LANGUAGE MODELS

Gabriella Pasi
pasi@disco.unimib.it

Based on material of
Dan Jurafsky and Chris Manning

Language Models

- A text can be represented as a language model to
represent its topics

- words that tend to occur often when discussing a topic will have
high probabilities in the corresponding language model

- A LM model assigns probabilities to sequences of words
- p(“Today is Wednesday”)
- p(“Today Wednesday is”)

- It can be regarded as a probabilistic mechanism for
“generating” text, thus also called a “generative” model

Language models: why ?

* Machine Translation:
* P(high winds tonite) > P(large winds tonite)
» Spell Correction

* The office is about fiteen minuets from my house
* P(about fifteen minutes from) > P(about fifteen minuets from)

- Speech Recognition
- P(I saw a van) >> P(eyes awe of an)

Language models: why ?

- Text categorization

- Given that we observe “baseball” three times and “game”
once in a news article, how likely is it about “sports” v.s.
“politics”?

- Information retrieval

- Given that a document is centered on the topic of sport,
how likely would a query “generated” by this document?

+ Summarization, question-answering, etc., etc.!!

Language Models

- Goal: compute the probability of a sentence or
sequence of words:
P(W) = P(wy,W5,W3,W,,We...W,,)
- Related task: probability of an upcoming word:
P(ws | wq,W,,W3,W,)
- So, a model that computes either of these:
P(W) or P(w,|wy,w,..w, 1) is called a language model.

You use Language Models every day!

Google

what is the | $

what is the weather

what is the meaning of life
what is the dark web

what is the xfl

what is the doomsday clock
what is the weather today
what is the keto diet

what is the american dream
what is the speed of light
what is the bill of rights

Google Search I'm Feeling Lucky

Notation

- To represent the probability of a particular random
variable X; taking on the value “the”, or P(X;= “the”), we
will use the simplified notation P(the).

- a sequence of n words is denoted eitheras w; ... w,
or as Wi

- the joint probability of each word in a sequence having a
particular value: P(X=w,,Y=w,, Z=w,,...W=w,) is
denoted as P(wq,W,,...,W,).

How to compute P(w,|w,,w,...w,_4)7

- Let us start by computing P(w,|wq,w5...w,_1), the
probability of a word w,, given a sequence of words.

- For example: P(the|its water is so transparent that)

- Relative frequency counts: given a very large corpus,
count the number of times we see its water is so
transparent that, and count the number of times it is
followed by the.

P(thelits water is so transparent that) =
C(its water is so transparent that the)

C(its water is so transparent that)

Too many possible sentences!

-
How to compute P(W) ?

- Similarly, if we aim to know the probability P(W) of a
sentence W (i.e., the joint probability of an entire
sequence of words like its water is so transparent), we
could do it by asking “out of all possible sequences of five
words, how many of them are its water is so transparent?”

- To do so, we would have to get the count of its water is so
transparent and divide by the sum of the counts of all
possible five word sequences.

- That seems rather a lot to estimate!!!

-
How to compute P(W) practically

- For example, how to compute this joint probability:

- P(its, water, is, so, transparent, that)

« Intuition: let’s rely on the Chain Rule of Probability

-
Reminder: The Chain Rule

- Recall the definition of conditional probabilities

p(B|A) = P(A,B)/P(A) Rewriting: P(A,B) = P(A)P(B|A)

- More variables:
P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C)
* The Chain Rule in General

P(X1,X2,X3,...,Xn) = P(X0)P(X5 [X1)P(X3] X1,%5) ... P(Xp | X100/ X0 1)

The Chain Rule applied to compute joint
probability of words in sentence

Pww,...w)= HP(Wi lww,...w._,)

P(“its water is so transparent”) =
P(its) x P(water]|its) x P(is|its water)
x P(so|its water is) x P(transparent]|its water is so)

So, we can compute a joint probability by multiplying a
number of conditional probabilities but ... this seems not
help! However...... we can approximate the “history”

Markov Assumption

- Simplifying assumption:

Andrei Markov

P(the l1ts water 1s so transparent that) = P(the |that)

-Or maybe

P(the l1ts water 1s so transparent that) = P(the | transparent that)

Markov Assumption

P(W1W2 . wn) o~ HP(WZ | W. ... 'Wi—l)

- In other words, we approximate each
component in the product

Pw lww,...w._)=Pw. lw,_ ...w._)

N-grams Language Models

- Unigram language model
- probability distribution over the words in a language

- generation of text consists of pulling words out of a “bucket”
according to the probability distribution and replacing them

- PROBABILITIES OF WORDS IN A SEQUENCE DO NOT
DEPEND ON PREVIOUS WORDS

- N-gram language model

- some applications use bigram and trigram language models where
probabilities depend on previous words

- BIGRAM LM: the probability of a word in a sequence depend on
the word that precedes it

- TRIGRAM LM: the probability of a word in a sequence depend on
the two words that precede it

N-grams Language Models

- Example of a 4gram LM (prediction based on the previous
three words)

-aﬁ-ﬁhe-p#eeée#ﬁmted-ﬁheebek—ﬁhestudents opened the/r

discard

condltlon on this

count(students opened their w)
count(students opened their)

P(wlstudents opened their) =

For example, suppose that in the corpus:

e “students opened their” occurred 1000 times

e “students opened their books” occurred 400 times
* - P(books | students opened their) =

e “students opened their exams” occurred 100 times
* = P(exams | students opened their) =

Sparsity Problems with n-gram
Language Models

Sparsity Problem 1

Problem: What if “students
opened their w” never
occurred in data? Then w
has probability 0!

(Partial) Solution: Add small
to the count for every w € V.
This is called smoothing.

\ 4

count(students opened their w)
count(students opened their)

P(wlstudents opened their) =

Sparsity Problem 2

Problem: What if “students]] .
. .,) (Partial) Solution: Just condition
opened their” never occurred in ~ -

on “opened their” instead.

? V4
data~ T-h.en we can’t calculate This is called backoff.
probability for any w!

\ 4

Note: Increasing n makes sparsity problems worse.
Typically we can’t have n bigger than 5.

Recap: Language Models

A language model is well-formed over alphabet > if Z P(s)=1 .

sex’

Generic Language Model Unigram Language Model
“Today is Tuesday” 0.01 “Today” 0.1
“The Eigenvalue is positive” 0.001 “18” 0.3
“Today Wednesday is” 0.00001 “Tuesday” 0.2

“Wednesday” 0.2

How to handle sequences?

Bigram Language Model * Chain Rule (requires long chains of cond. prob.):
“Today” 0.1 P(tit,) = Pt) P, | t) P, | 11,) P, | 41,t;)
“i1s” | “Today” 0.4

* Bigram LM (pairwise cond. prob.):

B, (tt,6:t,) = P(t,)P(t, [1) P(t; | 4,) P(4, | 1;)
* Unigram LM (no cond. prob.):

B,.(tt,t:1,) = P(t))P(4,)P(t;)P(1,)

“Tuesday” | “is” 0.8

Recap: language models

How do we build probabilities over sequence of terms?

P(t1, t2, t3, t4) = P(t1) x P(t2|t1) x P(t3|t1, t2) x P(t4|t1, t2, t3)
Unigram language model —simplest ; no conditioning context
P(t1, t2, t3, t4) = P(t1) x P(t2) x P(t3) x P(t4)

Bigram language model — condition on previous term

P(t1, t2, t3, t4) = P(t1) x P(12|t1) x P(t3|t2) x P(t4|t3)

Trigram language model ...

Unigram model is the most common in IR

» Often sufficient to judge the topic of a document

» Data sparseness issues when using richer models
» Simple and efficient implementation

Text representation with unigram LM

LM for [text 0.2
topic 1; |muning 0.1 R .
n-gram (.01 Article
[R&DM cluster 0.02 / <: on
‘ | Text
healthy 0.000001 > Mining]

different 6, for different d

LM for |food 0.25

topic 2: | nutrition0.1
Health |healthy 0.05
diet ~ 0.02 _

n-gram 0.00002

LMs for Retrieval

- 3 possibilities:
- probability of generating the query text from a document language
model

- probability of generating the document text from a query language
model

- comparing the language models representing the query and
document topics

- We will see this when will will present IR models

Basic LM for IR Which LM

parameter estimation is more likely
to generate q?

text ?
Article mining ? (better explains q)
on n-gram °?
“Text > cluster ? %
Mining”
7 healthy ? ?
Query q:
“data mining algorithms”
food ? «7
Article nutrition ? !

on healthy ?
“Food |0)| diet ?
Nutrition’

v n-gram ?

Estimating bigram probabillities

« The Maximum Likelihood Estimate

count(w,_,w;)

Pw.lw.)=
W W) count(w__,)

c(w,_,,w,)

c(w,_,)

Pw,lw._)=

An example
() <s>|am Sam </s>
Pw, lw,_)= CWiirWi) <5 sam 1am </s>
c(w,,) <s> | do not like green eggs and ham </s>
P(I|<s>)=3%=.67 P(sam|<s>)=1=233 P(am|I)=

P(</s>|sam)=1 =05 P(sam|am)=3=.5 P(do|I)=

Estimating Probabilities

- Obvious estimate for unigram probabilities is

fa;,
P(Qz"D) — |D|D

Where P(qi|D) denotes the probability of occurrence of qi in
document D, and |D| indicates the number of words in D

- Maximum likelihood estimate
- makes the observed value of fo,0 most likely

- If query words are missing from document, score will be
zero
- Missing 1 out of 4 query words same as missing 3 out of 4

-
Smoothing

- Document texts are a sample from the language model
- Missing words should not have zero probability of occurring

- Smoothing is a technique for estimating probabilities for
missing (or unseen) words

- lower (or discount) the probability estimates for words that are seen
in the document text

- assign that “left-over” probability to the estimates for the words that
are not seen in the text

Neural Language Models

- To overcome some limitations of Statistical LM, neural LM
have been definied:
- Fixed window neural LM
- RNN (recurrent NN) LM
- BERT (Bidirectional Encoder Representations from Transformers)
- BERT’s variants

Evaluation: How good is our model?

- Does our language model prefer good sentences to bad
ones”?

- Assign higher probability to “real” or “frequently observed”
sentences

- Than “ungrammatical” or “rarely observed” sentences?
- We train parameters of our model on a training set.

- We test the model’s performance on data we haven't
seen.

- Atest set is an unseen dataset that is different from our training
set, totally unused.

- An evaluation metric tells us how well our model does on the test
set.

Training on the test set

- We can't allow test sentences into the training set

- We will assign it an artificially high probability when we set
it in the test set

- “Training on the test set”
- Bad science!
- And violates the honor code

Extrinsic evaluation of N-gram models

- Best evaluation for comparing models A and B
- Put each model in a task
- spelling corrector, speech recognizer, MT system
- Run the task, get an accuracy for A and for B
- How many misspelled words corrected properly
- How many words translated correctly
- Compare accuracy for Aand B

Difficulty of extrinsic (in-vivo) evaluation of

N-gram models

- Extrinsic evaluation
- Time-consuming; can take days or weeks
* S0
- Sometimes use intrinsic evaluation: perplexity
- Bad approximation
- unless the test data looks just like the training data
- So generally only useful in pilot experiments
- But is helpful to think about.

Perplexity

The best language model is one that best predicts an unseen test set

e Gives the highest P(sentence) .

. PP(W) = P(ww,..wy) ¥
Perplexity is the inverse probability of) (w30

the test set, normalized by the number ;
of words: = x/

P(ww,..wy)

=

Chain rule: PP(W) = Id

i P(wilwy...wi_1)

For bigrams: Ad

Minimizing perplexity is the same as maximizing probability
Lower perplexity = Better model

