DATA STRUCTURES

Gabriella Pasi

gabriella.pasi@unimib.it

http://unimib.it

Automatic indexing of text documents

- The automatic indexing of a textual document is the

process aimed at the association of indexes (index
terms) with a text.

- Typically: full-text indexing.

- The use of the indexes makes the retrieval efficient
based on the keywords specified in a query (example:
analytical index of a book).

- DICTIONARY - All the indexes extracted / associated
with all the documents of the collection considered
constitute the dictionary of the collection.

Scheme of automatic indexing process

-

DSUIE:s Full- text
in digital
format indexing

OUTPUT

Indexes

Indexing Phase

The indexing process output representation

dy d; dm
t1 || w1t wy; W1m
tr We1 | ..o oo Wri | oo o] Wem
t'n Wn « o0 v o Wna c o PRI Wnm

- ATTENTION: this is a representation!!!

- Sparse matrix! (presence of many 0 in each column).

- Weights w;; can be binary values, real values or positive
Integers: they are calculated during the indexing phase.

Creating a data structure to organize indexes

Purpose (efficiency):

- Give “immediate” (very fast) answers to user requests.

- Optimize access to the dictionary (queries are specified
by keywords).

- “Off-line” construction before search.

Inverted file structure (motivations)

m

Doc1

Doc2 - - 1 2 6 S 8
Doc3 E 2 3 1 3 E 3
Doc4 - - - - 4 7 6

- The organization of the indexes in a “static” data
structure, for example a matrix of document/term
occurrences would be *very” inefficient.

- Since the matrix is sparse, space would be wasted to store also
the “non-occurrence” of the terms (e.g., Term3 in Doc1).

- Getting the list of documents related to a specific term would be
burdensome.

«Inverted file» structure (motivations)

Term -m--m-mm

Term1
Term?2 4 - 2
Term3
Term4
Termb
Term6

o O OO N -~
w
N

Term7

- ldea to solve the above problems: the table of
occurrences is inverted (term/document) and organized
In a dynamic data structure.

«Inverted file» data structure

- The index terms constituting the dictionary of the
document repository are organized and stored in an ad
hoc file. Each term "points” to a list (store in another file)

containing the references to documents of which the term
IS an index.

- Use of two main files: dictionary and posting file (it
contains the posting lists of all index terms).

DICTIONARY POSTING FILE

t1 D1 3) D2 1

t2 D1 5

«Inverted file» data structure

- Independent from the Retrieval model that the IR system
adopts.

- We will see IR models in the next lessons.

- Information associated with each index:
- The list of documents containing it plus document related
information (in the posting file).
- The term occurrences in the collection (in the dictionary) for the

computation of the IDF, and to optimize the evaluation of Boolean
queries).

Simple representation of the inverted file

"D1: The GDP
. 2 1 -=>D1
iIncrased 2 percent T
this quarter. downwards 1 > D2

economic 1 ->D2
GDP 1 -=>D1
-D2: The Spring increased 1 > D1
economic slowdown percent I
. . quarter 2 —>D1,D2
continued to spring B — T R
downwards this spring 1 >D2
quarter_ this 2 ->D1,D2
the 2 —>D1,D2
1

to

- D2

«Inverted file» data structure

- The dictionary contains for each index: term, global

frequency in the dictionary, pointer to the posting list in the
posting file.

- The posting list (may) contain for each element:

- The unique document identifier (DoclD) that is associated with a
file name or URL location (mandatory).

- The frequency of the term in the document (tf).

- The position in the document of each occurrence of the term

(optional, only for query with context). The position can be
expressed as:

- word number from the beginning of the document,
- number of bytes from the beginning of the document,
- section number, paragraph, sentence, word number in the sentence.

- 000000000
Posting file — DocID

DICTIONARY POSTING FILE

Text file containing the ordered list of DocIDs
D1: nome_file1.doc, ms_word
D2: nome_file2.txt, wordpad

D3: nome_file3, acrobat_reader

Posting file — Location of occurrences

- Location of occurrences:

- The posting file can maintain information about the location of each
occurrence of a term in the documents
- Use:
- evaluation of adjacency and proximity operators.

- design of user interfaces for highlighting occurrences of the terms
searched within the retrieved documents.

Improved representation of the posting file

-D1: The GDP

. 1 >D1:4
Incrased 2 percent T P
this economy quarter. downwards 1 > D28
economic 1 —>D2:3

economy 2 > D1.7,D2:10
- D2: The spring GDP 1 D12
economic slowdown e I
: . percent 2 ->D15

COntlnued tO Sprmg quarter 2 > D1:8,D2:11
downwards this slowdown 1 > D24
economy quarter. spring 2 D22

-
Inverted file of the STAIRS system (IBM)

Dictionary

Inverted file

> Address of Privacy Formatted Text index
document fields
Text
.| Document | Paragraph Text Paragraph
header 1 header 2 header

Dictionary organization

1) Dictionary — Linear structure

- Index terms are stored in the dictionary in alphabetical
order.

Pointer to the inverted Posting File
Term list of postings

1. Ant
2. Bee
3. Cat
4. Dog
5. Elk
6. Fox
7
8
9
1

. Gnu
. Hog
. Wolf
0.Zebra

1) Dictionary — Linear structure

- Advantages
- It can be accessed quickly, e.g., with a binary search 0(log n).
- It is suitable for sequential evaluation, e.g., comp*
- Efficient use of memory space.

- Disadvantages
- Indexes must be rebuilt if new terms are inserted.

2) Dictionary — Binary tree structure

- Every node of the tree has two children.
- The search for the term begins at the root of the tree

- Each node (including the root) allows a binary test (lexigographic
order), on the basis of which the search proceeds in one of the two
sub-nodes below the considered node.

2) Dictionary — Binary tree structure

- Advantages
- Efficient search (the number of comparisons is at most O (log n)).

- Disadvantages

- The main problem is to rebalance the data structure: since the
terms are inserted and eliminated from the binary search tree, it

must be re-updated each time so that the equilibrium property is
maintained.

3) Dictionary — B-tree structure

- B-tree of order d:
- It is a balanced tree.
- Each node has a variable number of children.

- Each node of a B-tree contains several terms (max d) and pointers
to sub-trees:

- the root contains a number of terms ranging between 1 and d.
- all other nodes may contain a number of nodes between d/2 and d.
- If k; is the i-th term in an intermediate node:

- all terms contained in the children nodes from the first to the i-th are
lexicographically smaller than k;.

- all terms contained in the children nodes from the (i + 1)-th are
lexicographically larger than k;.

3) Dictionary — B-tree structure

network

catalog, hardware review, synonym

apparatus, biomedicine

morpheme

number, paper

encyclopedia, grammar panel publication

Dictionary — B-tree structure

- Advantages

- It can be accessed quickly: the maximum number of accesses to a
B-tree of order d =2 O(log, n), where n is the number of levels
(height of the B-tree).

- New terms can be added quickly.
- Efficient use of memory space.

- Disadvantages
- Inefficient for sequential search, comp*
- Become unbalanced after numerous insertions if n grows.

