
DATA STRUCTURES
Gabriella Pasi

gabriella.pasi@unimib.it

http://unimib.it

Automatic indexing of text documents

• The automatic indexing of a textual document is the
process aimed at the association of indexes (index
terms) with a text.

• Typically: full-text indexing.

• The use of the indexes makes the retrieval efficient
based on the keywords specified in a query (example:
analytical index of a book).

• DICTIONARY à All the indexes extracted / associated
with all the documents of the collection considered
constitute the dictionary of the collection.

Scheme of automatic indexing process

Documents
in digital
format

Full- text

indexing

OUTPUT

Indexes

Indexing Phase

INPUT

Data structure
for the
organization of
indexes

…

The indexing process output representation

• ATTENTION: this is a representation!!!
• Sparse matrix! (presence of many 0 in each column).
• Weights !!" can be binary values, real values or positive

integers: they are calculated during the indexing phase.

Creating a data structure to organize indexes
Purpose (efficiency):

• Give “immediate” (very fast) answers to user requests.

• Optimize access to the dictionary (queries are specified
by keywords).

• “Off-line” construction before search.

Inverted file structure (motivations)

• The organization of the indexes in a “static” data
structure, for example a matrix of document/term
occurrences would be *very* inefficient.
• Since the matrix is sparse, space would be wasted to store also

the “non-occurrence” of the terms (e.g., Term3 in Doc1).
• Getting the list of documents related to a specific term would be

burdensome.

DocID Term1 Term2 Term3 Term4 Term5 Term6 Term7
Doc1 3 4 - - - - -

Doc2 - - 1 2 6 5 8

Doc3 - 2 - 1 3 - -

Doc4 - - - - 4 7 6

«Inverted file» structure (motivations)

• Idea to solve the above problems: the table of
occurrences is inverted (term/document) and organized
in a dynamic data structure.

Term Doc1 Doc2 Doc3 Doc4
Term1 3 - - -

Term2 4 - 2 -

Term3 - 1 - -

Term4 - 2 1 -

Term5 - 6 3 4

Term6 - 5 - 7

Term7 - 8 - 6

«Inverted file» data structure
• The index terms constituting the dictionary of the

document repository are organized and stored in an ad
hoc file. Each term "points" to a list (store in another file)
containing the references to documents of which the term
is an index.

• Use of two main files: dictionary and posting file (it
contains the posting lists of all index terms).

DICTIONARY POSTING FILE

t2

t1 D1 5

D1 5

D2 1

«Inverted file» data structure

• Independent from the Retrieval model that the IR system
adopts.
• We will see IR models in the next lessons.

• Information associated with each index:
• The list of documents containing it plus document related

information (in the posting file).
• The term occurrences in the collection (in the dictionary) for the

computation of the IDF, and to optimize the evaluation of Boolean
queries).

Simple representation of the inverted file

•D1: The GDP
incrased 2 percent
this quarter.

•D2: The spring
economic slowdown
continued to spring
downwards this
quarter.

Dictionary File Posting File
2 1 à D1
continued 1 à D2
downwards 1 à D2
economic 1 à D2
GDP 1 à D1
increased 1 à D1
percent 1 à D1
quarter 2 à D1, D2
slowdown 1 à D2
spring 1 à D2
this 2 à D1, D2
the 2 à D1, D2
to 1 à D2

«Inverted file» data structure

• The dictionary contains for each index: term, global
frequency in the dictionary, pointer to the posting list in the
posting file.

• The posting list (may) contain for each element:
• The unique document identifier (DocID) that is associated with a

file name or URL location (mandatory).
• The frequency of the term in the document (!").
• The position in the document of each occurrence of the term

(optional, only for query with context). The position can be
expressed as:
• word number from the beginning of the document,
• number of bytes from the beginning of the document,
• section number, paragraph, sentence, word number in the sentence.

Posting file – DocID

D1: nome_file1.doc, ms_word

D2: nome_file2.txt, wordpad

D3: nome_file3, acrobat_reader

…

Text file containing the ordered list of DocIDs

DICTIONARY POSTING FILE

Posting file – Location of occurrences

• Location of occurrences:
• The posting file can maintain information about the location of each

occurrence of a term in the documents
• Use:

• evaluation of adjacency and proximity operators.
• design of user interfaces for highlighting occurrences of the terms

searched within the retrieved documents.

Improved representation of the posting file

•D1: The GDP
incrased 2 percent
this economy quarter.

•D2: The spring
economic slowdown
continued to spring
downwards this
economy quarter.

Dictionary File Posting File
2 1 à D1:4
continued 1 à D2:5
downwards 1 à D2:8
economic 1 à D2:3
economy 2 à D1:7, D2:10
GDP 1 à D1:2
increased 1 à D1:3
percent 2 à D1:5
quarter 2 à D1:8, D2:11
slowdown 1 à D2:4
spring 2 à D2:2

Inverted file of the STAIRS system (IBM)

Word Inverted
file pointer

Synonym
pointer

Number of
documents

Number of
occurrences

Occurrence
1

Occurrence
2 …

Case Document
number

Paragraph
number

Sentence
number

Word
number

Dictionary

Inverted file

Address of
document Privacy Formatted

fields
Text index

Document
header

Paragraph
1 header Text Paragraph

2 header …

Text

Dictionary organization

1) Dictionary – Linear structure

• Index terms are stored in the dictionary in alphabetical
order.

1) Dictionary – Linear structure

• Advantages
• It can be accessed quickly, e.g., with a binary search $(log #).
• It is suitable for sequential evaluation, e.g., comp*
• Efficient use of memory space.

• Disadvantages
• Indexes must be rebuilt if new terms are inserted.

2) Dictionary – Binary tree structure

• Every node of the tree has two children.
• The search for the term begins at the root of the tree
• Each node (including the root) allows a binary test (lexigographic

order), on the basis of which the search proceeds in one of the two
sub-nodes below the considered node.

2) Dictionary – Binary tree structure

• Advantages
• Efficient search (the number of comparisons is at most $(log #)).

• Disadvantages
• The main problem is to rebalance the data structure: since the

terms are inserted and eliminated from the binary search tree, it
must be re-updated each time so that the equilibrium property is
maintained.

3) Dictionary – B-tree structure

• B-tree of order ':
• It is a balanced tree.
• Each node has a variable number of children.
• Each node of a B-tree contains several terms (max *) and pointers

to sub-trees:
• the root contains a number of terms ranging between 1 and ".
• all other nodes may contain a number of nodes between "/2 and ".

• If +! is the ,-th term in an intermediate node:
• all terms contained in the children nodes from the first to the %-th are

lexicographically smaller than &!.
• all terms contained in the children nodes from the (% + 1)-th are

lexicographically larger than &!.

3) Dictionary – B-tree structure

network

catalog, hardware review, synonym

apparatus, biomedicine morpheme number, paper …

panel publicationencyclopedia, grammar

Dictionary – B-tree structure

• Advantages
• It can be accessed quickly: the maximum number of accesses to a

B-tree of order * à $(log" #), where # is the number of levels
(height of the B-tree).

• New terms can be added quickly.
• Efficient use of memory space.

• Disadvantages
• Inefficient for sequential search, comp*
• Become unbalanced after numerous insertions if # grows.

