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Abstract

Due to the need for generalizable and rapidly delivered evidence to inform healthcare
decision-making, real-world data have grown increasingly important to answer causal
questions. However, causal inference using observational data poses numerous challeng-
es, and relevant methodological literature is vast. We endeavored to identify underlying
unifying themes of causal inference using real-world healthcare data and connect them
into a single schema to aid in observational study design, and to demonstrate this schema
using a previously published research example. A multidisciplinary team (epidemiology,
biostatistics, health economics) reviewed the literature related to causal inference and
observational data to identify key concepts. A visual guide to causal study design was
developed to concisely and clearly illustrate how the concepts are conceptually related
to one another. A case study was selected to demonstrate an application of the guide. An
eight-step guide to causal study design was created, integrating essential concepts from
the literature, anchored into conceptual groupings according to natural steps in the study
design process. The steps include defining the causal research question and the estimand;
creating a directed acyclic graph; identifying biases and design and analytic techniques to
mitigate their effect, and techniques to examine the robustness of findings. The cardiovas-
cular case study demonstrates the applicability of the steps to developing a research plan.
This paper used an existing study to demonstrate the relevance of the guide. We encour-
age researchers to incorporate this guide at the study design stage in order to elevate the
quality of future real-world evidence.
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1 Introduction

*Approximately 50 new drugs are approved each year in the United States (Mullard 2022).
For all new drugs, randomized controlled trials (RCTs) are the gold-standard by which
potential effectiveness (“efficacy”) and safety are established. However, RCTs cannot guar-
antee how a drug will perform in a less controlled context. For this reason, regulators fre-
quently require observational, post-approval studies using “real-world” data, sometimes
even as a condition of drug approval. The “real-world” data requested by regulators is often
derived from insurance claims databases and/or healthcare records. Importantly, these data
are recorded during routine clinical care without concern for potential use in research. Yet,
in recent years, there has been increasing use of such data for causal inference and regula-
tory decision making, presenting a variety of methodologic challenges for researchers and
stakeholders to consider (Arlett et al. 2022; Berger et al. 2017; Concato and ElZarrad 2022;
Cox et al. 2009; European Medicines Agency 2023; Franklin and Schneeweiss 2017; Gir-
man et al. 2014; Hernan and Robins 2016; International Society for Pharmacoeconomics
and Outcomes Research (ISPOR) 2022; International Society for Pharmacoepidemiology
(ISPE) 2020; Stuart et al. 2013; U.S. Food and Drug Administration 2018; Velentgas et al.
2013).

Current guidance for causal inference using observational healthcare data articulates the
need for careful study design (Berger et al. 2017; Cox et al. 2009; European Medicines
Agency 2023; Girman et al. 2014; Hernan and Robins 2016; Stuart et al. 2013; Velentgas et
al. 2013). In 2009, Cox et al. described common sources of bias in observational data and
recommended specific strategies to mitigate these biases (Cox et al. 2009). In 2013, Stuart
et al. emphasized counterfactual theory and trial emulation, offered several approaches to
address unmeasured confounding, and provided guidance on the use of propensity scores
to balance confounding covariates (Stuart et al. 2013). In 2013, the Agency for Health-
care Research and Quality (AHRQ) released an extensive, 200-page guide to developing a
protocol for comparative effectiveness research using observational data (Velentgas et al.
2013). The guide emphasized development of the research question, with additional chap-
ters on study design, comparator selection, sensitivity analyses, and directed acyclic graphs
(Velentgas et al. 2013). In 2014, Girman et al. provided a clear set of steps for assessing
study feasibility including examination of the appropriateness of the data for the research
question (i.e., ‘fit-for-purpose’), empirical equipoise, and interpretability, stating that com-
parative effectiveness research using observational data “should be designed with the goal
of drawing a causal inference” (Girman et al. 2014). In 2017, Berger et al. described aspects
of “study hygiene,” focusing on procedural practices to enhance confidence in, and cred-
ibility of, real-world data studies (Berger et al. 2017). Currently, the European Network of
Centres for Pharmacoepidemiology and Pharmacovigilance (ENCePP) maintains a guide
on methodological standards in pharmacoepidemiology which discusses causal inference
using observational data and includes an overview of study designs, a chapter on methods
to address bias and confounding, and guidance on writing statistical analysis plans (Euro-
pean Medicines Agency 2023). In addition to these resources, the “target trial framework™
provides a structured approach to planning studies for causal inferences from observational
databases (Hernan and Robins 2016; Wang et al. 2023b). This framework, published in
2016, encourages researchers to first imagine a clinical trial for the study question of inter-
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PROBLEM STATEMENT

Although every year new pharmacological treatments are tested via Randomized Controlled Trials, the effectiveness of the treatments are not guaranteed in less controlled frameworks. For this reason, observational studies based on real worlds data are required to assess the treatment effectiveness
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LITERATURE REVIEW

Current guidance for causal inference using observational healthcare data highlights the need for careful study design. The most common framework when dealing with observational data is the target trial study design. It tries to emulate the principles of randomized controlled trials by identifying and managing different sources of bias and ensuring data are appropriate for the study.
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est and then to subsequently design the observational study to reflect the hypothetical trial
(Hernén and Robins 2016).

While the literature addresses critical issues collectively, there remains a need for a
framework that puts key components, including the target trial approach, into a simple,
overarching schema (Loveless 2022) so they can be more easily remembered, and commu-
nicated to all stakeholders including (new) researchers, peer-reviewers, and other users of
the research findings (e.g., practicing providers, professional clinical societies, regulators).
For this reason, we created a step-by-step guide for causal inference using administrative
health data, which aims to integrate these various best practices at a high level and comple-
ments existing, more specific guidance, including those from the International Society for
Pharmacoeconomics and Outcomes Research (ISPOR) and the International Society for
Pharmacoepidemiology (ISPE) (Berger et al. 2017; Cox et al. 2009; Girman et al. 2014).
We demonstrate the application of this schema using a previously published paper in car-
diovascular research.

2 Methods

This work involved a formative phase and an implementation phase to evaluate the util-
ity of the causal guide. In the formative phase, a multidisciplinary team with research
expertise in epidemiology, biostatistics, and health economics reviewed selected litera-
ture (peer-reviewed publications, including those mentioned in the introduction, as well
as graduate-level textbooks) related to causal inference and observational healthcare data
from the pharmacoepidemiologic and pharmacoeconomic perspectives. The potential out-
comes framework served as the foundation for our conception of causal inference (Rubin
2005). Information was grouped into the following four concepts: (1) Defining the Research
Question; (2) Defining the Estimand; (3) Identifying and Mitigating Biases; (4) Sensitivity
Analysis. A step-by-step guide to causal study design was developed to distill the essential
elements of each concept, organizing them into a single schema so that the concepts are
clearly related to one another. References for each step of the schema are included in the
Supplemental Table.

In the implementation phase we tested the application of the causal guide to previously
published work (Dondo et al. 2017). The previously published work utilized data from the
Myocardial Ischaemia National Audit Project (MINAP), the United Kingdom’s national
heart attack register. The goal of the study was to assess the effect of B-blockers on all-cause
mortality among patients hospitalized for acute myocardial infarction without heart failure
or left ventricular systolic dysfunction. We selected this paper for the case study because
of its clear descriptions of the research goal and methods, and the explicit and methodical
consideration of potential biases and use of sensitivity analyses to examine the robustness
of the main findings.
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STUDY OBJECTIVE

Although many studies highlighted the main steps required to estimate causal effects using observational data, a clear workflow that illustrates the 'target trial approach' to estimate those effects managing all the potential biases coming from non experimental settings is still missing. This work proposes a step-by-step guide to infer causal effects in the context of observational administrative health care databases
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DEFINITION OF THE WORKFLOW

The first part in the workflow design is the review of the literature in the context of causal inference on observational healthcare data following four main components:

- Causal Research Question Definition 

- Definition of the Causal  Estimand

- Identification and Mitigation of Causal Inference Common Source of Bias

- Sensitivity Analysis and Quality Control
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Nota
A CASE STUDY ON MYOCARDIAL INFARCTION MORTALITY

To show the applicability of the workflow in a real world case study, a previous publication on Myocardial Infarction mortality is analyzed isolating the steps of beta-blockers causal effect estimation on all-cause mortalities
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3 Results
3.1 Overview of the eight steps

The step-by-step guide to causal inference comprises eight distinct steps (Fig. 1) across the
four concepts. As scientific inquiry and study design are iterative processes, the various
steps may be completed in a different order than shown, and steps may be revisited.

Please refer to the Supplemental Table for references providing more in-depth information.

3.2 Defining the Research question (step 1)

The process of designing a study begins with defining the research question. Research ques-
tions typically center on whether a causal relationship exists between an exposure and an
outcome. This contrasts with associative questions, which, by their nature, do not require
causal study design elements because they do not attempt to isolate a causal pathway from
a single exposure to an outcome under study. It is important to note that the phrasing of
the question itself should clarify whether an association or a causal relationship is of inter-
est. The study question “Does statin use reduce the risk of future cardiovascular events?”
is explicitly causal and requires that the study design addresses biases such as confound-
ing. In contrast, the study question “Is statin use associated with a reduced risk of future

cardiovascular events?” can be answered without control of confounding since the word
“association” implies correlation. Too often, however, researchers use the word “associa-
tion” to describe their findings when their methods were created to address explicitly causal
questions (Hernan 2018). For example, a study that uses propensity score-based methods
to balance risk factors between treatment groups is explicitly attempting to isolate a causal
pathway by removing confounding factors. This is different from a study that intends only
to measure an association. In fact, some journals may require that the word “association”
be used when causal language would be more appropriate; however, this is beginning to
change (Flanagin et al. 2024).

3.3 Defining the estimand (steps 2, 3, 4)

The estimand is the causal effect of research interest and is described in terms of required
design elements: the target population for the counterfactual contrast, the kind of effect, and
the effect/outcome measure.

In Step 2, the study team determines the target population of interest, which depends on
the research question of interest. For example, we may want to estimate the effect of the
treatment in the entire study population, i.e., the hypothetical contrast between all study
patients taking the drug of interest versus all study patients taking the comparator (the aver-
age treatment effect; ATE). Other effects can be examined, including the average treatment
effect in the treated or untreated (ATT or ATU).When covariate distributions are the same
across the treated and untreated populations and there is no effect modification by covari-
ates, these effects are generally the same (Wang et al. 2017). In RCTs, this occurs naturally
due to randomization, but in non-randomized data, careful study design and statistical meth-
ods must be used to mitigate confounding bias.
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STEP 1 - CAUSAL RESEARCH QUESTION

Causal research question definition differs from associative study design in the isolation of causal pathways correcting for confounding effects
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Nota
STEP 2 - TARGET POPULATION DEFINITION

First step to define the causal estimand is the definition of the target population, which could be the entire population or a subset (only treated or untreated patients). Since the focus is on an observational setting, the reference population could lead to different resulting effects due to confounding bias.
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Define estimand

A step-by-step guide to causal study design

Association Causal effect
Most biases disregarded | Move to Step 2
by definition?

v

Effect in whom? (Target population)

Average treatment effect (ATE)
ATE in the (un)treated (ATU or ATT)
Conditional ATE (subgroups)
Individual TE (ITR)

v

t? (Causal contrast)

Intention-to-treat (ITT)
Per-protocol
As-treated

v

Measure of effect? (Endpoint)

Scale: difference or ratio?
Outcome: risk, rate, hazard, odds, cost...?

v
R
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Exposure _ Outcome
\ Collider /
Mediator
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<Fig. 1 A step-by-step guide for causal study design. Abbreviations: GEE: generalized estimating equa-

tions; IPC/TW: inverse probability of censoring/treatment weighting; ITR: individual treatment response;
MSM: marginal structural model; TE: treatment effect. | Ensure that the exposure and outcome are well-
defined based on literature and expert opinion. 2 More specifically, measures of association are not af-
fected by issues such as confounding and selection bias because they do not intend to isolate and quantify
a single causal pathway. However, information bias (e.g., variable misclassification) can negatively affect
association estimates, and association estimates remain subject to random variability (and are hence re-
ported with confidence intervals).  This list is not exhaustive; it focuses on frequently encountered biases.
4 To assess bias in a nonrandomized study following the target trial framework, use of the ROBINS-I tool
is recommended (https://www.bmj.com/content/355/bmj.i4919 ). * Only a selection of the most popular
approaches is presented here. Other methods exist; e.g., g-computation and g-estimation for both time-
invariant and time-varying analysis; instrumental variables; and doubly-robust estimation methods. There
are also program evaluation methods (e.g., difference-in-differences, regression discontinuities) that can
be applied to pharmacoepidemiologic questions. Conventional outcome regression analysis is not recom-
mended for causal estimation due to issues determining covariate balance, correct model specification,
and interpretability of effect estimates. ® Online tools include, among others, an E-value calculator for
unmeasured confounding (https://www.evalue-calculator.com/) and the P95 outcome misclassification
estimator (http://apps.p-95.com/ISPE/)

In Step 3, the study team decides whether to measure the intention-to-treat (ITT), per-
protocol, or as-treated effect. The ITT approach is also known as “first-treatment-carried-
forward” in the observational literature (Lund et al. 2015). In trials, the ITT measures the
effect of treatment assignment rather than the treatment itself, and in observational data
the ITT can be conceptualized as measuring the effect of treatment as started. To compute
the ITT effect from observational data, patients are placed into the exposure group corre-
sponding to the treatment that they initiate, and treatment switching or discontinuation are
purposely ignored in the analysis. Alternatively, a per-protocol effect can be measured from
observational data by classifying patients according to the treatment that they initiated but
censoring them when they stop, switch, or otherwise change treatment (Danaei et al. 2013;
Yang et al. 2014). Finally, “as-treated” effects are estimated from observational data by clas-
sifying patients according to their actual treatment exposure during follow-up, for example
by using multiple time windows to measure exposure changes (Danaei et al. 2013; Yang et
al. 2014).

Step 4 is the final step in specifying the estimand in which the research team determines
the effect measure of interest. Answering this question has two parts. First, the team must
consider how the outcome of interest will be measured. Risks, rates, hazards, odds, and
costs are common ways of measuring outcomes, but each measure may be best suited to
a particular scenario. For example, risks assume patients across comparison groups have
equal follow-up time, while rates allow for variable follow-up time (Rothman et al. 2008).
Costs may be of interest in studies focused on economic outcomes, including as inputs to
cost-effectiveness analyses. After deciding how the outcome will be measured, it is neces-
sary to consider whether the resulting quantity will be compared across groups using a ratio
or a difference. Ratios convey the effect of exposure in a way that is easy to understand, but
they do not provide an estimate of how many patients will be affected. On the other hand,
differences provide a clearer estimate of the potential public health impact of exposure; for
example, by allowing the calculation of the number of patients that must be treated to cause
or prevent one instance of the outcome of interest (Tripepi et al. 2007).
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STEP 3 - TYPE OF CAUSAL EFFECTS

Based on the time of the causal effect evaluation one could distinguish between three types of measurements:

- Intention to treat - effect of treatment assignment, ignoring the treatment discontinuation or exchange

- Per-protocol effect - effect that classify patients based on treatment they started considering censoring or treatment exchange

- As-treated effect - time-dependent evaluation which consider treatment exposure over the follow-up, measuring also the changes over time in treatment effects
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STEP 4 - DEFINITION OF THE THE ESTIMAND

Definying how the measurements will be talken depending on the study aims (follow-up of treated and untreated, relevance of the economic burden and public health impact, ...).
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3.4 Identifying and mitigating biases (steps 5, 6, 7)

Observational, real-world studies can be subject to multiple potential sources of bias, which
can be grouped into confounding, selection, measurement, and time-related biases (Prada-
Ramallal et al. 2019).

In Step 5, as a practical first approach in developing strategies to address threats to causal
inference, researchers should create a visual mapping of factors that may be related to the
exposure, outcome, or both (also called a directed acyclic graph or DAG) (Pearl 1995).
While creating a high-quality DAG can be challenging, guidance is increasingly available
to facilitate the process (Ferguson et al. 2020; Gatto et al. 2022; Hernan and Robins 2020;
Rodrigues et al. 2022; Sauer 2013). The types of inter-variable relationships depicted by
DAGs include confounders, colliders, and mediators. Confounders are variables that affect
both exposure and outcome, and it is necessary to control for them in order to isolate the
causal pathway of interest. Colliders represent variables affected by two other variables,
such as exposure and outcome (Griffith et al. 2020). Colliders should not be conditioned on
since by doing so, the association between exposure and outcome will become distorted.
Mediators are variables that are affected by the exposure and go on to affect the outcome.
As such, mediators are on the causal pathway between exposure and outcome and should
also not be conditioned on, otherwise a path between exposure and outcome will be closed
and the total effect of the exposure on the outcome cannot be estimated. Mediation analysis
is a separate type of analysis aiming to distinguish between direct and indirect (mediated)
effects between exposure and outcome and may be applied in certain cases (Richiardi et al.
2013). Overall, the process of creating a DAG can create valuable insights about the nature
of the hypothesized underlying data generating process and the biases that are likely to be
encountered (Digitale et al. 2022). Finally, an extension to DAGs which incorporates coun-
terfactual theory is available in the form of Single World Intervention Graphs (SWIGs) as
described in a 2013 primer (Richardson and Robins 2013).

In Step 6, researchers comprehensively assess the possibility of different types of bias in
their study, above and beyond what the creation of the DAG reveals. Many potential biases
have been identified and summarized in the literature (Berger et al. 2017; Cox et al. 2009;
European Medicines Agency 2023; Girman et al. 2014; Stuart et al. 2013; Velentgas et al.
2013). Every study can be subject to one or more biases, each of which can be addressed
using one or more methods. The study team should thoroughly and explicitly identify all
possible biases with consideration for the specifics of the available data and the nuances of
the population and health care system(s) from which the data arise. Once the potential biases
are identified and listed, the team can consider potential solutions using a variety of study
design and analytic techniques.

In Step 7, the study team considers solutions to the biases identified in Step 6. “Target
trial” thinking serves as the basis for many of these solutions by requiring researchers to
consider how observational studies can be designed to ensure comparison groups are similar
and produce valid inferences by emulating RCTs (Labrecque and Swanson 2017; Wang et
al. 2023b). Designing studies to include only new users of a drug and an active comparator
group is one way of increasing the similarity of patients across both groups, particularly in
terms of treatment history. Careful consideration must be paid to the specification of the
time periods and their relationship to inclusion/exclusion criteria (Suissa and Dell’ Aniello
2020). For instance, if a drug is used intermittently, a longer wash-out period is needed to

@ Springer


yatoi
Evidenziato

yatoi
Evidenziato

yatoi
Evidenziato

yatoi
Evidenziato

yatoi
Evidenziato

yatoi
Evidenziato

yatoi
Evidenziato

yatoi
Evidenziato

yatoi
Evidenziato

yatoi
Evidenziato

yatoi
Evidenziato

yatoi
Evidenziato

yatoi
Evidenziato

yatoi
Evidenziato

yatoi
Evidenziato

yatoi
Evidenziato

yatoi
Evidenziato

yatoi
Evidenziato

yatoi
Evidenziato

yatoi
Evidenziato

yatoi
Evidenziato

yatoi
Evidenziato

yatoi
Evidenziato

yatoi
Nota
STEP 6 - IDENTIFICATION OF POTENTIAL SOURCES OF BIAS


Design-related biases

Confounding bias – distortion from a variable linked to both exposure and outcome.

Unconfounding bias – bias from adjusting for variables that should not be controlled.

Collider bias – spurious association from conditioning on a common effect.

Selection bias – systematic error when study inclusion depends on both exposure and outcome.

Immortal time bias – misclassification of a period where the outcome could not occur as exposed time.

Reverse Causality – treatment appears causal but was given for early symptoms.

Healthy adherer effect – overestimation of benefit because adherent patients are healthier.

Prevalent user bias – missing early treatment risks.

Data-related biases

Misclassification – incorrect measurement or categorization of exposure, outcome or covariates.

Follow-up biases

Informed censoring – censoring related to both exposure and outcome.

Effect modification – heterogeneity effects across subgroups

External validitation bias

Generalizability – different characteristics between the training population and external cohorts

yatoi
Nota
STEP 5 - DEFINITION OF A DIRECTED ACYCLIC GRAPH

This step involves encoding all measured variables that should or should not be adjusted for, including confounders, colliders, and mediators. These variables are then represented in a directed acyclic graph (DAG) to map the relationships between exposure, outcome, and other factors that may introduce bias. Colliders, which are influenced by both treatment and outcome, should not be conditioned on, as this would open spurious causal paths. Confounders, which affect both exposure and outcome, need to be adjusted for to isolate the causal effect. Mediators lie on the causal pathway between exposure and outcome (creating a chain) and should not be conditioned on, as doing so would block the causal effect of interest.
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ensure adequate capture of prior use in order to avoid bias (Riis et al. 2015). The study team
should consider how to approach confounding adjustment, and whether both time-invari-
ant and time-varying confounding may be present. Many potential biases exist, and many
methods have been developed to address them in order to improve causal estimation from
observational data. Many of these methods, such as propensity score estimation, can be
enhanced by machine learning (Athey and Imbens 2019; Belthangady et al. 2021; Mai et al.
2022; Onasanya et al. 2024; Schuler and Rose 2017; Westreich et al. 2010). Machine learn-
ing has many potential applications in the causal inference discipline, and like other tools,
must be used with careful planning and intentionality. To aid in the assessment of potential
biases, especially time-related ones, and the development of a plan to address them, the
study design should be visualized (Gatto et al. 2022; Schneeweiss et al. 2019). Additionally,
we note the opportunity for collaboration across research disciplines (e.g., the application of
difference-in-difference methods (Zhou et al. 2016) to the estimation of comparative drug
effectiveness and safety).

3.5 Quality Control & sensitivity analyses (step 8)

Causal study design concludes with Step 8, which includes planning quality control and
sensitivity analyses to improve the internal validity of the study. Quality control begins
with reviewing study output for prima facie validity. Patient characteristics (e.g., distribu-
tions of age, sex, region) should align with expected values from the researchers’ intuition
and the literature, and researchers should assess reasons for any discrepancies. Sensitivity
analyses should be conducted to determine the robustness of study findings. Researchers
can test the stability of study estimates using a different estimand or type of model than
was used in the primary analysis. Sensitivity analysis estimates that are similar to those of
the primary analysis might confirm that the primary analysis estimates are appropriate. The
research team may be interested in how changes to study inclusion/exclusion criteria may
affect study findings or wish to address uncertainties related to measuring the exposure or
outcome in the administrative data by modifying the algorithms used to identify exposure
or outcome (e.g., requiring hospitalization with a diagnosis code in a principal position
rather than counting any claim with the diagnosis code in any position). As feasible, exist-
ing validation studies for the exposure and outcome should be referenced, or new validation
efforts undertaken. The results of such validation studies can inform study estimates via
quantitative bias analyses (Lanes and Beachler 2023). The study team may also consider
biases arising from unmeasured confounding and plan quantitative bias analyses to explore
how unmeasured confounding may impact estimates. Quantitative bias analysis can assess
the directionality, magnitude, and uncertainty of errors arising from a variety of limitations
(Brenner and Gefeller 1993; Lash et al. 2009, 2014; Leahy et al. 2022).

3.6 lllustration using a previously published research study

In order to demonstrate how the guide can be used to plan a research study utilizing causal
methods, we turn to a previously published study (Dondo et al. 2017) that assessed the causal
relationship between the use of f-blockers and mortality after acute myocardial infarction
in patients without heart failure or left ventricular systolic dysfunction. The investigators
sought to answer a causal research question (Step 1), and so we proceed to Step 2. Use

@ Springer


yatoi
Evidenziato

yatoi
Evidenziato

yatoi
Evidenziato

yatoi
Evidenziato

yatoi
Evidenziato

yatoi
Evidenziato

yatoi
Evidenziato

yatoi
Evidenziato

yatoi
Evidenziato

yatoi
Evidenziato

yatoi
Evidenziato

yatoi
Evidenziato

yatoi
Evidenziato

yatoi
Evidenziato

yatoi
Evidenziato

yatoi
Evidenziato

yatoi
Evidenziato

yatoi
Evidenziato

yatoi
Evidenziato

yatoi
Evidenziato

yatoi
Nota
STEP 8 - SENSITIVITY ANALYSIS

Internal Validation and Robustness Evaluation of the study under different estimands and type of models. Different results employing different estimands should be justified to assess the validity of the primary findings. This final step may also include a quantification of the effect of bias derived from unmeasured confounding factors.

yatoi
Nota
STEP 7 - MANAGEMENT OF ERROR SOURCES

Correcting for biases associated with the design of target trials to obtain results comparable with randomized controlled trials.  This step includes the adoption of Machine Learning algorithms to enhance propensity scores estimations.
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Table 1 Potential biases in Dondo et al. (2017), and their corresponding solutions

Type of Bias Solution to Address the Bias

Measured Propensity score-based IPTW using 24 baseline variables (including demo-
Confounding graphics, clinical and socioeconomic characteristics)

Unmeasured (1) Instrumental variable analysis (2) Trimmed cohort at 0.1 & 0.9 propensity
Confounding score distribution

Collider bias Not explored

Selection bias

Immortal time bias

Protopathic bias
Healthy adherer effect

Prevalent user bias

Confounding by
indication

Effect modification
Informative censoring
Misclassification bias

Excluded patients> 100 years old, and patients with previous AMI/PCI/CABG/
angina, contraindication for f-blockers, history of heart failure, or use of loop
diuretics

Started follow-up at hospital discharge for both treatment groups. Had follow-
up began earlier, patients receiving f-blockers at discharge (the study exposure)
would have been implicitly required to survive to discharge while the other pa-
tients may have died during hospitalization, creating immortal person-time bias
Not applicable

Addressed (indirectly) in results and limitations text, as well as through use of
a new-user design and propensity score-based IPTW

Excluded patients with previous exposure to f-blockers

(1) Excluded previous AMI/PCI/CABG/angina, contraindication for
p-blockers, history of heart failure (2) Propensity score-based IPTW. (3) Instru-
mental variable analysis

Analyses stratified by type of AMI (STEMI vs. NSTEMI)

Addressed (indirectly) in limitations section of discussion

Not applicable. Data are from a mandated research registry and are collected

for research purposes (as opposed to a health care claims database where data

are collected for administrative purposes only)
Missing Variables Multiple imputation to impute missing variables. A complete case analysis was

also conducted

(or no use) of f-blockers was determined after discharge without taking into consideration
discontinuation or future treatment changes (i.e., intention-to-treat). Considering treatment
for whom (Step 3), both ATE and ATT were evaluated. Since survival was the primary
outcome, an absolute difference in survival time was chosen as the effect measure (Step 4).
While there was no explicit directed acyclic graph provided, the investigators specified a
list of confounders.

Robust methodologies were established by consideration of possible sources of biases
and addressing them using viable solutions (Steps 6 and 7). Table 1 offers a list of the iden-
tified potential biases and their corresponding solutions as implemented. For example, to
minimize potential biases including prevalent-user bias and selection bias, the sample was
restricted to patients with no previous use of f-blockers, no contraindication for f-blockers,
and no prescription of loop diuretics. To improve balance across the comparator groups in
terms of baseline confounders, i.e., those that could influence both exposure (f-blocker use)
and outcome (mortality), propensity score-based inverse probability of treatment weighting
(IPTW) was employed. However, we noted that the baseline look-back period to assess
measured covariates was not explicitly listed in the paper.

Quality control and sensitivity analysis (Step 8) is described extensively. The overlap
of propensity score distributions between comparator groups was tested and confounder
balance was assessed. Since observations in the tail-end of the propensity score distribu-
tion may violate the positivity assumption (Crump et al. 2009), a sensitivity analysis was
conducted including only cases within 0.1 to 0.9 of the propensity score distribution. While
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A CASE STUDY ON MYOCARDIAL INFARCTION MORTALITY

A published study on β-blockers after acute myocardial infarction illustrates how the guide can be applied. 

STEP 1 – The study aimed to estimate the causal effect of β-blocker use on all-cause mortality in patients without heart failure or left ventricular systolic dysfunction.

STEP 2 – An intention-to-treat approach was used, meaning that changes in treatment over time or treatment discontinuation were not incorporated into the analysis.

STEP 3 –  Both the average treatment effect (ATE) and the average treatment effect in the treated (ATT) were evaluated to capture different causal contrasts.

STEP 4 – Absolute differences in survival time were used to quantify the effect of β-blocker use.

STEP 5 – No DAG was explicitly provided; however, the authors specified a set of confounders based on an analysis of the literature and adjusted for them in the analysis.

STEP 6 – The study considered unmeasured confounding and selection bias, as well as potential immortal time bias, healthy adherer effects, and effect modification. Missing data were partially addressed using multiple imputation, while censoring issues were acknowledged as limitations.

STEP 7 – Prevalent-user and selection biases were mitigated by restricting the sample to new users without prior contraindications. Propensity score–based inverse probability of treatment weighting was applied to balance measured confounders and an instrumental variable approach based on hospital prescription rates was used to address unmeasured confounding.

STEP 8 – The study assessed propensity score overlap supporting the robustness of the findings and performed sensitivity analyses to address positivity violations.
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not mentioned by the authors, the PS tails can be influenced by unmeasured confounders
(Sturmer et al. 2021), and the findings were robust with and without trimming. An assess-
ment of extreme IPTW weights, while not included, would further help increase confidence
in the robustness of the analysis. An instrumental variable approach was employed to assess
potential selection bias due to unmeasured confounding, using hospital rates of guideline-
indicated prescribing as the instrument. Additionally, potential bias caused by missing data
was attenuated through the use of multiple imputation, and separate models were built for
complete cases only and imputed/complete cases.

4 Discussion

We have described a conceptual schema for designing observational real-world studies to
estimate causal effects. The application of this schema to a previously published study illu-
minates the methodologic structure of the study, revealing how each structural element is
related to a potential bias which it is meant to address. Real-world evidence is increas-
ingly accepted by healthcare stakeholders, including the FDA (Concato and Corrigan-Curay
2022; Concato and ElZarrad 2022), and its use for comparative effectiveness and safety
assessments requires appropriate causal study design; our guide is meant to facilitate this
design process and complement existing, more specific, guidance.

Existing guidance for causal inference using observational data includes components
that can be clearly mapped onto the schema that we have developed. For example, in 2009
Cox et al. described common sources of bias in observational data and recommended spe-
cific strategies to mitigate these biases, corresponding to steps 6—8 of our step-by-step guide
(Cox et al. 2009). In 2013, the AHRQ emphasized development of the research question,
corresponding to steps 1—4 of our guide, with additional chapters on study design, compara-
tor selection, sensitivity analyses, and directed acyclic graphs which correspond to steps
7 and 5, respectively (Velentgas et al. 2013). Much of Girman et al.’s manuscript (Gir-
man et al. 2014) corresponds with steps 1-4 of our guide, and the matter of equipoise and
interpretability specifically correspond to steps 3 and 7—8. The current ENCePP guide on
methodological standards in pharmacoepidemiology contains a section on formulating a
meaningful research question, corresponding to step 1, and describes strategies to mitigate
specific sources of bias, corresponding to steps 6—8 (European Medicines Agency 2023).
Recent works by the FDA Sentinel Innovation Center (Desai et al. 2024) and the Joint Ini-
tiative for Causal Inference (Dang et al. 2023) provide more advanced exposition of many
of the steps in our guide. The target trial framework contains guidance on developing seven
components of the study protocol, including eligibility criteria, treatment strategies, assign-
ment procedures, follow-up period, outcome, causal contrast of interest, and analysis plan
(Hernan and Robins 2016). Our work places the target trial framework into a larger context
illustrating its relationship with other important study planning considerations, including
the creation of a directed acyclic graph and incorporation of prespecified sensitivity and
quantitative bias analyses.

Ultimately, the feasibility of estimating causal effects relies on the capabilities of the
available data. Real-world data sources are complex, and the investigator must carefully
consider whether the data on hand are sufficient to answer the research question. For exam-
ple, a study that relies solely on claims data for outcome ascertainment may suffer from out-
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CONCLUSIONS AND LIMITATIONS

The proposed schema provides a structured framework for designing causal inference tasks in the context of real-world observational data.  It complements existing guidance by integrating elements like research question development, DAG construction, sensitivity analyses, and quantitative bias assessment into a unified process. It highlights the importance of controls on the actual observational data and the management of misclassification which could arise due to the data source. 
Ultimately, the guide highlights that causal inference in real-world studies requires both humility about data limitations and creativity in addressing them.

Some limitations are still recognized such as the absence of a proper definition of study protocol designs or methods to better communicate the results to clinical experts or to the general population.
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come misclassification bias (Lanes and Beachler 2023). This bias can be addressed through
medical record validation for a random subset of patients, followed by quantitative bias
analysis (Lanes and Beachler 2023). If instead, the investigator wishes to apply a previously
published, claims-based algorithm validated in a different database, they must carefully
consider the transportability of that algorithm to their own study population. In this way,
causal inference from real-world data requires the ability to think creatively and resource-
fully about how various data sources and elements can be leveraged, with consideration for
the strengths and limitations of each source. The heart of causal inference is in the pairing
of humility and creativity: the humility to acknowledge what the data cannot do, and the
creativity to address those limitations as best as one can at the time.

4.1 Limitations

As with any attempt to synthesize a broad array of information into a single, simplified
schema, there are several limitations to our work. Space and useability constraints neces-
sitated simplification of the complex source material and selections among many available
methodologies, and information about the relative importance of each step is not currently
included. Additionally, it is important to consider the context of our work. This step-by-step
guide emphasizes analytic techniques (e.g., propensity scores) that are used most frequently
within our own research environment and may not include less familiar study designs and
analytic techniques. However, one strength of the guide is that additional designs and tech-
niques or concepts can easily be incorporated into the existing schema. The benefit of a
schema is that new information can be added and is more readily accessed due to its asso-
ciation with previously sorted information (Loveless 2022). It is also important to note that
causal inference was approached as a broad overarching concept defined by the totality of
the research, from start to finish, rather than focusing on a particular analytic technique,
however we view this as a strength rather than a limitation.

Finally, the focus of this guide was on the methodologic aspects of study planning. As a
result, we did not include steps for drafting or registering the study protocol in a public data-
base or for communicating results. We strongly encourage researchers to register their study
protocols and communicate their findings with transparency. A protocol template endorsed
by ISPOR and ISPE for studies using real-world data to evaluate treatment effects is avail-
able (Wang et al. 2023a). Additionally, the steps described above are intended to illustrate
an order of thinking in the study planning process, and these steps are often iterative. The
guide is not intended to reflect the order of study execution; specifically, quality control
procedures and sensitivity analyses should also be formulated up-front at the protocol stage.

5 Conclusion

We outlined steps and described key conceptual issues of importance in designing real-
world studies to answer causal questions, and created a visually appealing, user-friendly
resource to help researchers clearly define and navigate these issues. We hope this guide
serves to enhance the quality, and thus the impact, of real-world evidence.

Supplementary Information The online version contains supplementary material available at https:/doi.
org/10.1007/s10742-024-00333-6.
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