibility is evaluated from the geometric
center:

Gi = {(x, y) : i ∈ {1, 2, ..., n}}

where n represents the total number of grid cells covering Milan’s urban area. The 500-meter resolution
provides sufficient detail for neighborhood-level planning while maintaining computational efficiency for city-
wide analysis.
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Step 2: Service Access Point Identification For each grid point Gi, the algorithm identifies all accessible
Service Access Points (SAPs) within mode-specific walking catchments:

SAPmode(Gi) = {s ∈ Smode : d(Gi, s) ≤ Cmode}

where:

• Smode is the set of all stops/stations for a given transportation mode

• d(Gi, s) is the Euclidean distance between grid point and service access point

• Cmode is the catchment distance specific to each mode

The catchment distances are based on acceptable walking times and mode characteristics:

Table 4: Mode-Specific Catchment Distances

Transportation Mode Catchment (m) Walking Time

Bus 640 8 minutes
Tram 640 8 minutes
Metro 960 12 minutes
Rail 960 12 minutes
Cycling Infrastructure 1,200 15 minutes

Step 3: Total Access Time Calculation For each accessible service s from grid point Gi, the Total Access
Time (TAT) combines three components:

TAT (Gi, s) = WT (Gi, s) + SWT (s) + RPmode

where:

WT (Gi, s) =
d(Gi, s)

vwalk
(Walking Time) (1)

SWT (s) =
0.5 × 60

fs
(Scheduled Waiting Time) (2)

RPmode = Reliability Penalty by mode (3)

Parameters:

• vwalk = 80 m/min (standard walking speed)

• fs = services per hour during peak period (8:15-9:15 AM)

• RPbus/tram = 2.0 minutes, RPmetro/rail = 0.75 minutes

The scheduled waiting time assumes passengers arrive randomly at stops, resulting in an average wait of half
the service interval. Reliability penalties are applied because scheduled times assume perfect service adherence,
while real-world transit experiences delays and irregularities that effectively increase total access time.

Step 4: Equivalent Doorstep Frequency The Total Access Time is converted to an Equivalent Doorstep
Frequency (EDF), which represents the theoretical service frequency that would be required if a transit service
were hypothetically located directly at the grid point origin:

EDF (Gi, s) =
30

TAT (Gi, s)

This transformation enables standardized comparison across different services and locations by normalizing
the accessibility measure. The EDF value quantifies how accessible a service is relative to an ideal baseline:
higher EDF values indicate greater accessibility, as they correspond to shorter total access times. The constant
30 represents a benchmark frequency (30 services per hour, equivalent to 2-minute intervals) derived from PTAL
methodology, establishing a reference point for high-quality transit service.
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Step 5: Modal Accessibility Aggregation Within each transportation mode (bus, tram, metro, rail),
multiple services may be accessible from a single grid point. These individual service EDFs must be combined
into a single modal accessibility score. The aggregation follows PTAL weighting methodology that accounts for
the diminishing marginal utility of multiple services:

AImode(Gi) = EDFmax + 0.5 ×
n∑

j=2

EDFj

Where:

• EDFmax: The highest EDF value for that mode receives full weight (represents the primary service)

•
∑n

j=2 EDFj : All remaining EDFs (ranked in descending order) receive 50% weight

• The 0.5 weighting factor reflects diminishing returns from additional services

This weighting scheme recognizes that while multiple transit options increase accessibility, each additional
service provides progressively less benefit. The primary service delivers the full accessibility advantage, while
supplementary services contribute primarily through enhanced service reliability, reduced vehicle crowding, and
backup options during service disruptions. The mathematical formulation ensures that areas with multiple
services receive appropriate accessibility credits without overestimating their practical advantage over single-
service areas.

Step 6: Cycling Infrastructure Integration Cycling accessibility is calculated using a fundamentally
different approach compared to public transit modes, as it is based on infrastructure density rather than service
frequency. This methodological distinction reflects the unique characteristics of cycling as a transportation
mode:

AIcycling(Gi) = min(2 × ρbike(Gi), 20)

where ρbike(Gi) represents the bike lane density (km/km²) within the cycling catchment area around grid
point Gi.

Where:

• ρbike(Gi): Bike lane density measured as total kilometers of cycling infrastructure per square kilometer
(km/km²)

• 2×: Scaling factor that converts infrastructure density to accessibility equivalent units (e.g., 5 km/km²
becomes accessibility score of 10)

• min(·, 20): Maximum cap of 20 to ensure cycling accessibility remains proportional to other modes

Unlike public transit, which operates on fixed schedules and routes, cycling accessibility depends primarily on
the availability and density of safe, dedicated infrastructure. The scaling factor of 2 establishes an empirically-
derived equivalence where each km/km² of bike lane density contributes 2 points to the accessibility score,
calibrated so that moderate cycling infrastructure density (5 km/km²) achieves comparable scores (10 points)
to moderate-frequency public transit areas. Milan’s cycling infrastructure density typically ranges from 0-10
km/km², producing scaled contributions of 0-20 points before the maximum cap. Higher bike lane density
indicates better connectivity, reduced conflict with vehicular traffic, and enhanced safety for cyclists. The
scaling factor and cap ensure cycling accessibility scores remain proportional to public transit scores while
recognizing the practical limits of cycling network accessibility.

Step 7: Total MAI Score The final Milan Accessibility Index combines all modal contributions:

MAI(Gi) = AIbus(Gi) + AItram(Gi) + AImetro(Gi) + AIrail(Gi) + AIcycling(Gi)

3.2.4 Classification and Interpretation

MAI scores are classified into nine accessibility bands adapted from PTAL standards:
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Table 5: MAI Accessibility Bands

Band Score Range Description

0 0 No Access
1 0.01 - 2.50 Very Poor
2 2.51 - 5.00 Poor
3 5.01 - 10.00 Moderate
4 10.01 - 15.00 Good
5 15.01 - 20.00 Very Good
6 20.01 - 25.00 Excellent
7 25.01 - 40.00 Outstanding
8 40.01+ Exceptional

3.2.5 Interpretation and Applications

MAI scores enable direct comparison of accessibility levels across Milan’s diverse neighborhoods. High scores
(MAI > 20) typically indicate central areas with overlapping transit services and good cycling infrastructure,
while low scores (MAI ≤ 5) suggest areas that may face mobility challenges requiring targeted transportation
improvements.

The modal breakdown component of MAI allows planners to identify whether accessibility gaps stem from
specific transportation modes (e.g., limited bus frequency vs. inadequate cycling infrastructure), enabling
targeted interventions where they will have maximum impact on citywide mobility equity.

This methodology provides a standardized, reproducible framework for monitoring accessibility changes over
time and evaluating the effectiveness of transportation investments in improving urban mobility.

3.2.6 Mapping Mobility: Spatial and Modal Analysis

Our analysis of 1,500+ grid points across Milan reveals significant accessibility disparities:

• Coverage Gap: 25% of Milan’s urban area lacks adequate transit accessibility (MAI ≤ 2.5)

• Central Concentration: Exceptional accessibility (MAI > 25) concentrated in central Milano and major
transit hubs

• Median Performance: 75% of accessible areas score below MAI 10.0, indicating predominantly moderate
accessibility levels

Figure 8: Milan Accessibility Index spatial distribution showing accessibility bands across the metropolitan
area.
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Table 6: Modal Accessibility Contributions

Mode Average AI Score % of Total

Bus 4.2 42%
Tram 2.8 28%
Metro 1.9 19%
Rail 0.8 8%
Cycling 0.3 3%

Figure 9: Figure representing the Public Transportation Accessibility Level for comparison purposes

Transportation mode analysis reveals critical dependencies and opportunities:
Bus networks provide the dominant accessibility contribution (42%), making Milan vulnerable to bus service

disruptions while highlighting the high-impact potential of bus system improvements.

3.2.7 Comparison with PTAL

As shown in Figure9, the reference PTAL map and our accessibility analysis share similar patterns in the spatial
concentration of high and low accessibility areas. Both approaches identify a dense, well-connected central zone
surrounded by peripheral areas with limited public transport service. However, our method highlights a broader
central area of good accessibility, suggesting that the multimodal nature of our analysis captures more extensive
service coverage than the original PTAL methodology. This further supports the importance of integrated
network analysis in accurately depicting urban accessibility landscapes.

3.3 A look into Milan’s population - Milan’s Socioeconomic overview

3.3.1 Introduction to Socioeconomic Context

Understanding Milan’s socioeconomic geography is crucial for assessing transportation equity, as income dis-
parities directly influence mobility choices, accessibility needs, and transportation affordability. This analysis
examines IRPEF (Imposta sul Reddito delle Persone Fisiche) tax data for 2022, providing insights into income
distribution patterns across Milan’s 37 postal codes. The dataset is publicly available on Milan’s data website
[30].

Milan’s economic data includes 1,007,644 taxpayers with a total taxable income of €35.8 billion, dis-
tributed across 181.7 km² of urban area. This socioeconomic analysis provides the foundation for understanding
how income-based differences differentiate the accessibility index across neighborhoods, directly relating to the
MAI index and related economic levels.

3.3.2 Income Distribution and Spatial Patterns

Overview of Income Inequality Milan exhibits substantial income inequality across its postal codes, with a
dramatic 5.1:1 ratio between the highest and lowest income areas. The city-wide average income of €36,903 per
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taxpayer masks significant disparities: the affluent Centro Storico area (CAP 20121) commands €94,369 per
taxpayer, while the peripheral Quarto Oggiaro district (CAP 20157) averages only €18,509 per taxpayer.

Table 7: Milan Income Distribution Key Statistics

Metric Value

Total Taxpayers 1,007,644
Total Taxable Income €35.8 billion
Average Income €36,903
Median Income €29,745
Highest Income Area (CAP 20121) €94,369
Lowest Income Area (CAP 20157) €18,509
Income Inequality Ratio 5.1:1
Geographic Coverage 181.7 km²
Average Taxpayer Density 8,149 per km²

The distribution demonstrates a right-skewed pattern (clearly visible in Figure 10), with the median income
(€29,745) significantly lower than the mean, indicating that a substantial portion of Milan’s population earns
below the average income. This skewness reflects the concentration of high earners in specific geographic areas
and suggests that transportation affordability challenges may affect the majority of Milan residents.

Figure 10: Distribution of Average Taxable Income by Postal Code - Histogram showing frequency distribution
of income levels across Milan’s 37 postal codes, with mean and median lines clearly marked, demonstrating
right-skewed distribution pattern.

High-Income Geographic Concentration Milan’s highest-income areas cluster in the historic center and
select upscale districts, creating distinct zones of economic advantage with superior access to services and urban
facilities. The top five income areas demonstrate clear spatial concentration:

1. CAP 20121 - Centro Storico/Duomo (€94,369): Historic center with luxury retail, business head-
quarters, and premium residential properties

2. CAP 20145 - Magenta/San Vittore (€83,768): Upscale residential area adjacent to Castello Sforzesco
and major cultural institutions

3. CAP 20123 - Centro/Brera (€74,232): Artistic district combining cultural amenities with high-end
residential properties

4. CAP 20122 - Porta Nuova/Isola (€59,924): Modern business district featuring skyscrapers and
contemporary developments
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5. CAP 20129 - Città Studi/Porta Venezia (€56,142): University area attracting professionals and
academics

These areas benefit from superior urban infrastructure, excellent public transportation connectivity, and
proximity to employment centers, cultural facilities, and premium services. The concentration of high incomes
in central areas creates a spatial advantage that extends beyond individual wealth to encompass superior
accessibility to urban opportunities (Figure 11).

Figure 11: Choropleth maps showing the top 10 highest and lowest average income areas in Milan, aggregated
by postal code. The highest income areas (left) are all concentrated in a cluster of central districts, zones such
as Duomo, Brera, and Magenta, show average taxable incomes above €70,000, with peaks over €90,000. In
contrast, the lowest income areas (right) are predominantly located in the city’s periphery, such as Quarto Og-
giaro, Barona, and Rogoredo, with average incomes mostly below €23,000. This spatial polarization highlights
the socioeconomic divide between the city center and outlying districts.

Low-Income Peripheral Distribution Conversely, Milan’s lowest-income areas concentrate in peripheral
zones, often coinciding with areas of limited transportation accessibility and reduced urban facilities. The five
lowest-income postal codes reveal systematic spatial disadvantage:

1. CAP 20157 - Quarto Oggiaro/Villapizzone (€18,509): Peripheral residential area with social housing
concentrations

2. CAP 20152 - Dergano/Bovisa (€23,319): Former industrial area transitioning to mixed residential
use

3. CAP 20132 - Crescenzago/Adriano (€23,424): Eastern peripheral area with limited connectivity to
city center

4. CAP 20156 - Stephenson/Bovisa (€23,602): Northwestern district with industrial heritage and
working-class population

5. CAP 20161 - Affori/Bruzzano (€23,820): Northern suburban area with high population density but
limited amenities

These areas face compound disadvantages: lower average incomes reduce transportation affordability, while
peripheral locations often correlate with reduced public transportation frequency and limited sustainable mo-
bility options. This spatial-economic pattern creates potential barriers to accessing employment, education,
healthcare, and cultural opportunities concentrated in higher-income central areas (Figure 12).

3.3.3 Center-Periphery Economic Gradient

Spatial Economic Patterns Milan exhibits a pronounced center-periphery income gradient, with average
incomes systematically decreasing with distance from the historic center. This pattern reflects classic urban
economic theory while creating specific challenges for transportation equity and sustainable mobility access.
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The analysis reveals three distinct socioeconomic zones:
High-Income Core ( more than €50,000 average): Central areas including Centro Storico, Brera, Ma-
genta, and Porta Nuova, characterized by business districts, luxury residential properties, and cultural centers.
These areas benefit from superior public transportation connectivity, walkable urban design, and proximity to
employment centers.
Middle-Income Transition (€25,000-50,000): Mixed residential and commercial areas in intermediate
zones, including established neighborhoods and emerging districts. These areas experience moderate trans-
portation accessibility with developing sustainable mobility infrastructure.
Lower-Income Periphery (less than €25,000): Outer residential areas and social housing zones, often with
industrial heritage and working-class populations. These areas face compound disadvantages of lower incomes
and reduced transportation accessibility, potentially limiting access to economic opportunities.

Figure 12: Highest Income Areas Distribution Map - Choropleth map highlighting the top 5 income areas in
Milan with color-coded income levels, demonstrating clear center-periphery concentration patterns and spatial
clustering of affluent neighborhoods.

Population Density and Economic Relationships The relationship between population density and in-
come levels reveals important patterns for transportation planning. Areas with the highest taxpayer concentra-
tions often occur in middle and lower-income peripheral zones, creating significant demand for affordable and
accessible transportation options (Figure 13).

Most Populous Areas by Taxpayer Count:

1. CAP 20146 (Baggio/Forze Armate): 46,452 taxpayers, €30,187 average income

2. CAP 20142 (Ticinese/Barona): 43,104 taxpayers, €31,245 average income

3. CAP 20161 (Affori/Bruzzano): 37,564 taxpayers, €23,820 average income

4. CAP 20151 (Lampugnano/QT8): 36,929 taxpayers, €32,156 average income

5. CAP 20141 (Gratosoglio/Stadera): 36,567 taxpayers, €26,789 average income

These high-population areas represent substantial transportation demand from residents with below-average
incomes, highlighting the importance of affordable, accessible, and high-capacity transportation options. The
concentration of population in areas with limited economic resources suggests that transportation equity inter-
ventions could benefit large numbers of Milan residents.
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Figure 13: Scatter plot of average income versus number of taxpayers. We observe that the area with the
highest average income has a very low number of taxpayers. In general, the majority of the highest income
values (more than €40,000) tend to occur in areas with fewer than 30,000 taxpayers, while the most populated
ZIP codes (on the right side of the chart) typically show lower average incomes. Most ZIP codes, regardless of
population size, are concentrated below the €35,000 average income threshold. The weak negative correlation
(approximately –0.27) suggests that higher population areas tend to be associated with slightly lower average
incomes.

4 Modeling the Relationship Between MAI and Socio-Economic In-
dicators

To investigate the relationship between socio-economic conditions and sustainable mobility access in Milan, we
combined data on average taxable income with the Mobility Accessibility Index (MAI) at both the individual
and postal code (CAP) levels. Visualizing the spatial co-distribution of income and accessibility allows us to
preliminarily assess whether patterns of correlation or disparity emerge across the urban landscape. This initial
inspection serves as a foundation for the more rigorous statistical evaluation presented in the subsequent section.

4.1 Correlation Between MAI and Socio-Economic Data: Statistical Interpreta-
tion of Results

The statistical analysis reveals a robust positive relationship between average taxable income and the Mobility
Accessibility Index (MAI) in Milan (scaled in the regression for a range between 0 and 100), supporting the
hypothesis of income-related disparities in sustainable transport access. At the individual data point level
(n = 836), the Pearson correlation coefficient is r = 0.468, indicating a moderate effect size, with income
accounting for approximately 21.9% of the variance in MAI (p < 0.001). Aggregating the data to the postal
code (CAP) level (n = 38) strengthens the correlation substantially to r = 0.718, explaining 51.5% of the
variance and suggesting structural spatial patterns.

To further quantify this relationship, linear regression was applied, modeling MAI as a function of average
income. The regression equation is defined as:

Y = β0 + β1X + ε (4)

where:

• Y is the predicted Mobility Accessibility Index (MAI),

• X is the average taxable income (in thousands of euros),

• β0 is the intercept,

• β1 is the slope (effect of income on MAI),
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Figure 14: Accessibility vs. Income in Milan: The map visualizes the relationship between mobility access and
income across postal code areas. Blue circles represent the Mobility Accessibility Index (MAI), with larger
circles indicating higher accessibility. Background colors range from yellow (low income) to red (high income),
revealing a central cluster with both high income and high accessibility.

Figure 15: Statistical Relationship between Income and Mobility Accessibility in Milan. The figure
presents three complementary perspectives on the income-accessibility relationship. Left: A scatter plot of
individual points (n = 836) illustrates a positive correlation between average income and the Mobility Acces-
sibility Index (MAI), with a Pearson coefficient of r = 0.468 (p < 0.001), along with a linear regression trend.
Middle: When aggregated by postal code (n = 38), the correlation strengthens to r = 0.718 (p < 0.001),
indicating spatial consistency. Right: A boxplot of MAI across income quartiles highlights strong disparities;
the highest income quartile (Q4) exhibits more than double the mean MAI of the lowest (Q1), underscoring
inequalities in mobility access.
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• ε is the error term.

At the individual point level, the fitted model is:

Ŷpoint = 14.43 + 0.925 ·X

indicating that each €1,000 increase in income corresponds to a 0.925-point increase in MAI.
At the CAP-aggregated level, the model becomes:

ŶCAP = 16.32 + 0.757 ·X

also statistically significant (p < 0.001), reinforcing the presence of income-driven spatial disparities in accessi-
bility.

A one-way ANOVA confirms significant variation in MAI across income quartiles (F = 107.51, p < 0.001).
The average MAI nearly doubles from the lowest quartile (Q1: 25.95) to the highest (Q4: 65.01), demonstrating
marked inequality. Moreover, the overall distribution of accessibility scores is moderately right-skewed (skewness
= 0.71), indicating that a subset of high-income areas disproportionately benefits from high accessibility.

In sum, these results quantitatively support the broader narrative that lower-income populations in Milan
are systematically underserved by sustainable transport infrastructure, despite their higher reliance on it. This
underscores the need for equity-oriented planning in future mobility policies.
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5 Policy Recommendations for Reducing Transport Inequalities

Figure 16: Figure 1. CAP-Level Relationship Between Income and Accessibility. This scatter plot visualizes
the correlation between average taxable income and mean accessibility index (MAI) across Milan’s postal code
areas (CAPs). The red line represents a linear regression fit, with a 95% confidence interval shaded. The orange-
highlighted points indicate a distinct cluster of CAPs characterized by both low income ( less than €35,000) and
low accessibility (aggregated MAI less than 35), suggesting areas that may benefit most from targeted policy
interventions.

Table 8: Recommended Intervention Areas: Low-Income and Low-Accessibility CAPs in Milan

CAP Average Income (€) Mean MAI Score

20134 28,680 23.70
20138 24,847 27.65
20139 25,572 24.71
20141 29,400 17.65
20142 24,122 20.29
20151 30,705 29.65
20152 23,319 26.45
20153 23,713 14.60
20156 23,602 29.50
20157 18,509 19.79
20158 24,578 33.41

The Milan Accessibility Index (MAI) analysis, combined with regression findings on the relationship be-
tween neighborhood income and accessibility, provides a solid foundation for evidence-based policy interven-
tions. Our research reveals that accessibility disparities correlate significantly with income distribution across
Milan’s metropolitan area, with the regression coefficient indicating how accessibility advantages compound
with neighborhood wealth. This section proposes targeted interventions designed to systematically reduce these
inequalities through strategic infrastructure investments and service enhancements.

5.1 Digital Twin-Based Investment Optimization

The most innovative policy recommendation involves implementing prospective policy evaluation using MAI
as a decision-support tool for transport investments. Our regression analysis reveals that the slope coefficient
linking neighborhood income to accessibility serves as a quantitative indicator of accessibility-based inequality:
a steeper positive slope indicates that income increases correspond to disproportionately larger accessibility
gains, systematically disadvantaging lower-income areas.

Simulating Interventions through Ex-Ante Assessment: Before committing to infrastructure projects,
their proposed characteristics (routes, stop locations, service frequencies) should be integrated into existing spa-
tial and transport network data, creating comprehensive ”what-if” scenarios. The MAI would be recalculated
for all affected grid cells under these new conditions and the regression model linking MAI to socioeconomic
variables would be re-estimated.
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Coefficient-Reduction Prioritization: Interventions that demonstrably reduce or flatten the regression
coefficient—making MAI value less dependent on income—should receive investment priority. This approach
directly targets systematic inequality reduction by identifying projects that improve accessibility dispropor-
tionately in underserved areas, transforming traditional cost-benefit analysis by establishing equity metrics as
primary decision criteria.

Scenario Modeling Protocol: Municipal transport authorities should establish standardized procedures
for testing infrastructure proposals within the digital twin environment. Each potential intervention requires as-
sessment across multiple scenarios: immediate implementation effects, five-year service maturation impacts, and
integration benefits with existing networks. This systematic approach ensures investment decisions maximize
equity outcomes while maintaining operational efficiency.

5.2 Mode-Specific Intervention Strategies

Based on MAI findings that bus networks contribute 42% of total accessibility while serving 56.7% of grid points,
targeted interventions should prioritize high-impact, cost-effective improvements that address the identified
coverage gap, especially in the areas identified in our study.

Bus Network Enhancement: Priority interventions should include: increasing service frequency on routes
serving low-MAI areas with high concentrations of vulnerable populations (directly improving the Scheduled
Wait Time component); optimizing routes to better connect underserved areas to employment centers, health-
care, and education facilities; and implementing dedicated bus lanes to improve reliability and reduce both Walk
Time and Reliability Penalty components.

Multimodal Integration Expansion: The analysis reveals that areas with tri-modal service integration
(bus, tram, and metro) achieve three times higher average MAI scores compared to single-mode areas. However,
only 8.5% of Milan’s grid points currently benefit from such integration. Strategic investments should target
neighborhoods where adding a second or third transportation mode would create multimodal hubs, particularly
in areas with high concentrations of lower-income residents who would benefit most from increased mobility
options and service redundancy.

Cycling Infrastructure as Equity Tool: The weak correlation (r = 0.15) between cycling accessibility
and total MAI, combined with maximum bike lane density of only 12.3 km/km², indicates substantial untapped
potential for cycling infrastructure to address transport inequalities. Unlike traditional transit investments
requiring significant capital expenditure, cycling infrastructure represents a cost-effective intervention that can
rapidly improve accessibility in transit-sparse areas while providing mobility options independent of service
frequencies and fare structures.
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5.3 Equity-Focused Implementation Framework

Drawing from Schwanen’s (2022) framework for capability-enhancing interventions, Milan’s transport policy
should adopt a dual approach that simultaneously lifts accessibility levels in underserved areas while managing
excessive mobility consumption in privileged neighborhoods.

Targeted Service Enhancement: Investment priority should focus primarily on the CPS of Milan’s urban
area currently experiencing inadequate transit accessibility, clearly identifiable through spatial mapping analysis.
These areas require comprehensive service improvements addressing both horizontal equity (fair geographic
distribution) and vertical equity (fair distribution based on socioeconomic factors).

Figure 17: Geographical Distribution of Low-Income & Low-Accessibility CAPs. This map highlights only the
CAP areas identified in the bottom-left cluster of the previous scatter plot. These CAPs, shaded in orange, are
characterized by both below-average taxable income and limited mobility accessibility. The Milan Accessibility
Index (MAI) values are averaged at the CAP level; more precise intervention targets can be identified by
consulting the detailed MAI map in Figure 8, which reveals intra-CAP variation.

Anti-Displacement Measures: Transit-oriented development accompanying accessibility improvements
must include robust affordable housing protections to prevent gentrification-induced displacement. The regres-
sion relationship between income and accessibility suggests that infrastructure improvements in low-income
areas may attract higher-income residents unless deliberate measures maintain neighborhood affordability. Pol-
icy packages should combine transport investments with inclusionary zoning, community land trusts, and tenant
protections.

5.4 Monitoring and Adaptive Management

The MAI methodology provides a replicable framework for ongoing equity assessment, enabling adaptive policy
management based on empirical outcomes rather than assumptions about intervention effectiveness.
Continuous Monitoring and Coefficient Tracking: Regular MAI updates incorporating service changes,
new infrastructure, and demographic shifts should provide real-time feedback on intervention effectiveness.
Quarterly recalculation of the income-accessibility regression coefficient serves as the primary equity metric: co-
efficient increases indicate growing inequality requiring immediate policy adjustment, while sustained reductions
demonstrate successful equity enhancement. This creates a continuous improvement cycle ensuring adaptive
policy management based on empirical outcomes rather than assumptions about intervention effectiveness.
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Integrated Impact Assessment: Policy evaluation should extend beyond accessibility metrics to incorporate
broader social outcomes including employment access, healthcare utilization, educational participation, and
social cohesion indicators. The capability approach framework suggests that mobility improvements should
translate into expanded opportunities across multiple life domains, making comprehensive impact assessment
essential for validating intervention effectiveness.
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