1) Fornire le definizioni di soluzione di base primale, ammissibile e non ammissibile, degenere e non degenere,
e di soluzione di base duale, ammissibile e non ammissibile, degenere e non degenere.
Si consideri il seguente problema di PL:

max X3
r1 + Tro + I3 < 1
X1 + T3 < 2
X é 1
xZo S 1
I3 S 1
—I S 0
—XT2 S 0
—X3 S 0

Fornire una soluzione di base primale degenere e non ammissibile ed una soluzione di base duale degenere e non
ammissibile. Giustificare la risposta applicando le definizioni date sopra.

2) Si consideri il seguente problema di PL:

max r1 + X2

T S 2
o S 2

r1 + X9 S 2
T, + w9 < 4
—T1 < 1

(a) Si indichino basi che siano rispettivamente: (i) primale ammissibile e non degenere (%) primale non
ammissibile e degenere (iii) duale ammissibile e degenere (i) duale ammissibile e non degenere.

3) Fornire le definizioni di soluzione di base primale, ammissibile e non ammissibile, degenere e non degenere,
e di soluzione di base duale, ammissibile e non ammissibile, degenere e non degenere.
Si consideri il seguente problema di PL:

max xr; — 2x9 + I3
1 + x + w13 <3
1 + 3 <2
T S 1
T2 S 1
I3 é 2

Fornire una soluzione di base primale ammissibile e degenere ed una soluzione di base duale non ammissibile e
degenere. Giustificare la risposta applicando le definizioni date sopra.

4) Si consideri il seguente problema di PL:

max
1 4+ m < 4
o S 2
xr1 — 2.’E2 S —2
—xr1 + Ty < 4

Utilizzando il Teorema degli scarti complementari si verifichi se la soluzione z = (2,2) & ottima per il problema,
giustificando la risposta. In caso affermativo, si determini I'insieme delle soluzioni duali ottime.

5) Si consideri il seguente problema di PL:
min 2y + y2 + 4dys + s

nn + Yy +  uys =1
i — Y2 + 2ys — ys = 2
Y1, Y2, Y3, Ya Z 0

Utilizzando gli scarti complementari, si verifichi se la soluzione § = (0,0, 1, 0) sia ottima per il problema. Inoltre,
si individui I'insieme di tutte le soluzioni ottime del problema duale di quello dato. Giustificare le risposte.
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6) Si consideri il seguente problema di PL:

min 2y; + 6y2 + 3yz + W

v+ 2y2 + ys + Y4 = 2
Yio— Y + oy = 1
i+ y2 + ys =1
Y1, Y2, Y3, ys = 0

Utilizzando il Teorema degli scarti complementari, si verifichi se la soluzione § = (0,0,1,1) & ottima per il
problema. Giustificare la risposta.

7) Si consideri il seguente problema di PL:

max 3xr1 + o

T1 4+ 2z < 4
T S 2
—Tr1 — 2%2 S 2
To S 2

rr — o < 4

Utilizzando il Teorema degli scarti complementari, si verifichi se la soluzione & = (2, —2) ¢ ottima per il problema.
In caso affermativo, si individui I'insieme delle soluzioni duali ottime. Giustificare le risposte.
8) Si consideri il seguente problema di PL, parametrico rispetto al parametro a:

max 1 + 2xs + axj
2I1 + Tro + 21‘3 S 2
. , ®m , x3 >0

Assumendo « = 1, si determini una soluzione ottima del problema, utilizzando il Teorema degli scarti comple-
mentari. Si indichi quindi per quali valori di « la soluzione trovata resta ottima. Giustificare le risposte.

9) Si consideri il seguente problema di PL, in cui v ¢ un parametro reale:

max (—=1—7)z; + (=14+27)xs

T+ o, < 4
I S 2
xr1 — ) S 1
— X9 S 0

—Try — xo < -1

Si individui I'insieme di valori di v per cui B = {4,5} & una base ottima per tale problema, giustificando la
risposta. Si consideri quindi la seguente variante del problema, in cui v = 0 e a & un ulteriore parametro reale:

max —Ii; — X2
Ty + 29 < 4-2
T < 2—«
Ty — T < 1+«
— T2 S 0
—T1 — X2 é —1.

Si individui I'insieme di valori di a per cui B = {4,5} ¢ una base ottima per questo secondo problema.

10) Si consideri il seguente problema di PL:

max 2x1 + Ty + 4dxg
r1 + Pry + 3 < b
YT — T2 < 3
—ax; + To 4+ 2xz3 < 0
ry + ory — fPry < 4

Si determinino tutte le terne di valori dei parametri «, 8 e v per i quali Z = (1,1,0) e § = (0,1,2,0) sono
rispettivamente una soluzione ottima del problema e del suo duale. Tra le terne cosi individuate si determini
per quali di esse il problema duale ammette una soluzione ottima ¢ tale che g; > 0. Giustificare le risposte.



11) Si consideri il seguente problema di P.L.:

max — T2
i) S 4
—2x1 4+ x5 < 1
—r1 — ZTo < -1
—I S -1
—T1 — 2172 S -1

Si applichi Palgoritmo del Simplesso Primale, per via algebrica, a partire dalla base B = {2,4}. Per ogni
iterazione si indichino: la base, la matrice di base e la sua inversa, la coppia di soluzioni di base, 'indice
uscente, la direzione di crescita, il passo di spostamento e l'indice entrante, giustificando le risposte.

12) Si consideri il seguente problema di P.L.:

max 1 + 229

— T2 S 0

—r1 — To S 1
—I1 S 1
—-r1 + To < b
To S 4

Si applichi l'algoritmo del Simplesso Primale, per via algebrica, a partire dalla base B = {1,2}. Per ogni
iterazione si indichino: la base, la matrice di base e la sua inversa, la coppia di soluzioni di base, 'indice
uscente, la direzione di crescita, il passo di spostamento e l'indice entrante, giustificando le risposte.

13) Si consideri il seguente problema di P.L.:

max X9
X S 2
2561 + T S 6
xr1 + X2 S 4
X2 S 4
—I1 < 1
—XT2 S 0

Si applichi I'algoritmo del Simplesso Primale, per via algebrica, a partire dalla base B = {1,2}. Per ogni
iterazione si indichino: la base, la matrice di base e la sua inversa, la coppia di soluzioni di base, 'indice
uscente, la direzione di crescita, il passo di spostamento e 'indice entrante, giustificando le risposte. In caso di
ottimo finito, si discuta se la soluzione ottima individuata sia unica, giustificando la risposta.
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