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Forma generale e forma canonica

Definizione
Un problema di Programmazione Lineare (PL) consiste nel trovare il massimo o il
minimo di una funzione lineare di n variabili reali soggette a vincoli lineari di
uguaglianza o di disuguaglianza, cioè























max(o min) cT x
A1x ≤ b1
A2x ≥ b2
A3x = b3
(x ∈ Rn)
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Forma generale e forma canonica

Definizione
Un problema di Programmazione Lineare (PL) consiste nel trovare il massimo o il
minimo di una funzione lineare di n variabili reali soggette a vincoli lineari di
uguaglianza o di disuguaglianza, cioè























max(o min) cT x
A1x ≤ b1
A2x ≥ b2
A3x = b3
(x ∈ Rn)

Definizione
Un problema nella forma

{

max cT x

Ax ≤ b

è chiamato problema di PL in forma canonica.
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Forma generale e forma canonica

Teorema
Ogni problema di PL può essere riscritto in modo equivalente in forma canonica.

Dim. min cTx = −max (−cT x)

aT x ≥ b è equivalente a −aT x ≤ −b

aT x = b è equivalente a

{

aT x ≤ b

−aT x ≤ −b

Esercizio
Scrivere in forma canonica il seguente problema di PL:















min 2x1 + 5x2
6x1 + 9x2 = 17
x1 ≥ 0
x1 + 3x2 ≥ 1
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Combinazioni convesse

Definizione
Un vettore x ∈ Rn è detto combinazione convessa dei vettori x1, . . . , xm ∈ Rn se

esistono coefficienti α1, . . . , αm ∈ [0, 1], con
m
∑

i=1

αi = 1, tali che x =
m
∑

i=1

αi x
i .
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Combinazioni convesse

Definizione
Un vettore x ∈ Rn è detto combinazione convessa dei vettori x1, . . . , xm ∈ Rn se

esistono coefficienti α1, . . . , αm ∈ [0, 1], con
m
∑

i=1

αi = 1, tali che x =
m
∑

i=1

αi x
i .

Esempio. (2, 2) è combinazione convessa di (4, 0) e (1, 3). Infatti:

(2, 2) =
1

3
(4, 0) +

2

3
(1, 3).

Esempio. (2, 2) è combinazione convessa di (1, 1), (3, 1) e (2, 3). Infatti:

(2, 2) =
1

4
(1, 1) +

1

4
(3, 1) +

1

2
(2, 3).
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Combinazioni convesse

Definizione
Un vettore x ∈ Rn è detto combinazione convessa dei vettori x1, . . . , xm ∈ Rn se

esistono coefficienti α1, . . . , αm ∈ [0, 1], con
m
∑

i=1

αi = 1, tali che x =
m
∑

i=1

αi x
i .

Esempio. (2, 2) è combinazione convessa di (4, 0) e (1, 3). Infatti:

(2, 2) =
1

3
(4, 0) +

2

3
(1, 3).

Esempio. (2, 2) è combinazione convessa di (1, 1), (3, 1) e (2, 3). Infatti:

(2, 2) =
1

4
(1, 1) +

1

4
(3, 1) +

1

2
(2, 3).

Definizione
L’involucro convesso di un insieme K ⊂ Rn, denotato con conv(K ), è l’insieme di
tutte le combinazioni convesse di punti di K .

Esercizio. Qual è l’involucro convesso dei punti (1, 1), (3, 1) e (2, 3)?
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Esempio. (2, 2) è combinazione convessa di (1, 1), (3, 1) e (2, 3). Infatti:

(2, 2) =
1

4
(1, 1) +

1

4
(3, 1) +

1

2
(2, 3).

Definizione
L’involucro convesso di un insieme K ⊂ Rn, denotato con conv(K ), è l’insieme di
tutte le combinazioni convesse di punti di K .

Esercizio. Qual è l’involucro convesso dei punti (1, 1), (3, 1) e (2, 3)?

Definizione
Un insieme K ⊆ Rn è detto convesso se per ogni x , y ∈ K il vettore
αx + (1− α)y ∈ K per ogni α ∈ [0, 1].
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Poliedri

L’insieme {x ∈ Rn : aT x ≤ b} è un semispazio chiuso di Rn.

Definizione
Un poliedro in Rn è l’intersezione di un numero finito di semispazi chiusi, oppure, è
l’insieme delle soluzioni di un sistema di disequazioni lineari Ax ≤ b.
[La regione ammissibile di ogni problema di PL è un poliedro.]

Un poliedro P è detto limitato se esiste M > 0 tale che ‖x‖ ≤ M per ogni x ∈ P, ossia
se è contenuto in una opportuna sfera centrata nell’origine.

Esempi.

P1 = {x ∈ R2 : 1 ≤ x1 ≤ 4, 1 ≤ x2 ≤ 3} è un poliedro limitato.

P2 = {x ∈ R2 : x1 ≥ 1, x2 ≥ 1, x1 + x2 ≥ 3} è un poliedro illimitato.

D’ora in poi considereremo solo poliedri limitati.
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Vertici

Definizione
Un punto x di un poliedro P è chiamato vertice se non esistono due punti
y , z ∈ P diversi da x tali che x è combinazione convessa di y e z .

Esempio.
I vertici di P = {x ∈ R2 : 1 ≤ x1 ≤ 4, 1 ≤ x2 ≤ 3} sono (1, 1), (1, 3), (4, 1) e
(4, 3).

Teorema
Ogni poliedro non vuoto e limitato ha almeno un vertice.
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Teorema di decomposizione dei poliedri (limitati)

Teorema
Se P è un poliedro non vuoto e limitato, allora P = conv{v1, . . . , vm}, dove
v1, . . . , vm sono i vertici di P .
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Teorema di decomposizione dei poliedri (limitati)

Teorema
Se P è un poliedro non vuoto e limitato, allora P = conv{v1, . . . , vm}, dove
v1, . . . , vm sono i vertici di P .

Esercizio. Scrivere la decomposizione dei seguenti poliedri:

P1 = {x ∈ R2 : 1 ≤ x1 ≤ 4, 1 ≤ x2 ≤ 3},

P2 = {x ∈ R2 : x1 ≥ 1, x2 ≥ 1, x1 + x2 ≤ 3}.
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Direzioni di crescita e di decrescita

Definizione
Consideriamo un problema di PL in forma canonica

{

max cT x

Ax ≤ b
(P)

Un vettore d è detto direzione di crescita per la funzione obiettivo di (P) se cTd > 0.

Un vettore d è detto direzione di decrescita per la funzione obiettivo di (P) se cTd < 0.
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Direzioni di crescita e di decrescita

Definizione
Consideriamo un problema di PL in forma canonica

{

max cT x

Ax ≤ b
(P)

Un vettore d è detto direzione di crescita per la funzione obiettivo di (P) se cTd > 0.

Un vettore d è detto direzione di decrescita per la funzione obiettivo di (P) se cTd < 0.

Esempio. Dato il problema














max 2x1 − 3x2
x1 ≥ 1
x2 ≥ 1
x1 + x2 ≤ 3

il vettore d = (2, 1) è una direzione di crescita perché (2,−3)T (2, 1) = 1 > 0,
mentre d = (1, 1) è una direzione di decrescita perché (2,−3)T (1, 1) = −1 < 0.
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Teorema fondamentale della PL

Consideriamo un problema di PL in forma canonica

{

max cT x

x ∈ P = {x ∈ Rn : Ax ≤ b}
(P)

dove P è un poliedro non vuoto e limitato.

Teorema fondamentale della PL
Il valore ottimo di (P) è finito ed un vertice di P è una soluzione ottima di (P).
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Teorema fondamentale della PL

Esempio. Consideriamo il problema















max 2x1 − 3x2
x1 ≥ 1
x2 ≥ 1
x1 + x2 ≤ 3

Sappiamo che P = conv{(1, 1), (1, 2), (2, 1)}. La soluzione ottima è il vertice (2, 1) ed il
valore ottimo è 1.

Esempio. Consideriamo ora il problema















max x1 + x2

x1 ≥ 1
x2 ≥ 1
x1 + x2 ≤ 3

I vertici (1, 2) e (2, 1) sono entrambi soluzioni ottime. Quindi anche tutti i punti sul
segmento compreso tra (1, 2) e (2, 1) sono soluzioni ottime.
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Quante soluzioni ottime ha un problema di PL?

Corollario. Se la regione ammissibile P è non vuota e limitata, allora il problema
(P) o ha un’unica soluzione ottima oppure ne ha infinite.

Infatti, se esistono due soluzioni ottime x e x ′ diverse, con cTx = cT x ′ = v , allora
anche αx + (1− α)x ′ è ottima per ogni α ∈ (0, 1). Infatti, αx + (1− α)x ′ è
ammissibile e

cT [αx + (1− α)x ′] = αcT x + (1 − α)cT x ′ = αv + (1− α)v = v
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Problema duale

Consideriamo un problema di PL forma canonica

{

max cT x

x ∈ P = {x ∈ Rn : Ax ≤ b}
(P)

che d’ora in poi sarà chiamato problema primale.

Definizione
Il problema di PL definito come

{

min yTb

y ∈ D = {y ∈ Rm : yTA = cT , y ≥ 0}
(D)

è chiamato problema duale di (P).

Primale Duale
Obiettivo max min
Variabili n m

Vincoli m n
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Problema duale

Esempio. Il problema duale di















max 4x1 + 5x2
x1 ≤ 1
x2 ≤ 2
x1 + x2 ≤ 3

A =





1 0
0 1
1 1



 b =





1
2
3



 c =

(

4
5

)

(P)

è il problema














min y1 + 2y2 + 3y3
y1 + y3 = 4
y2 + y3 = 5
y ≥ 0

(D)
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Problema duale

Esempio. Un allevatore deve preparare la miscela del mangime per i suoi animali
mescolando orzo e avena. È noto che un kg di orzo contiene 730 g di carboidrati,
120 g di proteine e 23 g di grassi, mentre un kg di avena contiene 662 g di
carboidrati, 169 g di proteine e 69 g di grassi. Per ogni animale il mangime deve
fornire un fabbisogno giornaliero di almeno 500 g di carboidrati, 100 g di proteine
e 50 g di grassi. Sapendo che l’orzo costa 0.3 e/kg e l’avena 0.28 e/kg,
l’allevatore vuole trovare la composizione del mangime che rispetti il fabbisogno
dei vari principi nutritivi in modo da minimizzare il costo complessivo.

Variabili:
x1 = numero di kg di orzo contenuti nel mangime giornaliero di ogni animale
x2 = numero di kg di avena contenuti nel mangime giornaliero di ogni animale

Modello: min 0.3x1 + 0.28x2

730x1 + 662x2 ≥ 500

120x1 + 169x2 ≥ 100

23x1 + 69x2 ≥ 50

x1, x2 ≥ 0
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Problema duale

Il problema duale si può scrivere nel modo seguente:

max 500y1 + 100y2 + 50y3

730y1 + 120y2 + 23y3 ≤ 0.3

662y1 + 169y2 + 69y3 ≤ 0.28

y1, y2, y3 ≥ 0

e può essere interpretato come il “problema del venditore di pillole”. Un venditore
ha a disposizione 3 tipi di pillole: pillole di carboidrati, pillole di proteine e pillole
di grassi (ogni pillola contiene 1 g del corrispondente principio nutritivo). Il
venditore deve stabilire i prezzi di vendita delle pillole in modo che il ricavato della
vendita sia massimo e che i prezzi siano competitivi, ossia che l’allevatore non
ritenga svantaggioso acquistare le pillole invece di orzo e avena.

Le variabili y1, y2, y3 sono i prezzi unitari delle pillole.
La funzione obiettivo 500y1 + 100y2 + 50y3 è il ricavato della vendita.
I vincoli impongono che la dieta a base di pillole non sia più costosa della dieta a
base di orzo e avena.
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Proprietà del problema duale

Perché è chiamato duale?
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Proprietà del problema duale

Perché è chiamato duale?

Teorema
Il duale di (D) è equivalente al problema (P).

M.C. Escher, Drawing Hands, 1948.
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Proprietà del problema duale

Consideriamo un problema primale

{

max cT x

x ∈ P = {x ∈ Rn : Ax ≤ b}
(P)

in cui il poliedro P è non vuoto e limitato.

Teorema di dualità forte
Il valore ottimo di (D) coincide con il valore ottimo di (P).
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Proprietà del duale

Esempio. Qual è il valore ottimo del seguente problema con 4 variabili?















min y1 + y2 + y3 + y4
y1 + y2 − y3 − y4 = 2
y1 − y2 + y3 − y4 = 1
y ≥ 0

(*)
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Proprietà del duale

Esempio. Qual è il valore ottimo del seguente problema con 4 variabili?















min y1 + y2 + y3 + y4
y1 + y2 − y3 − y4 = 2
y1 − y2 + y3 − y4 = 1
y ≥ 0

(*)

Questo problema è il duale di























max 2x1 + x2
x1 + x2 ≤ 1
x1 − x2 ≤ 1
−x1 + x2 ≤ 1
−x1 − x2 ≤ 1

che è facile da risolvere graficamente: la soluzione ottima è (1, 0) ed il valore
ottimo è 2.
Il teorema di dualità forte garantisce che anche il valore ottimo di (*) è 2.
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Condizioni di ottimalità

Come si può riconoscere una soluzione ottima?
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Condizioni di ottimalità

Come si può riconoscere una soluzione ottima?

Teorema (degli scarti complementari)

Supponiamo che x̄ sia una soluzione ammissibile del primale (P).
Allora x̄ è ottima se e solo se esiste una soluzione ȳ del seguente sistema:







ȳTA = cT (ammissibilità
ȳ ≥ 0 duale)
ȳT (b − Ax̄) = 0 (x̄ e ȳ sono in scarti complementari)

Qualunque soluzione ȳ di questo sistema è una soluzione ottima del duale (D).

Notiamo che il sistema sopra è equivalente al seguente sistema:






ȳTA = cT

ȳ ≥ 0
ȳi(bi − Ai x̄) = 0 ∀ i = 1, . . . ,m
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Scarti complementari

Esempio. Dire se x̄ = (1, 1) è ottima per il problema






















max 3x1 + 4x2
2x1 + x2 ≤ 3
x1 + 2x2 ≤ 3
−x1 ≤ 0
−x2 ≤ 0

x̄ è ottima se e solo se esiste una soluzione del sistema














2y1 + y2 − y3 = 3
y1 + 2y2 − y4 = 4
y ≥ 0
yT (0, 0, 1, 1) = 0

che equivale a














y3 = y4 = 0
2y1 + y2 = 3
y1 + 2y2 = 4
y1, y2 ≥ 0

Poiché ȳ = (2/3, 5/3, 0, 0) è una soluzione del sistema, x̄ è ottima.
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Scarti complementari

Esempio. Dire se x̄ = (0, 0) è ottima per il problema






















max 3x1 + 4x2
2x1 + x2 ≤ 3
x1 + 2x2 ≤ 3
−x1 ≤ 0
−x2 ≤ 0

x̄ è ottima se e solo se esiste una soluzione del sistema














2y1 + y2 − y3 = 3
y1 + 2y2 − y4 = 4
y ≥ 0
yT (3, 3, 0, 0) = 0

che equivale a














y1 = y2 = 0
y3 = −3
y4 = −4
y3, y4 ≥ 0

che è impossibile, quindi x̄ non è ottima.
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Scarti complementari

Esercizio. Consideriamo il problema























max αx1 + 4x2
2x1 + x2 ≤ 3
x1 + 2x2 ≤ 3
−x1 ≤ 0
−x2 ≤ 0

Per quali valori di α il vettore x̄ = (1, 1) è ottimo?

Esercizio. Trovare tutte le soluzioni ottime del problema























max 4x1 + 7x2
x1 ≤ 2
−x1 ≤ −1
x2 ≤ 4
−x2 ≤ −3

e del suo duale utilizzando il teorema degli scarti complementari.
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Geometria della PL Teo fondam. PL Dualità Cond. ottimalità Basi e vertici Simplesso primale Sensibilità

Caratterizzazione algebrica dei vertici

Sappiamo che se il poliedro P è non vuoto e limitato, allora un vertice di P è
ottimo per il primale.

Ma i vertici di un poliedro sono definiti in modo geometrico → abbiamo bisogno
di proprietà algebriche dei vertici.
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Caratterizzazione algebrica dei vertici

Sappiamo che se il poliedro P è non vuoto e limitato, allora un vertice di P è
ottimo per il primale.

Ma i vertici di un poliedro sono definiti in modo geometrico → abbiamo bisogno
di proprietà algebriche dei vertici.

Consideriamo un problema primale

{

max cT x

Ax ≤ b

dove il poliedro P = {x ∈ Rn : Ax ≤ b} è non vuoto e limitato.
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Caratterizzazione algebrica dei vertici

Definizione
Una base è un insieme B di n indici di riga tali che la sottomatrice quadrata AB

(formata dalle righe Ai con i ∈ B) sia invertibile, cioè det(AB ) 6= 0. Indichiamo
con N l’insieme degli indici non in base. Possiamo partizionare A e b come segue:

A =

(

AB

AN

)

b =

(

bB
bN

)

Data una base B, il vettore x̄ = A−1
B bB è chiamato soluzione di base primale.

x̄ è ammissibile se AN x̄ ≤ bN (tutti i vincoli non di base sono soddisfatti)
x̄ non è ammissibile se esiste i ∈ N tale che Ai x̄ > bi (almeno un vincolo non di
base è violato)

x̄ è degenere se esiste i ∈ N tale che Ai x̄ = bi (almeno un vincolo non di base è
attivo in x̄)
x̄ è non degenere se Ai x̄ 6= bi per ogni i ∈ N (nessun vincolo non di base è attivo
in x̄)

Mauro Passacantando Dinamica dei Sistemi Aziendali 24 / 44 –
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Caratterizzazione algebrica dei vertici

Esempio. Consideriamo























max 2x1 + x2

x1 ≤ 2
x1 + x2 ≤ 3
−x1 ≤ 0
−x2 ≤ 0

A =









1 0
1 1
−1 0
0 −1









b =









2
3
0
0









x1

x2

-1 0 1 2 3 4
-1

0

1

2

3

4
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Caratterizzazione algebrica dei vertici

Esempio. Consideriamo























max 2x1 + x2

x1 ≤ 2
x1 + x2 ≤ 3
−x1 ≤ 0
−x2 ≤ 0

A =









1 0
1 1
−1 0
0 −1









b =









2
3
0
0









x1

x2

-1 0 1 2 3 4
-1

0

1

2

3

4

B = {1, 2} è una base perché AB =

(

1 0
1 1

)

è invertibile: det(AB) = 1.

La relativa soluzione di base primale è x̄ = A−1
B bB =

(

1 0
−1 1

)(

2
3

)

=

(

2
1

)

.

x̄ è ammissibile perché AN x̄ =

(

−1 0
0 −1

)(

2
1

)

=

(

−2
−1

)

≤

(

0
0

)

= bN

e non degenere perché Ai x̄ 6= bi per ogni i ∈ N.
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Caratterizzazione algebrica dei vertici

Esempio. Consideriamo























max 2x1 + x2

x1 ≤ 2
x1 + x2 ≤ 3
−x1 ≤ 0
−x2 ≤ 0

A =









1 0
1 1
−1 0
0 −1









b =









2
3
0
0









x1

x2

-1 0 1 2 3 4
-1

0

1

2

3

4

B = {1, 2} è una base perché AB =

(

1 0
1 1

)

è invertibile: det(AB) = 1.

La relativa soluzione di base primale è x̄ = A−1
B bB =

(

1 0
−1 1

)(

2
3

)

=

(

2
1

)

.

x̄ è ammissibile perché AN x̄ =

(

−1 0
0 −1

)(

2
1

)

=

(

−2
−1

)

≤

(

0
0

)

= bN

e non degenere perché Ai x̄ 6= bi per ogni i ∈ N.

B = {1, 3} non è una base perché AB =

(

1 0
−1 0

)

non è invertibile: det(AB) = 0.
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Caratterizzazione algebrica dei vertici

Esempio. Consideriamo























max 2x1 + x2

x1 ≤ 2
x1 + x2 ≤ 3
−x1 ≤ 0
−x2 ≤ 0

A =









1 0
1 1
−1 0
0 −1









b =









2
3
0
0









x1

x2

-1 0 1 2 3 4
-1

0

1

2

3

4

B = {1, 2} è una base perché AB =

(

1 0
1 1

)

è invertibile: det(AB) = 1.

La relativa soluzione di base primale è x̄ = A−1
B bB =

(

1 0
−1 1

)(

2
3

)

=

(

2
1

)

.

x̄ è ammissibile perché AN x̄ =

(

−1 0
0 −1

)(

2
1

)

=

(

−2
−1

)

≤

(

0
0

)

= bN

e non degenere perché Ai x̄ 6= bi per ogni i ∈ N.

B = {1, 3} non è una base perché AB =

(

1 0
−1 0

)

non è invertibile: det(AB) = 0.

B = {2, 4} è una base e la relativa soluzione di base primale non è ammissibile:

AB =

(

1 1
0 −1

)

, x̄ =

(

3
0

)

, AN x̄ =

(

3
−3

)

�

(

2
0

)

= bN e non degenere.
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Caratterizzazione algebrica dei vertici

Perché le soluzioni di base sono importanti?

Teorema
Sia P = {x ∈ Rn : Ax ≤ b}.
x̄ è un vertice di P se e solo se x̄ è una soluzione di base primale ammissibile.
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Caratterizzazione algebrica dei vertici

Perché le soluzioni di base sono importanti?

Teorema
Sia P = {x ∈ Rn : Ax ≤ b}.
x̄ è un vertice di P se e solo se x̄ è una soluzione di base primale ammissibile.

Come riconoscere un vertice ottimo?

Definizione

Data una base B, il vettore ȳ =

(

ȳB
ȳN

)

dove ȳT
B = cTA−1

B , ȳN = 0

è chiamato soluzione di base duale.

ȳ è ammissibile se ȳB ≥ 0
ȳ non è ammissibile se esiste i ∈ B tale che ȳi < 0

ȳ è degenere se esiste i ∈ B tale che ȳi = 0
ȳ è non degenere se ȳi 6= 0 per ogni i ∈ B
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Caratterizzazione algebrica dei vertici

Teorema (condizione sufficiente di ottimalità)

Sia x̄ una soluzione di base primale ammissibile relativa alla base B.
Se la soluzione di base duale ȳ relativa alla stessa base B è ammissibile, allora x̄ è
ottima per il problema primale (e ȳ è ottima per il duale).

Dim. Due soluzioni di base x̄ e ȳ relative alla stessa base sono sempre in scarti
complementari:

ȳT (b − Ax̄) = (ȳT
B , ȳT

N )

(

bB − AB x̄

bN − AN x̄

)

= (ȳT
B , 0)

(

0
bN − AN x̄

)

= 0.

Se x̄ e ȳ sono anche ammissibili (rispettivamente per il primale e duale), allora
sono anche ottime.
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Caratterizzazione algebrica dei vertici

Esempio. Consideriamo il problema






















max 2x1 + x2
x1 ≤ 2
x1 + x2 ≤ 3
−x1 ≤ 0
−x2 ≤ 0

A =









1 0
1 1
−1 0
0 −1









b =









2
3
0
0









c =

(

2
1

)

x1

x2

-1 0 1 2 3 4
-1

0

1

2

3

4
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Caratterizzazione algebrica dei vertici

Esempio. Consideriamo il problema






















max 2x1 + x2
x1 ≤ 2
x1 + x2 ≤ 3
−x1 ≤ 0
−x2 ≤ 0

A =









1 0
1 1
−1 0
0 −1









b =









2
3
0
0









c =

(

2
1

)

x1

x2

-1 0 1 2 3 4
-1

0

1

2

3

4

x̄ = (2, 1) è una soluzione di base primale relativa alla base B = {1, 2}.
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Caratterizzazione algebrica dei vertici

Esempio. Consideriamo il problema






















max 2x1 + x2
x1 ≤ 2
x1 + x2 ≤ 3
−x1 ≤ 0
−x2 ≤ 0

A =









1 0
1 1
−1 0
0 −1









b =









2
3
0
0









c =

(

2
1

)

x1

x2

-1 0 1 2 3 4
-1

0

1

2

3

4

A1

A2 c

x̄ = (2, 1) è una soluzione di base primale relativa alla base B = {1, 2}.
La soluzione di base duale relativa a B è

ȳ =

(

ȳB
ȳN

)

dove ȳ
T
B = c

T
A

−1
B = (2, 1)

(

1 0
−1 1

)

= (1, 1), ȳN = 0.

ȳ è ammissibile perché ȳB ≥ 0, quindi x̄ è ottima.
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Caratterizzazione algebrica dei vertici

In generale, la condizione di ottimalità basata sull’ammissibilità della soluzione di base
duale è sufficiente ma non necessaria.

Esempio. Consideriamo il problema































max 2x1 + x2
x1 ≤ 2
x1 + x2 ≤ 3
−x1 ≤ 0
−x2 ≤ 0
3x1 + x2 ≤ 7

A =













1 0
1 1
−1 0
0 −1
3 1













b =













2
3
0
0
7













c =

(

2
1

)

x1

x2

-1 0 1 2 3 4 5
-1

0

1

2

3

4
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Caratterizzazione algebrica dei vertici

In generale, la condizione di ottimalità basata sull’ammissibilità della soluzione di base
duale è sufficiente ma non necessaria.

Esempio. Consideriamo il problema































max 2x1 + x2
x1 ≤ 2
x1 + x2 ≤ 3
−x1 ≤ 0
−x2 ≤ 0
3x1 + x2 ≤ 7

A =













1 0
1 1
−1 0
0 −1
3 1













b =













2
3
0
0
7













c =

(

2
1

)

x1

x2

-1 0 1 2 3 4 5
-1

0

1

2

3

4

A1

A5c

x̄ = (2, 1) è ottima ed è una soluzione di base primale (degenere) relativa alla base
B = {1, 5}.
La soluzione di base duale relativa a B è

ȳ =

(

ȳB
ȳN

)

dove ȳ
T
B = c

T
A

−1
B = (2, 1)

(

1 0
−3 1

)

= (−1, 1), ȳN = 0.

ȳ non è ammissibile perché ȳ1 < 0, ma x̄ è ottima.
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Algoritmo del simplesso primale

Consideriamo un problema primale

{

max cT x

Ax ≤ b

in cui il poliedro P = {x ∈ Rn : Ax ≤ b} è non vuoto e limitato, quindi esistono vertici
(soluzioni di base ammissibili) di P.

L’algoritmo del simplesso primale parte da un vertice del poliedro primale.

Se il vertice del poliedro duale corrispondente alla stessa base è ammissibile per il duale,
allora il vertice primale è ottimo e l’algoritmo si ferma.
Altrimenti l’algoritmo trova

◮ una direzione di crescita per il primale

◮ il passo di spostamento lungo tale direzione

◮ una nuova base, cambiando un solo indice rispetto alla vecchia base, in modo che la
nuova soluzione di base primale rimanga ammissibile (il nuovo vertice primale è
adiacente al vertice precedente).

E cos̀ı via . . .
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Algoritmo del simplesso primale

1. Trova una base B tale che la soluzione di base primale x̄ = A−1
B bB sia ammissibile

2. Calcola la soluzione di base duale ȳ =

(

ȳB
ȳN

)

, dove ȳT
B = cTA−1

B , ȳN = 0

3. Se ȳB ≥ 0 allora STOP [x̄ è ottima per il primale, ȳ è ottima per il duale]

altrimenti trova l’indice uscente da B:

h = min{i ∈ B : ȳi < 0} (regola anticiclo di Bland),

poni W = −A−1
B e denota W h la h–esima colonna di W

(W h è la direzione di spostamento)

4. Calcola il passo di spostamento:

ϑ := min

{

bi − Ai x̄

Ai W h
: i ∈ N, Ai W

h > 0

}

,

e trova l’indice entrante

k = min

{

i ∈ N : Ai W
h > 0,

bi − Ai x̄

Ai W h
= ϑ

}

(regola anticiclo di Bland),

5. Aggiorna la base B = B \ {h} ∪ {k}, calcola x̄ = A−1
B bB e torna al passo 2
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Algoritmo del simplesso primale

Trova base B tale che x̄ = A
−1
B

bB sia ammissibile(P)

{

max cT x

Ax ≤ b

Calcola soluzione base duale: ȳT
B = cTA

−1
B

, ȳN = 0

ȳB ≥ 0?

Trova l’indice uscente: h = min{i ∈ B : ȳi < 0},

Poni W = −A
−1
B

(W h è la h–esima colonna di W )

Trova ϑ = min

{

bi − Ai x̄

Ai W h
: i ∈ N, Ai W

h
> 0

}

Trova l’indice entrante:

k = min

{

i ∈ N : Ai W
h > 0,

bi − Ai x̄

Ai W h
= ϑ

}

Aggiorna la base: B = B \ {h} ∪ {k}

Calcola x̄ = A
−1
B

bB

x̄ ottima di (P)

ȳ ottima di (D)

si

no
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Algoritmo del simplesso primale

Teorema
L’algoritmo del simplesso primale trova un vertice ottimo dopo un numero finito di
iterazioni.
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Algoritmo del simplesso primale

Esempio. Risolviamo il problema























max 2x1 + x2
x1 ≤ 2
x1 + x2 ≤ 3
−x1 ≤ 0
−x2 ≤ 0

A =









1 0
1 1
−1 0
0 −1









b =









2
3
0
0









c =

(

2
1

)

x1

x2

-1 0 1 2 3 4
-1

0

1

2

3

4

partendo dalla base B = {3, 4}.
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Algoritmo del simplesso primale

Esempio. Risolviamo il problema























max 2x1 + x2
x1 ≤ 2
x1 + x2 ≤ 3
−x1 ≤ 0
−x2 ≤ 0

A =









1 0
1 1
−1 0
0 −1









b =









2
3
0
0









c =

(

2
1

)

x1

x2

-1 0 1 2 3 4
-1

0

1

2

3

4

A3

A4

c

W 3

partendo dalla base B = {3, 4}.

Iterazione 1. AB =

(

−1 0
0 −1

)

= A−1
B , x̄ =

(

0
0

)

è ammissibile.

ȳT
B = (2, 1)

(

−1 0
0 −1

)

= (−2,−1), h = 3, W 3 =

(

1
0

)

. A1W
3 = 1, A2W

3 = 1,

ϑ = min{2/1, 3/1} = 2, k = 1.
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Geometria della PL Teo fondam. PL Dualità Cond. ottimalità Basi e vertici Simplesso primale Sensibilità

Algoritmo del simplesso primale

Esempio. Risolviamo il problema























max 2x1 + x2
x1 ≤ 2
x1 + x2 ≤ 3
−x1 ≤ 0
−x2 ≤ 0

A =









1 0
1 1
−1 0
0 −1









b =









2
3
0
0









c =

(

2
1

)

x1

x2

-1 0 1 2 3 4
-1

0

1

2

3

4

A1

A4

cW 4

partendo dalla base B = {3, 4}.

Iterazione 1. AB =

(

−1 0
0 −1

)

= A−1
B , x̄ =

(

0
0

)

è ammissibile.

ȳT
B = (2, 1)

(

−1 0
0 −1

)

= (−2,−1), h = 3, W 3 =

(

1
0

)

. A1W
3 = 1, A2W

3 = 1,

ϑ = min{2/1, 3/1} = 2, k = 1.

Iterazione 2. B = {1, 4}, AB =

(

1 0
0 −1

)

= A−1
B , x̄ =

(

2
0

)

,

ȳT
B = (2, 1)

(

1 0
0 −1

)

= (2,−1), h = 4, W 4 =

(

0
1

)

. A2W
4 = 1, A3W

4 = 0, k = 2.
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Geometria della PL Teo fondam. PL Dualità Cond. ottimalità Basi e vertici Simplesso primale Sensibilità

Algoritmo del simplesso primale

Esempio. Risolviamo il problema























max 2x1 + x2
x1 ≤ 2
x1 + x2 ≤ 3
−x1 ≤ 0
−x2 ≤ 0

A =









1 0
1 1
−1 0
0 −1









b =









2
3
0
0









c =

(

2
1

)

x1

x2

-1 0 1 2 3 4
-1

0

1

2

3

4

A1

A2

c

partendo dalla base B = {3, 4}.

Iterazione 1. AB =

(

−1 0
0 −1

)

= A−1
B , x̄ =

(

0
0

)

è ammissibile.

ȳT
B = (2, 1)

(

−1 0
0 −1

)

= (−2,−1), h = 3, W 3 =

(

1
0

)

. A1W
3 = 1, A2W

3 = 1,

ϑ = min{2/1, 3/1} = 2, k = 1.

Iterazione 2. B = {1, 4}, AB =

(

1 0
0 −1

)

= A−1
B , x̄ =

(

2
0

)

,

ȳT
B = (2, 1)

(

1 0
0 −1

)

= (2,−1), h = 4, W 4 =

(

0
1

)

. A2W
4 = 1, A3W

4 = 0, k = 2.

Iterazione 3. B = {1, 2}, AB =

(

1 0
1 1

)

, x̄ =

(

2
1

)

, ȳT
B = (1, 1) ≥ 0 stop, x̄ è ottimo.
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Geometria della PL Teo fondam. PL Dualità Cond. ottimalità Basi e vertici Simplesso primale Sensibilità

Algoritmo del simplesso primale - vertice iniziale

Come si trova una soluzione di base ammissibile per (P)?

Supponiamo che B sia una base e che x̄ = A−1
B bB non sia ammissibile.

Definiamo gli insiemi

U = {i ∈ N : Ai x̄ ≤ bi}, V = {i ∈ N : Ai x̄ > bi},

e costruiamo il problema ausiliario primale:


















max
(x,ε)

−
∑

i∈V

εi

Ai x ≤ bi per i ∈ B ∪ U

Ai x − εi ≤ bi per i ∈ V

−εi ≤ 0 per i ∈ V

(Paux)

Il vettore (x̄ , ε̄), con
ε̄ = AV x̄ − bV ≥ 0,

è una soluzione di base ammissibile per (Paux) relativa alla base B ∪ V , con
matrice di base uguale a

(

AB 0
AV −I

)

.
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Geometria della PL Teo fondam. PL Dualità Cond. ottimalità Basi e vertici Simplesso primale Sensibilità

Algoritmo del simplesso primale - vertice iniziale

A partire da tale soluzione di base ammissibile per (Paux), applichiamo l’algoritmo
del simplesso primale per risolvere il problema ausiliario.

A partire da una soluzione di base ottima di (Paux) si può costruire una soluzione
di base ammissibile per (P).
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Geometria della PL Teo fondam. PL Dualità Cond. ottimalità Basi e vertici Simplesso primale Sensibilità

Analisi di sensibilità

Come varia la soluzione ottima (ed il valore ottimo) di un problema di PL primale
se perturbiamo il vettore c della funzione obiettivo oppure il vettore b della
regione ammissibile?

Consideriamo una coppia primale/duale di problemi:

(P)

{

max cTx

A x ≤ b
(D)







min yTb

yTA = cT

y ≥ 0

Supponiamo che x̄ e ȳ siano due soluzioni di base complementari, relative alla
stessa base B, e ottime rispettivamente per i problemi (P) e (D).
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Geometria della PL Teo fondam. PL Dualità Cond. ottimalità Basi e vertici Simplesso primale Sensibilità

Perturbazione del vettore c

Perturbiamo il vettore c aggiungendo un termine δ.
I problemi primale e duale perturbati diventano:

(Pδ)

{

max (c + δ)Tx
A x ≤ b

(Dδ)







min yTb

yTA = (c + δ)T

y ≥ 0

Indichiamo con v(Pδ) il valore ottimo del primale perturbato.

Teorema 1
Vale la seguente disuguaglianza: v(Pδ) ≥ v(P) + δTx̄ .

Teorema 2
Se ȳT

B + δTA−1
B ≥ 0, allora x̄ è ottima anche per il primale perturbato (Pδ).
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Geometria della PL Teo fondam. PL Dualità Cond. ottimalità Basi e vertici Simplesso primale Sensibilità

Perturbazione del vettore c

Esempio. Per il problema primale






















max 2x1 + x2

x1 ≤ 2
x1 + x2 ≤ 3
−x1 ≤ 0
−x2 ≤ 0

(P)

sappiamo che la soluzione ottima è x̄ =

(

2
1

)

relativa alla base B = {1, 2}, mentre

ȳT = (1, 1, 0, 0) è la soluzione ottima duale.
Consideriamo ora il problema perturbato:























max (2 + δ1)x1 + (1 + δ2)x2
x1 ≤ 2
x1 + x2 ≤ 3
−x1 ≤ 0
−x2 ≤ 0

(Pδ)

Poiché AB =

(

1 0
1 1

)

e A−1
B =

(

1 0
−1 1

)

, dal Teorema 2 si ha che x̄ è ottima anche per

il problema perturbato se (1, 1) + (δ1, δ2)

(

1 0
−1 1

)

≥ 0, cioè

{

1 + δ1 − δ2 ≥ 0
1 + δ2 ≥ 0
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Geometria della PL Teo fondam. PL Dualità Cond. ottimalità Basi e vertici Simplesso primale Sensibilità

Perturbazione del vettore b (componenti non di base)

Supponiamo ora di perturbare solo le componenti del vettore b che non
appartengono alla base B (ottima del primale), cioè sommiamo al vettore b un
vettore ε tale che

εi = 0 ∀ i ∈ B.

I problemi (P) e (D) perturbati diventano:

(Pε)







max cTx

AB x ≤ bB
AN x ≤ bN + εN

(Dε)







min yT(b + ε)
yTA = cT

y ≥ 0

Teorema 3
La soluzione x̄ è ottima anche per il primale perturbato (Pε) se e solo se

εi ≥ Ai x̄ − bi ∀ i ∈ N .
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Geometria della PL Teo fondam. PL Dualità Cond. ottimalità Basi e vertici Simplesso primale Sensibilità

Perturbazione del vettore b (componenti non di base)

Esempio. Per il problema primale























max 2x1 + x2
x1 ≤ 2
x1 + x2 ≤ 3
−x1 ≤ 0
−x2 ≤ 0

(P)

sappiamo che la soluzione ottima è x̄ =

(

2
1

)

relativa alla base B = {1, 2}.

Consideriamo ora il problema perturbato:























max 2x1 + x2
x1 ≤ 2
x1 + x2 ≤ 3
−x1 ≤ ε3
−x2 ≤ ε4

(Pε)

Dal Teorema 3 si ha che x̄ è ottima anche per il problema perturbato se e solo se
{

ε3 ≥ −2
ε4 ≥ −1
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Geometria della PL Teo fondam. PL Dualità Cond. ottimalità Basi e vertici Simplesso primale Sensibilità

Perturbazione del vettore b (componenti di base)

Supponiamo che la soluzione ottima x̄ del primale, relativa alla base B, sia non
degenere e perturbiamo solo le componenti del vettore b che appartengono alla
base B, cioè sommiamo al vettore b un vettore ε tale che

εi = 0 ∀ i ∈ N .

I problemi (P) e (D) perturbati diventano:

(Pε)







max cTx

AB x ≤ bB + εB
AN x ≤ bN

(Dε)







min yT(b + ε)
yTA = cT

y ≥ 0

Teorema 4
Se il vettore ε è abbastanza piccolo in norma, allora il valore ottimo del primale
perturbato (Pε) è

v(Pε) = v(P) +
∑

i∈B

εi ȳi .
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Geometria della PL Teo fondam. PL Dualità Cond. ottimalità Basi e vertici Simplesso primale Sensibilità

Perturbazione del vettore b (componenti di base)

Esempio. Per il problema primale






















max 2x1 + x2

x1 ≤ 2
x1 + x2 ≤ 3
−x1 ≤ 0
−x2 ≤ 0

(P)

sappiamo che la soluzione ottima è x̄ =

(

2
1

)

relativa alla base B = {1, 2}, mentre

ȳT = (1, 1, 0, 0) è la soluzione ottima duale.
Consideriamo ora il problema perturbato:























max 2x1 + x2

x1 ≤ 2 + ε1
x1 + x2 ≤ 3 + ε2
−x1 ≤ 0
−x2 ≤ 0

(Pε)

Se ε è abbastanza piccolo, allora la soluzione ottima di (Pε) è

(

2 + ε1
1 + ε2 − ε1

)

, relativa

sempre alla base B = {1, 2}. Il valore ottimo di (Pε) è quindi

v(Pε) = 2(2 + ε1) + 1 + ε2 − ε1 = 5 + ε1 + ε2.
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Geometria della PL Teo fondam. PL Dualità Cond. ottimalità Basi e vertici Simplesso primale Sensibilità

Esercizio

Consideriamo il problema di produzione 1 (produzione dei collettori rotanti) visto nel
capitolo dei modelli e rilassiamo il vincolo di interezza sulle variabili.

a) Trovare una soluzione ottima ed il valore ottimo del problema.

b) Supponiamo che il costo di produzione dei collettori del modello 1 sia di 50 + α
euro, dove α varia nell’intervallo [0, 15]. Qual è il valore ottimo di questo problema
perturbato in funzione di α?

c) Supponiamo che il costo di acquisto dei collettori del modello 1 da un’azienda
concorrente sia di 61− β euro, dove β varia nell’intervallo [0, 15]. Qual è il valore
ottimo di questo problema perturbato in funzione di β?

d) Supponiamo che l’azienda abbia 10.000 + γ ore per la fase 1 di lavorazione, dove γ
varia nell’intervallo [0, 500]. Qual è il valore ottimo di questo problema perturbato
in funzione di γ?

e) Supponiamo che l’azienda disponga di 5.000 + δ ore per la fase 2 di lavorazione,
dove δ varia nell’intervallo [0, 500]. Qual è il valore ottimo di questo problema
perturbato in funzione di δ?
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