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Forma generale e forma canonica

Definizione
Un problema di Programmazione Lineare (PL) consiste nel trovare il massimo o il
minimo di una funzione lineare di n variabili reali soggette a vincoli lineari di
uguaglianza o di disuguaglianza, cioe

max(o min) ¢’ x

A1X S bl

Axx > by

A3X = b3

(xeR")

Mauro Passacantando Dinamica dei Sistemi Aziendali 2 /44 -



Forma generale e forma canonica

Definizione
Un problema di Programmazione Lineare (PL) consiste nel trovare il massimo o il
minimo di una funzione lineare di n variabili reali soggette a vincoli lineari di
uguaglianza o di disuguaglianza, cioe

max(o min) ¢’ x

A1X S bl

Axx > by

A3X = b3

(xeR")

Definizione
Un problema nella forma

max ¢’ x
Ax < b

& chiamato problema di PL in forma canonica.
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Forma generale e forma canonica

Teorema
Ogni problema di PL pud essere riscritto in modo equivalente in forma canonica.

T

Dim. min ¢"x = —max (—c"x)

a’x > b e equivalente a —a’x < —b

aTx<b
—aTx<—b

al

x = b & equivalente a {
Esercizio
Scrivere in forma canonica il seguente problema di PL:

min 2x; + 5x
6x1 + 9% = 17
X1 Z 0
x1+3x >1
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Geometria della PL
@0000

Combinazioni convesse

Definizione
Un vettore x € R" & detto combinazione convessa dei vettori x!,...,x™ € R" se
m m .
esistono coefficienti a,...,am € [0,1], con > a; =1, tali che x = > a; x".
i=1

i=1

Mauro Passacantando Dinamica dei Sistemi Aziendali 4 /44 -



Geometria della PL
@0000

Combinazioni convesse

Definizione

Un vettore x € R" & detto combinazione convessa dei vettori x*,...,x™ € R" se
m m .

esistono coefficienti a,...,am € [0,1], con > a; =1, tali che x = > a; x".
i=1 i=1

Esempio. (2,2) & combinazione convessa di (4,0) e (1, 3). Infatti:
1 2

Esempio. (2,2) & combinazione convessa di (1,1), (3,1) e (2,3). Infatti:

(2,2) = %(1, 1)+ %(3, 1)+ %(2,3).
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Geometria della PL
@0000

Combinazioni convesse

Definizione

Un vettore x € R" & detto combinazione convessa dei vettori x*,...,x™ € R" se
m m .

esistono coefficienti a,...,am € [0,1], con > a; =1, tali che x = > a; x".
i=1 i=1

Esempio. (2,2) & combinazione convessa di (4,0) e (1, 3). Infatti:
1 2

Esempio. (2,2) & combinazione convessa di (1,1), (3,1) e (2,3). Infatti:
1 1 1

2,2)=—-(1,1)+ —-(3,1) + =(2,3).

(2.2)= 101+ 13D + 129

Definizione

L'involucro convesso di un insieme K C R”, denotato con conv(K), & I'insieme di

tutte le combinazioni convesse di punti di K.
Esercizio. Qual & l'involucro convesso dei punti (1,1), (3,1) e (2,3)?
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Geometria della PL
@0000

Combinazioni convesse

Definizione

Un vettore x € R" & detto combinazione convessa dei vettori x*,...,x™ € R" se
m m .

esistono coefficienti a,...,am € [0,1], con > a; =1, tali che x = > a; x".
i=1 i=1

Esempio. (2,2) & combinazione convessa di (4,0) e (1, 3). Infatti:
1 2

Esempio. (2,2) & combinazione convessa di (1,1), (3,1) e (2,3). Infatti:
1 1 1

2,2)=—-(1,1)+ —-(3,1) + =(2,3).

(2.2)= 101+ 13D + 129

Definizione

L'involucro convesso di un insieme K C R”, denotato con conv(K), & I'insieme di

tutte le combinazioni convesse di punti di K.
Esercizio. Qual & l'involucro convesso dei punti (1,1), (3,1) e (2,3)?
Definizione

Un insieme K C R" & detto convesso se per ogni x,y € K il vettore
ax + (1 —a)y € K per ogni « € [0,1].
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Geometria della PL
0O@000

Poliedri

L'insieme {x € R": a’x < b} & un semispazio chiuso di R".

Definizione

Un poliedro in R” & I'intersezione di un numero finito di semispazi chiusi, oppure, &
I'insieme delle soluzioni di un sistema di disequazioni lineari Ax < b.
[La regione ammissibile di ogni problema di PL & un poliedro.]

Un poliedro P & detto limitato se esiste M > 0 tale che ||x|| < M per ogni x € P, ossia
se & contenuto in una opportuna sfera centrata nell’origine.

Esempi.
P ={xe R?: 1<x <4, 1<x< 3} & un poliedro limitato.
P, ={xe R?2: xx>1, xx>1, xi+x> 3} & un poliedro illimitato.

D’ora in poi considereremo solo poliedri limitati.

Mauro Passacantando Dinamica dei Sistemi Aziendali 5/ 44



Geometria della PL
[e]e] lele}

Vertici

Definizione
Un punto x di un poliedro P & chiamato vertice se non esistono due punti
y,z € P diversi da x tali che x & combinazione convessa di y e z.

Esempio.
Iverticidi P={x€R?: 1<x <4, 1<x <3}sono(1,1),(1,3), (4,1)e
(4,3).

Teorema
Ogni poliedro non vuoto e limitato ha almeno un vertice.
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Geometria della PL
[e]e]e] lo}

Teorema di decomposizione dei poliedri (limitati)

Teorema

Se P & un poliedro non vuoto e limitato, allora P = conv{v!,... v™}, dove
vl ..., v™ sono i vertici di P.
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Geometria della PL
[e]e]e] lo}

Teorema di decomposizione dei poliedri (limitati)

Teorema

Se P & un poliedro non vuoto e limitato, allora P = conv{v!,... v™}, dove
vl ..., v™ sono i vertici di P.

Esercizio. Scrivere la decomposizione dei seguenti poliedri:
Pi={xeR?: 1<x <4, 1<x <3}

P={xeR?: xx>1, xx>1x +x <3}
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Geometria della PL
[e]e]e]e] ]

Direzioni di crescita e di decrescita

Definizione
Consideriamo un problema di PL in forma canonica

.
max ¢’ x
{ Ax < b ()
Un vettore d & detto direzione di crescita per la funzione obiettivo di (P) se ¢"d > 0.

Un vettore d & detto direzione di decrescita per la funzione obiettivo di (P) se ¢’ d < 0.
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Geometria della PL
[e]e]e]e] ]

Direzioni di crescita e di decrescita

Definizione
Consideriamo un problema di PL in forma canonica

max ¢’ x
{ Ax < b ()

Un vettore d & detto direzione di crescita per la funzione obiettivo di (P) se ¢"d > 0.

Un vettore d & detto direzione di decrescita per la funzione obiettivo di (P) se ¢’ d < 0.

Esempio. Dato il problema
max 2x1 — 3x
X1 Z 1
X2 Z 1
x1+x <3

il vettore d = (2,1) & una direzione di crescita perché (2, —3)7(2,1) =1 > 0,
mentre d = (1,1) & una direzione di decrescita perché (2,—-3)7(1,1) = -1 < 0.
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Teo fondam. PL
@00

Teorema fondamentale della PL

Consideriamo un problema di PL in forma canonica

max ¢’ x
{XEP—{XER":AXSb} (?)

dove P & un poliedro non vuoto e limitato.

Teorema fondamentale della PL
Il valore ottimo di () & finito ed un vertice di P & una soluzione ottima di (P).
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Teo fondam. PL
oeo

Teorema fondamentale della PL

Esempio. Consideriamo il problema

max 2x1 — 3x
Xlzl
XQZ].
x1+x <3

Sappiamo che P = conv{(1,1),(1,2),(2,1)}. La soluzione ottima ¢& il vertice (2,1) ed il
valore ottimo e 1.

Esempio. Consideriamo ora il problema

max x1 + X2
Xlzl
XQZ].
x1+x <3

| vertici (1,2) e (2,1) sono entrambi soluzioni ottime. Quindi anche tutti i punti sul
segmento compreso tra (1,2) e (2,1) sono soluzioni ottime.
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Teo fondam. PL
ooce

Quante soluzioni ottime ha un problema di PL?

Corollario. Se la regione ammissibile P & non vuota e limitata, allora il problema
(P) o ha un’unica soluzione ottima oppure ne ha infinite.

Infatti, se esistono due soluzioni ottime x e x’ diverse, con c"x = ¢"x’ = v, allora
anche ax + (1 — a)x’ & ottima per ogni « € (0,1). Infatti, ax + (1 — a)x’ &

ammissibile e

cax+(1-a)X]=ac™x+(1-a)c'X =av+(1—a)v=v
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Dualita
®000000

Problema duale
Consideriamo un problema di PL forma canonica
max ¢’ x
xeP={xeR": Ax< b}
che d’ora in poi sara chiamato problema primale.

Definizione
Il problema di PL definito come

min y'b
yeD={yeR": yTA=c", y>0}

& chiamato problema duale di (P).

Primale Duale

Obiettivo max min
Variabili n m
Vincoli m n
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Dualita
O®@00000

Problema duale

Esempio. Il problema duale di

max 4x; + 5x

10 1
X<l A={ o1 )bo={2)c=(% ()
X S 2 11 3 >
x1+x <3

¢ il problema
min y1 + 2y> + 3y3

nty=4

D
y2+y3=>5 (D)
y=>0
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Dualita
0O0@0000

Problema duale

Esempio. Un allevatore deve preparare la miscela del mangime per i suoi animali
mescolando orzo e avena. E noto che un kg di orzo contiene 730 g di carboidrati,
120 g di proteine e 23 g di grassi, mentre un kg di avena contiene 662 g di
carboidrati, 169 g di proteine e 69 g di grassi. Per ogni animale il mangime deve
fornire un fabbisogno giornaliero di almeno 500 g di carboidrati, 100 g di proteine
e 50 g di grassi. Sapendo che |'orzo costa 0.3 €/kg e |'avena 0.28 €/kg,
I'allevatore vuole trovare la composizione del mangime che rispetti il fabbisogno
dei vari principi nutritivi in modo da minimizzare il costo complessivo.

Variabili:
x1 = numero di kg di orzo contenuti nel mangime giornaliero di ogni animale
x2 = numero di kg di avena contenuti nel mangime giornaliero di ogni animale

Modello: min 0.3x; + 0.28x
730x; 4+ 662x, > 500
120x; + 169x, > 100
23x1 + 69x; > 50

X1, X2 >0
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Dualita
0O00@e000

Problema duale

Il problema duale si pud scrivere nel modo seguente:

max 500y; 4 100y> 4 50y3
730y1 + 120y> + 23y3 < 0.3
662y, + 169y + 69y3 < 0.28
Y1,¥2,y3 >0

e puo essere interpretato come il “problema del venditore di pillole”. Un venditore
ha a disposizione 3 tipi di pillole: pillole di carboidrati, pillole di proteine e pillole
di grassi (ogni pillola contiene 1 g del corrispondente principio nutritivo). Il
venditore deve stabilire i prezzi di vendita delle pillole in modo che il ricavato della
vendita sia massimo e che i prezzi siano competitivi, ossia che I'allevatore non
ritenga svantaggioso acquistare le pillole invece di orzo e avena.

Le variabili y1, y», y3 sono i prezzi unitari delle pillole.

La funzione obiettivo 500y; + 100y> + 50y3 ¢ il ricavato della vendita.

| vincoli impongono che la dieta a base di pillole non sia piu costosa della dieta a
base di orzo e avena.
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Geometria della PL Teo fondam. PL Dualita Cond. ottimalita Basi e vertici Simplesso primale Sensibilita
00000 [e]o]e} 0O000e00 0000 0000000 0000000 00000000

Proprieta del problema duale
Perché & chiamato duale?
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Geometria della PL Teo fondam. PL Dualita Cond. ottimalita Basi e vertici
00000 [e]o]e}

Simplesso primale Sensibilita
0000e00 0000

0000000 0000000 00000000
Proprieta del problema duale

Perché & chiamato duale?

Teorema

Il duale di (D) & equivalente al problema ().

.a?«
M.C. Escher, Drawing Hands, 1948.
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Dualita
0O0000e0

Proprieta del problema duale

Consideriamo un problema primale

max ¢’ x
xeP={xeR": Ax< b}

in cui il poliedro P & non vuoto e limitato.

Teorema di dualita forte

Il valore ottimo di (D) coincide con il valore ottimo di ().
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Dualita
O00000e

Proprieta del duale

Esempio. Qual & il valore ottimo del seguente problema con 4 variabili?

min yi+y>+ys+ya

Nty2—ys—ys=2 (*)
yi—y2+ys—ys=1
y>0
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Dualita
O00000e

Proprieta del duale
Esempio. Qual & il valore ottimo del seguente problema con 4 variabili?

min y1 +y>+y3 + ya
ity—ys—ys=2
i—y2tys—ya=1
y>0

Questo problema ¢ il duale di

max 2xj + xo
x1+x <1
X1—X2§1
—x1+x <1
—x1 —x0 <1

che & facile da risolvere graficamente: la soluzione ottima & (1,0) ed il valore
ottimo & 2.

Il teorema di dualita forte garantisce che anche il valore ottimo di (*) & 2.
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Geometria della PL Teo fondam. PL Dualita Cond. ottimalita Basi e vertici Simplesso primale Sensibilita
00000 [e]o]e} 0000000 @000 0000000 0000000 00000000

Condizioni di ottimalita
Come si pud riconoscere una soluzione ottima?
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Cond. ottimalita
@000

Condizioni di ottimalita
Come si pud riconoscere una soluzione ottima?

Teorema (degli scarti complementari)

Supponiamo che X sia una soluzione ammissibile del primale ().
Allora X & ottima se e solo se esiste una soluzione ¥ del seguente sistema:

yTA=cT (ammissibilita
y>0 duale)
yT(b—AX)=0 (X ey sono in scarti complementari)

Qualunque soluzione y di questo sistema & una soluzione ottima del duale (D).

Notiamo che il sistema sopra & equivalente al seguente sistema:

}_/TA:CT
y=0
yi(bi — Aix) =0 Vi=1l,...,m
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Cond. ottimalita
[e] lele)

Scarti complementari
Esempio. Dire se X = (1,1) & ottima per il problema

max 3x1 + 4xo
2x1+x <3
x1+2x <3
—X1 S 0
—X2 S 0
X € ottima se e solo se esiste una soluzione del sistema
2y1+y2—y3 =3
NN+2p—y=4
y >0
yT(O, 0,1,1)=0

che equivale a

y3=ys=0
2y14+y2=3
nn+2p=4
yi,y2 >0

Poiché y = (2/3,5/3,0,0) & una soluzione del sistema, X & ottima.
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Cond. ottimalita
[e]e] o)

Scarti complementari
Esempio. Dire se X = (0,0) & ottima per il problema

max 3x1 + 4xo
2x1+x <3
x1+2x <3
—X1 S 0

—X2 S 0

X & ottima se e solo se esiste una soluzione del sistema

2y1+y2—y3=3
yi+2y—ys=4
y>0

yT(3,3,0,0):0

che equivale a

nn=y2=0
y3=-3
ya=—4
y3,ya >0

che & impossibile, quindi X non & ottima.
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Cond. ottimalita
oooe

Scarti complementari

Esercizio. Consideriamo il problema

max axi + 4x
2x1+x <3
x;+2x <3
—X1 S 0

—X2 S 0

Per quali valori di « il vettore X = (1,1) & ottimo?
Esercizio. Trovare tutte le soluzioni ottime del problema

max 4xi; + 7xo

X1§2
—Xlg—l
X2§4
—X2§—3

e del suo duale utilizzando il teorema degli scarti complementari.
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Basi e vertici
®000000

Caratterizzazione algebrica dei vertici

Sappiamo che se il poliedro P & non vuoto e limitato, allora un vertice di P &
ottimo per il primale.

Ma i vertici di un poliedro sono definiti in modo geometrico — abbiamo bisogno
di proprieta algebriche dei vertici.
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Basi e vertici
®000000

Caratterizzazione algebrica dei vertici

Sappiamo che se il poliedro P & non vuoto e limitato, allora un vertice di P &
ottimo per il primale.

Ma i vertici di un poliedro sono definiti in modo geometrico — abbiamo bisogno
di proprieta algebriche dei vertici.

Consideriamo un problema primale

max ¢’ x
Ax <b

dove il poliedro P = {x € R": Ax < b} & non vuoto e limitato.
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Basi e vertici
0@00000

Caratterizzazione algebrica dei vertici

Definizione

Una base & un insieme B di n indici di riga tali che la sottomatrice quadrata Ag
(formata dalle righe A; con i € B) sia invertibile, cioe det(Ag) # 0. Indichiamo
con N l'insieme degli indici non in base. Possiamo partizionare A e b come segue:

_(As _ [ bs
=(a) e lor)
Data una base B, il vettore x = AEle & chiamato soluzione di base primale.

X & ammissibile se Ayx < by (tutti i vincoli non di base sono soddisfatti)
X non & ammissibile se esiste i € N tale che A;x > b; (almeno un vincolo non di
base & violato)

X & degenere se esiste / € N tale che A;x = b; (almeno un vincolo non di base &
attivo in X)

X & non degenere se A;X # b; per ogni i € N (nessun vincolo non di base & attivo
in X)

Mauro Passacantando Dinamica dei Sistemi Aziendali 24 /44 -



Basi e vertici
00®0000

Caratterizzazione algebrica dei vertici
Esempio. Consideriamo

3:
max 2x1 + x» 1 0 ’ )
X <2 11 3 ,
x1+x <3 A= b= v
-1 0 0
1 <0 0 -1 0 ' .
—X2 S 0 1 '
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Basi e vertici

0000000
Caratterizzazione algebrica dei vertici
Esempio. Consideriamo ,
3
max 2x1 + x» 0 5 B
x <2 1 3 1
x1+x <3 A= _1 0 =1lo :
—X1 S 0 0 0
—x <0 N
1 -1 0
B = {1,2} & una base perché Ag = 1 1 & invertibile: det(Ag) =
_ 0\ /2
La relativa soluzione di base primale & Ag lpg = 1 3) =

——— b

e non degenere perché A;x # b; per ogni i
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Basi e vertici
00®0000

Caratterizzazione algebrica dei vertici
Esempio. Consideriamo

4y
3%
max 2x1 + x» 0 5 5
x <2 1 3 )
x1+x <3 A= _1 0 0 v
—X1 S 0 0 0 .
—X2 S 0 -1t :
1 -1 0 1 2 3 4
B = {1,2} & una base perché Ag = 1 1 & invertibile: det(Ag)
. . . . N _ 0\ /2
La relativa soluzione di base primale ¢ X = Ag lpg = 1 3) =

——— b

e non degenere perché A;x # b; per ogni i

B = {1, 3} non & una base perché Ag =

/_\
o

) non & invertibile: det(Ag) = 0.
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Basi e vertici
00®0000

Caratterizzazione algebrica dei vertici
Esempio. Consideriamo

I
3:
max 2x1 + x» 0 5 B
x <2 1 3 1
x1+x <3 A= _1 0 =1lo :
—X1 S 0 0 0 .
—X2 S 0 1 i '
1 -1 0 1 2 3 4
B = {1, 2} & una base perché Ag = 1 1 & invertibile: det(Ag) =
_ 0\ /2
La relativa soluzione di base primale & Ag lbg = 1 3) =

——— b

e non degenere perché A;x # b; per ogni i

B = {1, 3} non & una base perché Ag = <_11 8) non & invertibile: det(Ag) = 0.

B = {2,4} & una base e la relativa soluzione di base primale non & ammissibile:

1 1 3 3 2
AB:Q ),)‘(:<>,AN)‘<:< );{():b,\,enondegenere.
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Basi e vertici
000@000

Caratterizzazione algebrica dei vertici

Perché le soluzioni di base sono importanti?

Teorema
Sia P={xeR": Ax < b}.
X & un vertice di P se e solo se X & una soluzione di base primale ammissibile.
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Basi e vertici
000@000

Caratterizzazione algebrica dei vertici

Perché le soluzioni di base sono importanti?

Teorema
Sia P={xeR": Ax < b}.
X & un vertice di P se e solo se X & una soluzione di base primale ammissibile.

Come riconoscere un vertice ottimo?

Definizione _

Data una base B, il vettore y = <j/_/B> dove ygF =cTAg', ynw=0
N

€ chiamato soluzione di base duale.

<I <

€ ammissibile se yg > 0
non & ammissibile se esiste i € B tale che y; < 0

e degenere se esiste i € B tale che y; =0
€ non degenere se y; # 0 per ogni i € B

<I <1
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Basi e vertici
0000@00

Caratterizzazione algebrica dei vertici

Teorema (condizione sufficiente di ottimalita)

Sia X una soluzione di base primale ammissibile relativa alla base B.
Se la soluzione di base duale y relativa alla stessa base B € ammissibile, allora X &
ottima per il problema primale (e y & ottima per il duale).

Dim. Due soluzioni di base X e y relative alla stessa base sono sempre in scarti
complementari:

706~ %) = G358 (12 7 25) = 5800 4, ®pe) =0

by — Anx by — AnX

Se X e ¥ sono anche ammissibili (rispettivamente per il primale e duale), allora
sono anche ottime.
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Basi e vertici
[e]e]e]ele] o)

Caratterizzazione algebrica dei vertici
Esempio. Consideriamo il problema

max 2x1 + xo

X1§2

x1+x <3 A=
—X1§0

—X2§0

=
—

o = O

o

I

OO WwWN

(9}

Il
R
= N
N~
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Basi e vertici

0000080
Caratterizzazione algebrica dei vertici
Esempio. Consideriamo il problema
max 2x1 + xo 1 0 5
x <2 11 3 2
x1+x <3 A= b= c=
-1 0 0 1
<0 0 -1 0
—X2 S 0
42 N M
3
?
: X1
ST SSNUUNNS DOSONE O b

-1 0 1 2 3 4
X = (2,1) & una soluzione di base primale relativa alla base B = {1, 2}.
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Basi e vertici

0000080
Caratterizzazione algebrica dei vertici
Esempio. Consideriamo il problema
max 2x1 + x2 1 0 5
xS 2 11 3 2
x1+x <3 A= b= c=
-1 0 0 1
<0 0 -1 0
—X2 S 0

-1 0 1 2 3 4
X = (2,1) & una soluzione di base primale relativa alla base B = {1, 2}.

La soluzione di base duale relativa a B &
_ vB _ _ 1 0 _
y= (m) dove 75 =c'Ag'=(2,1) (_1 1) =(1,1), n=0.

¥ € ammissibile perché yg > 0, quindi X & ottima.
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Basi e vertici
000000e

Caratterizzazione algebrica dei vertici

In generale, la condizione di ottimalita basata sull’ammissibilita della soluzione di base
duale & sufficiente ma non necessaria.

Esempio. Consideriamo il problema

max 2x1 + x» 1 0 9
X1§2
+x <3 1 1 3
aTXR=S a=|-1 o | b=]o0
—X1§0

0 -1 0
%<0 301 7
3x1+x <7
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Basi e vertici
000000e

Caratterizzazione algebrica dei vertici

In generale, la condizione di ottimalita basata sull’ammissibilita della soluzione di base
duale & sufficiente ma non necessaria.

Esempio. Consideriamo il problema

4:<
2% + -
maxXx 2ZXi X2 1 0 2 :
xp <2 25
+x <3 ! L 3 2 :
aTRe=2 a=|-1 o | b=|0] c= 1k
—X1§0 1 :
0 —]. 0 :
—x <0 3 1 7 o} : —
3a+x <7 : : \ S

-1 0 1 2 3 4 5
X = (2,1) & ottima ed & una soluzione di base primale (degenere) relativa alla base

B ={1,5}.
La soluzione di base duale relativa a B &

_ Y _ _ 1 0 _
y=<§j> dove yBT=cTA51:(2,1)(_3 1>=(—1,1), v = 0.

¥ non & ammissibile perché y1 < 0, ma X & ottima.

Mauro Passacantando Dinamica dei Sistemi Aziendali 29 / 44 -



Simplesso primale
000000

Algoritmo del simplesso primale
Consideriamo un problema primale

max ¢’ x
Ax < b

in cui il poliedro P = {x € R": Ax < b} & non vuoto e limitato, quindi esistono vertici
(soluzioni di base ammissibili) di P.

L'algoritmo del simplesso primale parte da un vertice del poliedro primale.

Se il vertice del poliedro duale corrispondente alla stessa base & ammissibile per il duale,
allora il vertice primale & ottimo e I'algoritmo si ferma.
Altrimenti I'algoritmo trova

» una direzione di crescita per il primale
» il passo di spostamento lungo tale direzione

» una nuova base, cambiando un solo indice rispetto alla vecchia base, in modo che la
nuova soluzione di base primale rimanga ammissibile (il nuovo vertice primale &
adiacente al vertice precedente).

E cosi via ...
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Simplesso primale
Oe00000

Algoritmo del simplesso primale

1

2.

5

Mau

. Trova una base B tale che la soluzione di base primale X = Agl bg sia ammissibile

Calcola la soluzione di base duale y = <§B), dove yg = cTAgl, yw=20
N

Se yg > 0 allora STOP [X & ottima per il primale, y & ottima per il duale]
altrimenti trova l'indice uscente da B:

h=min{i e B: y <0} (regola anticiclo di Bland),
poni W = —AEI e denota W' la h—esima colonna di W
(W" & la direzione di spostamento)
. Calcola il passo di spostamento:

o bi—AXx . /b
ﬁ._mln{ AW cieN, AW >0},

e trova l'indice entrante

bi — Ai X

. A sh
k_mm{leN.A,W >0, A Wh

= 19} (regola anticiclo di Bland),

. Aggiorna la base B = B\ {h} U {k}, calcola X = Az" bg e torna al passo 2
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Algoritmo del simplesso primale

Simplesso primale
0080000

=
/ (®) { 2;1x<cb X /;»[Trova base B tale che X = Agl bg sia ammissibile ]

|

—)[Calcola soluzione base duale: }7;— =

AN v = o]

Trova I'indice uscente: h = min{i € B: y; < 0},
Poni W = —AEI (W" & la h—esima colonna di W)
. [bi—AXx h
Trova ¥ = min W ieN, AAiw'>0
Trova l'indice entrante: .
i — A X
k=minlieN: A W">o, ;zﬂ}
{ ! A; Wh
Aggiorna la base: B = B\ {h} U {k}
Calcola X = Az bg

Mauro Passacantando
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Simplesso primale
000e000

Algoritmo del simplesso primale

Teorema
L'algoritmo del simplesso primale trova un vertice ottimo dopo un numero finito di
iterazioni.
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Simplesso primale
0000e00

Algoritmo del simplesso primale

Esempio. Risolviamo il problema

4 :

max 2x1 + x2 1 0 5 2

X <2 11 3 2\ :
x1+x <3 A= b= c= 1 i
-1 0 0 1 : :

—x <0 0 -1 0

—x <0 °!
partendo dalla base B = {3, 4}. i [ OSSO SO SO
-1 0 1 2 3 4
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Simplesso primale

0000e00
Algoritmo del simplesso primale

Esempio. Risolviamo il problema e
[ 5
max 2x1 + X2 1 0 5 2
xS 2 11 3 2\ :
x1+x <3 A= b= c = i :
-1 0 0 1 : :
—Xx1 S O : :
0 -1 0 ol | I .
—x <0 NG (T B
partendo dalla base B = {3,4}. PSS SO SN SOOI SO
1 0 0 -1 0 1 2 3 4

Iterazione 1. Ag = < 0 _1) = Agl, X = <0) € ammissibile.

ye =(2,1) (‘01 _01> =(-2,-1), h=3 W3 = (1) AW3=1 AW3=1,

9 =min{2/1,3/1} =2, k=1.
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Simplesso primale

0000e00
Algoritmo del simplesso primale
Esempio. Risolviamo il problema e
P :
max 2x1 + x2 1 0 5 2
X <2 11 3 2\ :
xx+x<3 A= b= c= 1in
-1 0 0 1 : ‘ P
—a <0 0 -1 0 : ’ F
—x2 <0 o A
partendo dalla base B = {3, 4}. PRI R B IA/
_1 O 0 -1 0 1 2 3
Iterazione 1. Ag = < 0 _1) = Agl, X = 0) € ammissibile.

ye =(2,1) (‘01 _01> =(-2,-1), h=3 W3 = (1) AW3=1 AW3=1,

9 =min{2/1,3/1} =2, k=1

Iterazione 2. B = {1,4}, Ag = (é —01) - AEI' X= (3)

7 =(2,1) ((1) _01) =(2,-1), h=4, W* = <(1’) AW =1, AAW* =0, k=2.
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Simplesso primale
0000e00

Algoritmo del simplesso primale

Esempio. Risolviamo il problema

max 2x1 + X2 1 0 5 2

xS 2 11 3 2\

x1+x <3 A= b= c= 1

-1 0 0 1

—X1 S 0 0 -1 0 : : : H

—x2 <0 * B R
partendo dalla base B = {3, 4}. BRSO NOOON RO SOSE I

. -1 0 1 - 0) . T
Iterazione 1. Ag = < 0 _1) =A; X = <0) € ammissibile.
- -1 0 s (1 ; ;
ve =(2,1) 0 -1 =(-2,-1), h=3, W’ = 0 VAW =1, AAWP =1,

9 =min{2/1,3/1} =2, k=1

Iterazione 2. B = {1,4}, Ag = (é —01) - AEI' X= (3)

7 =(2,1) ((1) _01) =(2,-1), h=4, W* = <1) AW =1, AAW* =0, k=2.

Iterazione 3. B = {1,2}, Ag = (1 (1)) X = (i) 7a& =(1,1) > 0 stop, X & ottimo.
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Simplesso primale
0O0000e0

Algoritmo del simplesso primale - vertice iniziale
Come si trova una soluzione di base ammissibile per (P)?

Supponiamo che B sia una base e che X = AEle non sia ammissibile.
Definiamo gli insiemi
U:{I'ENIA,')_(Sb,'}, V:{iGNiA;)_(>b;},

e costruiamo il problema ausiliario primale:

max — Y &;

(xe)  jev

Aix < b; peri€e BuU
Aix—¢e; < b perieV
—£; <0 peri eV

Il vettore (X, &), con
g=Ayx— by >0,

& una soluzione di base ammissibile per (P,,x) relativa alla base BU V/, con

matrice di base uguale a

Ag | O
Ay | =1 ]~

Mauro Passacantando Dinamica dei Sistemi Aziendali 35/ 44
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Simplesso primale
O00000e

Algoritmo del simplesso primale - vertice iniziale

A partire da tale soluzione di base ammissibile per (P,.x), applichiamo I'algoritmo
del simplesso primale per risolvere il problema ausiliario.

A partire da una soluzione di base ottima di (P,.x) si pud costruire una soluzione
di base ammissibile per (P).
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Sensibilita
@0000000

Analisi di sensibilita

Come varia la soluzione ottima (ed il valore ottimo) di un problema di PL primale

se perturbiamo il vettore ¢ della funzione obiettivo oppure il vettore b della
regione ammissibile?

Consideriamo una coppia primale/duale di problemi:
min yTh

maXx CTX
@ { a5, () { ya=ct
y=>0

Supponiamo che X e y siano due soluzioni di base complementari, relative alla
stessa base B, e ottime rispettivamente per i problemi (P) e (D).
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Sensibilita
O®@000000

Perturbazione del vettore ¢

Perturbiamo il vettore ¢ aggiungendo un termine 4.
| problemi primale e duale perturbati diventano:

T
T min y'b
7s) { :ix<(cb+ R (Ds) YT A=(c+d)"
N y=>0

Indichiamo con v(Ps) il valore ottimo del primale perturbato.

Teorema 1
Vale la seguente disuguaglianza: v(Ps) > v(P) + ' x.

Teorema 2
Se yg +3TAZ! >0, allora X & ottima anche per il primale perturbato (Ps).
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Sensibilita

00e00000

Perturbazione del vettore ¢
Esempio. Per il problema primale

max 2x1 + xo

X1 S 2

x1+x <3 (?)

—X1 S 0

—X2 S 0

. . L 2 .
sappiamo che la soluzione ottima & X = (1) relativa alla base B = {1,2}, mentre

' =(1,1,0,0) & la soluzione ottima duale.
Consideriamo ora il problema perturbato:

max (2 + 51)X1 + (1 + 52)X2

X1 S 2
x1+x <3 (Ps)
—X1 S 0
—X2 S 0
_ 1 0 1 1 0 . N .
Poiché Ag = 1 1) ¢ Ag = 1 1) dal Teorema 2 si ha che X & ottima anche per
. 1 0 . 1+61—6,>0
il problema perturbato se (1,1) + (41, d2) (_1 1) > 0, cioe { 146 >0
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Sensibilita
0O00@0000

Perturbazione del vettore b (componenti non di base)

Supponiamo ora di perturbare solo le componenti del vettore b che non

appartengono alla base B (ottima del primale), cioeé sommiamo al vettore b un
vettore ¢ tale che

gi=0 VieB.
| problemi (P) e (D) perturbati diventano:

T

max c¢'x min yT(b+¢)
(fPs) A x < bg (DE) yTA =cT
Avx < by +en y>0

Teorema 3
La soluzione X & ottima anche per il primale perturbato (P.) se e solo se

g > Aix — b; VielN.
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Sensibilita
0O000@000

Perturbazione del vettore b (componenti non di base)

Esempio. Per il problema primale

max 2x1 + xo

X1 S 2

x1+x <3 (:P)
—X1 S 0

—X2 S 0

. . R 2 .
sappiamo che la soluzione ottima & X = (1) relativa alla base B = {1, 2}.
Consideriamo ora il problema perturbato:
max 2x1 + X2
X1 S 2
x1+x <3 (Pe)

—x1 < €3
—x2 < &4

Dal Teorema 3 si ha che X & ottima anche per il problema perturbato se e solo se
ez > —2
€4 Z -1
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Sensibilita
0O0000e00

Perturbazione del vettore b (componenti di base)

Supponiamo che la soluzione ottima x del primale, relativa alla base B, sia non
degenere e perturbiamo solo le componenti del vettore b che appartengono alla
base B, cioe sommiamo al vettore b un vettore ¢ tale che

ei=0 vVieNl.

| problemi (P) e (D) perturbati diventano:

max c'x min yT(b+¢)
(fPE) Agx < bg+¢p (DE) yTA =c'
An x < by y>0

Teorema 4

Se il vettore ¢ & abbastanza piccolo in norma, allora il valore ottimo del primale
perturbato (P.) &

v(P) =v(P)+ ) i

icB
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Sensibilita
00000080
Perturbazione del vettore b (componenti di base)
Esempio. Per il problema primale

max 2x1 + xo
X1 S 2
x1+x <3 (:P)
—X1 S 0
—X2 S 0
. . Lo 2
sappiamo che la soluzione ottima & X = (1

' =(1,1,0,0) & la soluzione ottima duale.
Consideriamo ora il problema perturbato:

) relativa alla base B = {1, 2}, mentre

max 2x1 + xo

x1<2+4+e¢1
x1+x <3+ e (Pe)
—X1 S 0
—X2 S 0
Se ¢ & abbastanza piccolo, allora la soluzione ottima di (P:) & ( 2+ e ) relativa
l4e—e1

sempre alla base B = {1, 2}. Il valore ottimo di (P.) & quindi
v(P:)=2(2+e1)+1+e2—e1=5+¢1+eo.
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Sensibilita
0000000

Esercizio

Consideriamo il problema di produzione 1 (produzione dei collettori rotanti) visto nel
capitolo dei modelli e rilassiamo il vincolo di interezza sulle variabili.

a) Trovare una soluzione ottima ed il valore ottimo del problema.

b) Supponiamo che il costo di produzione dei collettori del modello 1 sia di 50 4+ «
euro, dove « varia nell'intervallo [0,15]. Qual & il valore ottimo di questo problema
perturbato in funzione di «?

c) Supponiamo che il costo di acquisto dei collettori del modello 1 da un'azienda
concorrente sia di 61 — 3 euro, dove 3 varia nell'intervallo [0, 15]. Qual & il valore
ottimo di questo problema perturbato in funzione di 37

d) Supponiamo che I'azienda abbia 10.000 + ~ ore per la fase 1 di lavorazione, dove
varia nell'intervallo [0,500]. Qual & il valore ottimo di questo problema perturbato
in funzione di 7

e) Supponiamo che I'azienda disponga di 5.000 + § ore per la fase 2 di lavorazione,
dove § varia nell'intervallo [0,500]. Qual & il valore ottimo di questo problema
perturbato in funzione di §?
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