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Word embedding: Definition

• The term word embedding indicates a set of techniques

in Natural Language Processing (NLP) where words or

phrases from the vocabulary are mapped to dense 

vectors of real numbers.

• Conceptually, it involves a mathematical embedding 

from a vector space with many dimensions per word to a 

vector space with a much lower dimension.



Word embedding: Models

• Models to generate this mapping include: 

• Models producing “static” embeddings

• Count-based models (Distributed semantic models)

• Predictive models (Neural network models)

• Models producing “dynamic”, “contextualized” embeddings

• Contextual models (Transformers)



BACKGROUND

Text representation



Representing DOCUMENTS as vectors (1)

• Each document is represented by a vector of words.

• Option 1: Binary representation.

𝑑1 𝑑2 𝑑3

𝑑1 = [1, 0, 0] 𝑑2 = [0, 1, 0]

𝑉

𝐷 = 𝑁

1

1

1

0

0

0

0

0

0

𝑑3 = [0, 0, 1]



Representing DOCUMENTS as vectors (2)

• Each document is represented by a vector of words.

• Option 2: Raw frequency representation.

𝑑1 𝑑2 𝑑3

𝑑1 = [85, 0, 0] 𝑑2 = [0, 10, 0]

85

10

44

0

0

0

0

0

0

𝑑3 = [0, 0, 44]



Representing DOCUMENTS as vectors (3)

• Each document is represented by a vector of words.

• Option 3: Weighted representation.

• Weighted term frequency (different possibilities)

• TF-IDF

𝑑1 𝑑2 𝑑3

𝑑1 = [0.48, 0, 0] 𝑑2 = [0, 0.48, 0]

0.48

0.48

0.48

0

0

0

0

0

0

𝑑3 = [0, 0, 0.48]



Similarity of DOCUMENTS

• Vectors of the two comedies are similar. They are different with 
respect to the history plays.

• Comedies have more “fools” and “wits” and fewer “battles”.

• The vector representation of documents is at the basis of 
Information Retrieval → Vector Space Model.

As You 

Like It

Twelfth 

Night 

Julius 

Caesar 
Henry V

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3



Visualizing similarity of DOCUMENTS



WORDS can be represented as vectors too

• In the term-document matrix representation, a possible 

interpretation could be:

• battle is "the kind of word that occurs history plays, in Julius Caesar 

and Henry V especially".

• fool is "the kind of word that occurs in comedies, especially Twelfth 

Night".

As You 

Like It

Twelfth 

Night 

Julius 

Caesar 
Henry V

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3



In-document features



Similarity of WORDS

• Usually, the similarity of words is NOT computed by using 

the term-document representation.

• Two words are similar if their «context vectors» are 

similar.

• We are going to detail this concept in the next slides.

• The employed matrix representation, in this case, has 

words on both rows and columns.

• Different representations and meanings.

• Next slides.



Representing WORDS as vectors (1)
1. Local representation

• Each word is represented by a vector of words.

• Option 1: each element represents a different word.

• Also known as “one-hot” or 1-of-𝑉 or local representation.

𝑉

𝑉

1

1

1

0

0

0

0

0

0

bear = 1, 0, 0  cat = [0, 1, 0] frog = [0, 0, 1]



One-hot vectors (1)

• One-hot vectors tell us very little.

• We need a separate dimension for every word we want to 

represent (the base vectors in a vector space).

frog

frog

1

1

10



One-hot vectors (2)

Few problems with the one-hot approach for encoding:

• The number of dimensions (the columns) increases 

linearly as we add words to the vocabulary.

• For a vocabulary of 50,000 words, each word is represented with 

49,999 zeros, and a single “one” value in the correct location. As 

such, memory use is prohibitively large.

• The matrix is very sparse, mainly made up of zeros.

• There is no shared information between words and no 

commonalities between similar words.



One-hot vectors (3)

• There is no shared information between words and no 

commonalities between similar words.

𝑏𝑒𝑎𝑟 = 1, 0, 0

𝑓𝑟𝑜𝑔 = 0, 1, 0

𝑐𝑎𝑡 =  [0, 0, 1]frog

frog

1

1

10



• Each word is represented by a vector of words.

• Option 2: IDEA: to each word of the vocabulary are associated 𝑘
“context dimensions” that represent “properties” associated with the 

words of the vocabulary.

• Also known as distributed representation.

𝑉

𝐶 𝐶 = 𝑘 ≪ |𝑉|

Representing WORDS as vectors (2)
2. Distributed representation

AIM



Distributed representation (1)

• “Distributed vectors” allow to group similar words/objects 

together, depending on the considered context.



Distributed representation (2)

• For simple scenarios, we can create a 𝒌-dimensional 

mapping for a simple example vocabulary by manually 

choosing contextual dimensions that make sense.



Relationships between words 

• In a well-defined distributed representation model, 

calculations such as:

𝑘𝑖𝑛𝑔 − [𝑚𝑎𝑛] + [𝑤𝑜𝑚𝑎𝑛] = [𝑞𝑢𝑒𝑒𝑛]

𝑃𝑎𝑟𝑖𝑠 − [𝐹𝑟𝑎𝑛𝑐𝑒] + [𝐺𝑒𝑟𝑚𝑎𝑛𝑦] = [𝐵𝑒𝑟𝑙𝑖𝑛]

(where [𝑥] denotes the vector for the word 𝑥) will actually 

work out!

𝑘𝑖𝑛𝑔 − [𝑚𝑎𝑛] + [𝑤𝑜𝑚𝑎𝑛] = [𝑞𝑢𝑒𝑒𝑛]
0, 0, 1 − [0,0,0] + [1,0,0] = [1,0,1]



Distributed representation: Advantages

Some well-known advantages:

• Each word is represented with a 𝒌-dimensional vector

• Optimal representations are those with 𝒌 ≪ |𝑽|.

• Similar words have similar vectors

• There’s a smaller distance between vector representation for “girl” 

and “princess”, than from “girl” to “prince”.

To be continued…



Distributed representation: Advantages

… cont’d

• The resulting matrix is much less sparse (less empty 

space), and we could potentially add further words to the 

vocabulary without increasing the dimensionality. 

• For instance, the word “child” might be represented with [0.5, 1, 0].

• Relationships between words are captured and 

maintained, e.g., the movement from king to queen, is 

the same as the movement from boy to girl, and could be 

represented by [+1, 0, 0].



Local VS Distributed representation

• Local (or one-hot) representation
• Every term in vocabulary 𝑉 is represented by a binary vector of length |𝑉|, 

where one position in the vector is set to one and the rest to zero.

• Distributed representation
• Every term in vocabulary 𝑉 is represented by a real-valued vector of length 𝑘. 

The vector can be sparse or dense. The vector dimensions may be observed (e.g., 
hand-crafted features) or latent (e.g., embedding dimensions).



Extending to larger vocabularies

• Forming 𝒌-dimensional vectors that capture meaning in 

the same way that our simple example does, where 

similar words have similar vectors and relationships 

between words are maintained, is not a simple task.

• Manual assignment of vectors would be impossibly 

complex: individual dimensions cannot be directly 

interpretable.

• As such, various algorithms have been developed, 

some recently, that can take large corpora of text and 

create meaningful models.



Distributional hypothesis

“Words which are similar in meaning occur in            

similar contexts”

(Harris, 1954)

“You shall know a word by the company it keeps”

(Firth, 1957)

• Central idea: represent each word by some context:

• E.g., words co-occurring with the considered word.

• We can use different granularities of contexts: documents, 

sentences, phrases, n-grams.



Phrase VS sentence



Phrase VS sentence: Example

• Phrase: “Red apple”.

• This is a phrase consisting of two words, “red” and “apple”;

• It is not a complete thought on its own but conveys a simple 

description of an apple's color.

• Sentence: “The quick brown fox jumps over the lazy dog”.

• This is a complete sentence;

• It consists of multiple words and forms a grammatically correct and 

meaningful expression;

• In this sentence, the subject is “the quick brown fox”, the verb is 

“jumps”, and the object is “over the lazy dog”;

• The sentence conveys a clear action, where the fox is jumping over 

the dog.



Word-level 𝑛-grams



Character-level 𝑛-grams



A simple example (Neighbouring terms)

I enjoyed eating some pizza at the restaurant

Word

The company it keeps

Context



Neighbouring terms features



COUNTING 
CO-OCCURRING WORDS



Window-based Co-occurrence Matrix

• In this method, given a text corpus, we count the number 

of times each (context) word co-occurs:

• inside a window of a particular size,

• with the word of interest (i.e., target word).

• The resulting matrix is also known as (window-based)

• Word-word co-occurrence Matrix

• Term-context Matrix

• Count Matrix

• Each word is represented by a so-called Count Vector.



A simple example (1)

• One way of creating a vector for a word:

• Let’s count how often a (context) word co-occurs together with 

specific other words.

• He is reading a magazine

• This magazine published my story 

• She buys a magazine every month 

• I was reading a newspaper

• The newspaper published an article

• He buys this newspaper every day

The considered text corpus



A simple example (2)

• One way of creating a vector for a word:

• Let’s count how often a (context) word co-occurs together with 

specific other words.

• He is reading a magazine

• This magazine published my story 

• She buys a magazine every month 

• I was reading a newspaper

• The newspaper published an article

• He buys this newspaper every day

The considered target words, i.e., magazine and newspaper



A simple example (3)

• One way of creating a vector for a word:

• Let’s count how often a (context) word co-occurs together with 

specific other words.

• He is reading a magazine

• This magazine published my story

• She buys a magazine every month 

• I was reading a newspaper

• The newspaper published an article

• He buys this newspaper every day

We select a window of size 2 

with respect to the considered target words



A simple example (4)

• One way of creating a vector for a word:

• Let’s count how often a (context) word co-occurs together with 

specific other words.

• He is reading a magazine

• This magazine published my story

• She buys a magazine every month 

• I was reading a newspaper

• The newspaper published an article

• He buys this newspaper every day

We build the window-based co-occurrence matrix



A simple example (5)

• One way of creating a vector for a word:

• Let’s count how often a (context) word co-occurs together with 

specific other words.

ta
rg

e
t 

w
o

rd
s

context words

• He is reading a magazine

• This magazine published my story

• She buys a magazine every month 

• I was reading a newspaper

• The newspaper published an article

• He buys this newspaper every day



A simple example (6)

• One way of creating a vector for a word:

• Let’s count how often a (context) word co-occurs together with 

specific other words.

ta
rg

e
t 

w
o

rd
s

context words

• He is reading a magazine

• This magazine published my story

• She buys a magazine every month 

• I was reading a newspaper

• The newspaper published an article

• He buys this newspaper every day



How does this work in general?

• We calculate this count not only for specific target words, 

but for all the words in the text corpus.

• Let our corpus contain just three sentences and the 

window size be 1:

1. I enjoy flying

2. I like NLP

3. I like deep learning

• The resulting co-occurrence matrix will then be?

• EXERCISE



Exercise
I enjoy flying

I like NLP

I like deep learning

The text

corpus



Solution
I enjoy flying

I like NLP

I like deep learning



Solution
I enjoy flying

I like NLP

I like deep learning



To recap

Using a (Window-based) Word-word Co-occurrence Matrix 

representation for large text corpora:

• Generates a |𝑉| × |𝑉| co-occurrence matrix 𝑋.

• The distinction between a target word and a context word 

is arbitrary and that we are free to exchange the two 

roles.



Raw frequency is a bad representation

• Frequency is clearly useful; if sugar appears a lot near 

apricot, that's useful information.

• But overly frequent words like the, it, or they are not very 

informative about the context.

• More frequent words dominate the vectors.

• Need a way that resolves this frequency paradox!

• Can use a weighting scheme like:

• TF-IDF (already seen in detail).

• Pointwise Mutual Information (PMI).



Pointwise Mutual Information (PMI)

• Pointwise Mutual Information:

• Do events 𝑥 and 𝑦 co-occur more than if they were independent?

PMI(𝑥, 𝑦) = log2

𝑃(𝑥, 𝑦)

𝑃 𝑥 𝑃(𝑦)

• PMI between two words: (Church & Hanks 1989)

• Do words 𝑤1 and 𝑤2 co-occur more than if they were independent?

PMI(𝑤1, 𝑤2) = log2

𝑃(𝑤1, 𝑤2)

𝑃 𝑤1 𝑃(𝑤2)

Joint probability

Independent

probability



Positive PMI (PPMI)

• PMI ranges from −∞ to +∞

• Negative values are problematic:
• Things are co-occurring less than we expect by chance.

• Unreliable without enormous corpora.

• Imagine 𝑤1 and 𝑤2 whose probability is each 10−6.

• Hard to be sure 𝑃(𝑤1, 𝑤2) is significantly different than 10−12.

• We just replace negative PMI values by 0.
• Positive PMI (PPMI) between 𝑤1 and 𝑤2:

PPMI(𝑤1, 𝑤2) = max log2

𝑃(𝑤1, 𝑤2)

𝑃 𝑤1 𝑃(𝑤2)
, 0



Computing PPMI (1)

• Let us consider the following term-context matrix 𝑋:

• Matrix 𝑋 with 𝑊 rows (words) and 𝐶 columns (context 
words)
• Please remember that 𝑊 and 𝐶 can be equal in real scenarios, in 

particular 𝑊 = 𝐶 = |𝑉|.

𝑋 … computer data pinch result sugar …

apricot … 0 0 1 0 1 …

pineapple … 0 0 1 0 1 …

digital … 2 1 0 1 0 …

information … 1 6 0 4 0 …

… … … … … … … …



Computing PPMI (2)

• PPMI(𝑤𝑖 , 𝑐𝑗) = max log2
𝑃(𝑤𝑖,𝑐𝑗)

𝑃 𝑤𝑖 𝑃(𝑐𝑗)
, 0

• We need to compute:

𝑃 𝑤𝑖 , 𝑐𝑗  = (Count of co-occurrence of 𝑤𝑖 and 𝑐𝑗 in the context) / 
(Total word count in the context)

𝑃 𝑤𝑖  = (Count of word 𝑤𝑖 in the context) / (Total word 
count in the context)

𝑃 𝑐𝑗  = (Count of word 𝑐𝑗 w.r.t. target words) / (Total word 
count in the context)



Computing PPMI (3)

• 𝑓𝑖𝑗 is the number of times the word 𝑤𝑖 and 𝑐𝑗 co-occur.

• 𝑃 𝑤𝑖 , 𝑐𝑗 =
𝑓𝑖𝑗

σ𝑖=1
𝑊 σ𝑗=1

𝐶 𝑓𝑖𝑗

• 𝑃 𝑤𝑖 =
σ𝑗=1

𝐶 𝑓𝑖𝑗

σ𝑖=1
𝑊 σ𝑗=1

𝐶 𝑓𝑖𝑗

• 𝑃 𝑐𝑗 =
σ𝑖=1

𝑊 𝑓𝑖𝑗

σ𝑖=1
𝑊 σ𝑗=1

𝐶 𝑓𝑖𝑗

number of times the words 𝑤𝑖 and 𝑐𝑗 co-occur 

with all the other words in the vocabulary

number of times the words 𝑤𝑖 co-occur 

with the contextual words

number of times the words 𝑐𝑗 co-occur 

with the target words



Computing PPMI (4)

• 𝑃 𝑤 = information, 𝑐 = data =
6

19
= 0.32

• 𝑃 𝑤 = information =
11

19
= 0.58    𝑃 𝑐 = data =

7

19
= 0.37



Computing PPMI (5)

• 𝑃 𝑤 = information, 𝑐 = data =
6

19
= 0.32

• 𝑃 𝑤 = information =
11

19
= 0.58    𝑃 𝑐 = data =

7

19
= 0.37



Computing PPMI (6)

• 𝑃𝑃𝑀𝐼 information, data = max log2
𝑃(information,data)

𝑃 information 𝑃(data)
, 0

                                          = max log2
0.32

0.58∗0.37
, 0 = 0.57



Computing PPMI (7)



Exercise

• 𝑃 𝑤 = information, 𝑐 = result =

• 𝑃 𝑤 = information =     𝑃 𝑐 = result =



Weighting (P)PMI

• (P)PMI is biased toward infrequent events.

• Very rare words have very high PMI values.

• Two solutions:

1. Give rare context words slightly higher probabilities.

2. Use add-𝑘 smoothing (which has a similar effect).

• We add a value of 𝑘 to every frequency in the term-context matrix.



Slightly higher probability to context words

• Raise the context probabilities to α = 0.75 (𝛼 ∈ 0,1 ):

𝑃𝑃𝑀𝐼𝛼 𝑤, 𝑐 = max log2

𝑃(𝑤, 𝑐)

𝑃 𝑤 𝑃𝛼(𝑐)
, 0

𝑃𝛼 𝑐 =
𝑐𝑜𝑢𝑛𝑡 𝑐 𝛼

σ𝑐 𝑐𝑜𝑢𝑛𝑡 𝑐 𝛼

• This helps because 𝑃𝛼 𝑐 > 𝑃(𝑐) for rare 𝑐
• Consider two context words, 𝑃(𝑎) = 0.99 and 𝑃(𝑏) = 0.01

• 𝑃𝛼 𝑎 =
0.990.75

0.990.75+0.010.75 = 0.97  𝑃𝛼 𝑏 =
0.010.75

0.990.75+0.010.75 = 0.03



Add-2 smoothing (1)

Count(w, context)

Add-2 Smoothed Count(w, context)



Add-2 smoothing (2)

Add-2 Smoothed Count(w, context)



PPMI versus add-2 smoothed PPMI (1)



PPMI versus add-2 smoothed PPMI (2)



PPMI versus add-2 smoothed PPMI (3)

Count(w, context)



From sparse to dense vectors

• A Co-occurrence Matrix in reality is constituted by a 

very large number of words

• For each word, TF-IDF and PPMI vectors are:

• long (length |𝑉| = 20,000 to 50,000);

• sparse (most elements are equal to zero).

• There are techniques to learn lower-dimensional 

vectors for words, which are:

• short (length = 50 to 1,000) (usually around 300);

• dense (most elements are non-zero).

• These dense vectors are called embeddings.
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