TEXT
REPRESENTATION

Gabriella Pasi
gabriella.pasi@unimib.it

"Terpase infrastructure
Mv: 77 SQeTabion:

Simplest way : Binary term-document
weighting. Example by incidence matrix

Documents
Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth
Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
Vocabulary V

Each document can be represented by a set of terms
or by a binary vector € {0,1}Vl

Term-document weighting
Count matrix

« Consider the number of occurrences of a term in a document:
- Each document is d count vectorin NV: a column below

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0
Brutus 4 157 0 1 0 0
Caesar 232 227 0 2 1 1
Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0
mercy 2 0 3 5 5 1
worser 2 0 1 1 1 0

Bag of words model

- Vector representation does not consider the ordering of words
in a document

- John is quicker than Mary and Mary is quicker than John have
the same vectors

 This is called the bag of words model.

- We will see how to “recover” positional information

-
Bag-of-Words with N-grams

- N-grams: a contiguous sequence of N tokens from a
given piece of text
- E.g., ‘Text mining is to identify useful information.’
- Bigrams: ‘text_mining’, ‘mining _is’, ‘is_to’, ‘to_identify’,
‘identify _useful’, ‘useful _information’, ‘information .’

- Pros: capture local dependency and order

- Cons: a purely statistical view, increase the vocabulary
size

Statistical properties of texts

- How is the frequency of different words distributed in a
corpus?

- In natural language, there are a few very frequent terms and
very few very rare terms.

- Zipf’s law describes the frequency of an event (in our case a
word) in a set according to its rank (rank: the numerical
position of a word in a list sorted by decreasing frequency);
Given a collection, sort the words w in decreasing order of
their frequency f(w) in the collection (with an increasing
order of rank).

George Kingsley Zipf, Human Behavior and the principle of least effort, Addison Wesley, 1949.

S
Natural language and Zipf’s law (1949)

Zipf’s law: the product of the frequency of use of words and the
rank order is approximately constant. So, the frequency of w, f(w)
is proportional to 1/r(w):

1 K
r(w) r(w)

fw)

where K is a constant value. Different collections have different
values of K.

Zipf G.K. Human Behavior and the principle of least effort, Addison Wesley, 1949.

S R
Natural language and Zipf’s law (1949)

- Given a collection, sort the words w in decreasing order of
their frequency f(w) in the collection (with an increasing order

of rank) :
Frequent Number of Percentage
Word Occurrences of Total
the 7,398,934 59
of 3,893,790 34
to 3,364,653 2.7
and 3,320,687 2.6
in 2,311,785 1.8
is 1,559,147 12
for 1,313,561 1.0
The 1,144,860 0.9
that 1,066,503 0.8
said 1,027,713 0.8

Frequencies from 336,310 documents in the 1GB TREC Volume 3 Corpus
125,720,891 total word occurrences; 508,209 unique words

Zipf's law tells us

- Head words take large portion of occurrences, but they
are semantically meaningless
- E.g., the, a, an, we, do, to
- Tail words take major portion of vocabulary, but they rarely
occur in documents
- E.g., dextrosinistral

e
Luhn’s Analysis (1958)

Not all words in a text describe the content with the same
accuracy/informativity.

In 1958, Luhn noted that “the frequency with which some
words appear in a text provides an important indication of
the significance of words. Moreover, the position of these
words in sentences is another important parameter that
indicates the significance of sentences”

IDEA: association of weights to the terms that represent a
document

-
Luhn’s AnaIyS|s (1958)

Upper cut-off Lower cut-off

/]

Frequency of words

Slgmﬁc’ant 3
WordS a //, |J = !

Words by rank order

- Discriminating power of significant words (Zipf’'s curve):
the ability of words to discriminate the content of
documents is maximum in the intermediate position
between the two cut-off levels

Automatic document representation

Remove non-informative

words, / g Lower
cut-off cut-off
Resolving power of
. significant words
% 7T~
g / \
= /
-
=
5
2,
s 3
:‘}#Signiﬁcam words
5 Remove rare
> words
Wonds by rank onder &

Fivwe 27 Apbtosoe ﬁ;}w UL TR SRR GRS e SO RN SRy S 1, 8he 1aad
e rddsped Soun Wbtz Waspe 120

Indexing criteria based on
Luhn’s Analysis

- Weighing the index terms: very frequent words assume a
lower weight of significance

- Stop list: very frequent words are eliminated from the
iIndexes (upper cut-off)

- Meaningful words: very frequent and infrequent words are
eliminated from the indexes (upper and lower cut-off)

So: how to assign weights to terms ?

- Based on Luhn’s analysis, proposals of term weighting
appeared

- Two factors were identified:

- Corpus-wise: some terms carry more information about the
document content

- Document-wise: not all terms are equally important

- How to measure them ?

- Two basic heuristics
- TF (Term Frequency) = Within-doc-frequency
- IDF (Inverse Document Frequency)

Term frequency tf

- The term frequency tf, 4 of term t in document d is defined as
the number of times that t occurs in d.

- However, pure term frequency is not what we want:

- A document with 10 occurrences of the term is more relevant than a
document with 1 occurrence of the term.

- But not 10 times more relevant.

A simple idea: term frequency adjusted for document length
(the number of words in the document)

_ tfta
i = Ja

e
Example

dy dy d3 dy ds de

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth
Antony 157 73 0 0 0 0
Brutus 4 157 0 1 0 0
Caesar 232 227 0 2 1 1
Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0
mercy 3 5 5 1
worser 2 0 1 1 1 0

: thntony,dl =7 157

Antony,d; — g | T " 157 +4+232+57+2+2 454

= 0.34

Normalizing by max occ

- To prevent a bias towards longer documents:

tfea

maxtf.
nas ft,d

Wead =

- Where max tf: a is the frequency of the most occurring

term t; in the document d.

e
Example

d, d, ds d, ds de
Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth
Antony 157 73 0 0

Brutus 4 157 0 1 0 0
Caesar 232 227 0 2 1 1
Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0
mercy 2 0 3 5 5 1
worser 2 0 1 1 1 0

. thntony,dl)

. 2 Wantony,d, = max tfe. g,
tied v tiedq 1

e
Example

dy d; d3 dy ds de
Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0
Brutus 4 157 0 1 0 0
Caesar 232 227 0 2 1 1
Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0
mercy 2 0 3 5 5 1
worser 2 0 1 1 1 0

‘ thntony,dl =7 157

s maxtfy g = thaesar,dl =7 232
t;edq

I
idf weight

- df, is the document frequency of t: the number of documents
that contain t.

- df,is an inverse measure of the informativeness of t
- df, <N = [D|

- We define the idf (inverse document frequency) of t by

N
idf; = log (d_ft)

- We use log (dift) instead ofdiﬁ to «dampen» the effect of idf.

tf-idf weighting

- The tf-idf weight of a term is the product of its tf weight and its
idf weight.

w = (tf ,/max,tf,) xlog,,(N/df,)

- Best known weighting scheme in information retrieval

- Note: the “-” in tf-idf is a hyphen, not a minus sign!
- Alternative names: tf.idf, tf x idf

- Increases with the number of occurrences within a document
* Increases with the rarity of the term in the collection

e
Example — df

dy d; d3 dy ds de
Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0
Brutus 4 157 0 1 0 0
Caesar 232 227 0 2 1 1
Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0
mercy 2 3 5 5 1
worser 2 0 1 1 1 0

: dfCleopatra =7 1

* dfworser =7 4

e
Example — idf

dy d; d3 dy ds de
Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0
Brutus 4 157 0 1 0 0
Caesar 232 227 0 2 1 1
Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0
mercy 3 5 5 1
worser 2 1 1 1 0

* dfcieopatra = 108 (dfCleIZpatra) =7 ? =6 log(6) = 0.78

, N 6
 idfyorser = log (-——) =7 7=15 log(15) = 0.18

deOT'SQT'

- 000000000
tf-idf weighting

- The tf-idf weight of a term is the product of its tf weight and

its idf weight.
S tft,d log(N)
t,d —) A
max tft,a dft
- Note: the “-” in tf-idf is a hyphen, not a minus sign!

- Alternative names: tf.idf, tf X idf

e
Example tf-idf

dy dy d3 dy ds de

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth
Antony 157 73 0 0 0 0
Brutus 4 157 0 1 0 0
Caesar 232 227 0 2 1 1
Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0
mercy 2 3 5 5 1
worser 2 0 1 1 1 0

thntony,d N 157 6

max t d
t:€dy ftl,dl fAntony

tf-idf weighting

- Increases with the number of occurrences within a document
- Common in doc =2 high tf = high weight

* Increases with the rarity of the term in the collection
- Rare in collection = high idf => high weight

