WORD EMBEDDING

VVector semantics

Prof. Marco Viviani
marco.viviani@unimib.it

mailto:marco.viviani@disco.unimib.it

L
Word embedding: Definition

- The term word embedding indicates a set of techniques
in Natural Language Processing (NLP) where words or
phrases from the vocabulary are mapped to dense
vectors of real numbers.

- Conceptually, it involves a mathematical embedding
from a vector space with many dimensions per word to a
vector space with a much lower dimension.

L
Word embedding: Models

- Models to generate this mapping include:

- Models producing “static” embeddings
- Count-based models (Distributed semantic models)
- Predictive models (Neural network models)

L 11

- Models producing “dynamic”, “contextualized” embeddings
- Contextual models (Transformers)

BACKGROUND

Text representation

L
Representing DOCUMENTS as vectors (1)

- Each document is represented by a vector of words.
- Option 1: Binary representation.

ID| = N
|
[\
dq d, ds
" |bear 1 0 0
Iy — |cat 0 1 0
frog 0 0 1
d, =[1 0 0] d, =10 1 0]

L
Representing DOCUMENTS as vectors (2)

- Each document is represented by a vector of words.
- Option 2: Raw frequency representation.

dq d, ds

bear 85 0 0

cat 0 10 0

frog 0 0 44
d, = [85 0 0] d, = [0 10 0]

L
Representing DOCUMENTS as vectors (3)

- Each document is represented by a vector of words.

- Option 3: Weighted representation.
- Weighted term frequency (different possibilities)

- TF-IDF
dq d, ds
bear 0.48 0 0
cat 0 0.48 0
frog 0 0 0.48
d, = [0.48, 0 0] d, = [0 0.48 0]

L
Similarity of DOCUMENTS

As You Twelfth Jullus Henrv V
Like It nght Caesar Yy
| | | |

battle : I : I : I : 13 1
good 1 114 : 80 : 62 : 89 :
fool 1 36 11 58 11 1 11 4

1 | L (. I
wit : 20 : 15 : 2 I : 3 I

- Vectors of the two comedies are similar. They are different with
respect to the history plays.

- Comedies have more “fools” and “wits” and fewer “battles”.

- The vector representation of documents is at the basis of
Information Retrieval -> Vector Space Model.

L
Visualizing similarity of DOCUMENTS

Henry V [4,13]
5315'_
T, .
S 10 Julius Caesar /1,7]
5 7 As You Like It /36,1] Twelfth Night /58,0]
—>
T | I I | | I I I | ! |

S5 10 15 20 25 30 35 40 45 50 55 60
fool

WORDS can be represented as vectors too

As You \ Twelfth \ Jullus enrv V
\ Like It,’ \ nght ‘ Caesar ry
a4 T T T AT { -7- \ v

1 battle;
e N e -—
good 114 80 9
:_ fool 36 58 1 4 ,'
wit 20 15 2 3

- In the term-document matrix representation, a possible
interpretation could be:

- battle is "the kind of word that occurs history plays, in Julius Caesar
and Henry V especially".

- fool is "the kind of word that occurs in comedies, especially Twelfth
Night".

In-document features

SCI0Ielel I I I Jololololelelele)
seanawks (OO 000 0@@OOOOOOOO.
vevver [(OOOO000000C0 0000
sroncos. [(OOOO0000000 000 00®

poc 01 l o 03 l boc 05 l o 07 l o 09 J, ot 11 l ot 13 1 o 15 l
Doc02 Doc04 Doc06 Doc08 Docl0 Docl2 Docl4 Docl6

(a) “In-documents” features

L
Similarity of WORDS

- Usually, the similarity of words is NOT computed by using
the term-document representation.

- Two words are similar if their «context vectors» are
similar.
- We are going to detail this concept in the next slides.

- The employed matrix representation, in this case, has
words on both rows and columns.
- Different representations and meanings.
- Next slides.

L
Representing WORDS as vectors (1)

1. Local representation

- Each word is represented by a vector of words.

- Option 1: each element represents a different word.
- Also known as “one-hot” or 1-of-V or local representation.

|74
A
{ \
bear cat frog
. bear 1 0 0
I/ — |cat 0 1 0
~ |frog 0 0 1
bear = [1, 0, 0] cat=[0, 1, 0] frog = [0, 0, 1]

One-hot vectors (1)

- One-hot vectors tell us very little.

- We need a separate dimension for every word we want to
represent (the base vectors in a vector space).

One-hot vectors (2)

Few problems with the one-hot approach for encoding:

- The number of dimensions (the columns) increases
linearly as we add words to the vocabulary.

- For a vocabulary of 50,000 words, each word is represented with
49,999 zeros, and a single “one” value in the correct location. As
such, memory use is prohibitively large.

- The matrix is very sparse, mainly made up of zeros.

- There is no shared information between words and no
commonalities between similar words.

One-hot vectors (3)

bear bear = [1, 0, 0]

frog = [0, 1, 0]

cat = [0, 0, 1]

cat

L
Representing WORDS as vectors (2)

2. Distributed representation

- Each word is represented by a vector of words.

- Option 2: IDEA: to each word of the vocabulary are associated k
“context dimensions” that represent “properties” associated with the
words of the vocabulary.

- Also known as distributed representation.

’————~

C ICl=kL|V])

furry dangerous mammal
" |bear 0.9 0.85 1
V - |ecat 0.85 0.15 1
frog 0 0.05 0

bear = [0.9, 0.85, 1.0] cat = [0.85, 0.15, 1.0]

Distributed representation (1)

- “Distributed vectors™ allow to group similar words/objects
together, depending on the considered context.

dangerous

A llonx ,Pe - -
 cobra furry | dangerous
! bear 0.9 0.85

cat 0.85 0.15

cobra 0.0 0.8

5 308 lion 0.85 0.9

— % cat dog 0.8 0.15
>

Distributed representation (2)

- For simple scenarios, we can create a k-dimensional
mapping for a simple example vocabulary by manually
choosing contextual dimensions that make sense.

Z
-
E |5
Vocabulary: $ 3|8
M b B © o 0 Eachwordgetsa
an,‘won?an, oY, | Woman EEEEECIEE 1x3 vector
girl, prince, %‘1’ -1 N
princess,queen, — e REEEE Sl_ml.larwords...
; " Princess (RN U similar vectors
king, monarch —queen R
BT © ° !
—Wonarch —[CERELRNR

Nano lvnn | @ Ten -'--vLJq a1 1o
e 2 a vnl @wieamedze | ier
P i it | A At P A

3

Relationships between words

- In a well-defined distributed representation model,
calculations such as:

|king] — [man] + [woman] = [queen]

|Paris| — [France] + [Germany] = [Berlin]

(where [x] denotes the vector for the word x) will actually
work out!

|king]| — [man] + [woman] = [queen]
[0,0,1] — [0,0,0] + [1,0,0] = [1,0,1]

Distributed representation: Advantages

Some well-known advantages:

- Each word is represented with a k-dimensional vector
- Optimal representations are those with k «< |V].

- Similar words have similar vectors

- There’s a smaller distance between vector representation for “girl”
and “princess”, than from “girl” to “prince”.

To be continued...

Distributed representation: Advantages

... contd

- The resulting matrix is much less sparse (less empty
space), and we could potentially add further words to the
vocabulary without increasing the dimensionality.

- For instance, the word “child” might be represented with [0.5, 1, O].

- Relationships between words are captured and
maintained, e.g., the movement from king to queen, is
the same as the movement from boy to girl, and could be
represented by [+1, 0, O].

Local VS Distributed representation

banana [OOOO0.000000
mango (OO OO0O00000@O0
(o] Jolejeleolelelelelele)

(a) Local representation

- Local (or one-hot) representation

- Every term in vocabulary V is represented by a binary vector of length |V,
where one position in the vector is set to one and the rest to zero.

- Distributed representation

- Every term in vocabulary V is represented by a real-valued vector of length k.
The vector can be sparse or dense. The vector dimensions may be observed (e.qg.,
hand-crafted features) or latent (e.g., embedding dimensions).

Extending to larger vocabularies

- Forming k-dimensional vectors that capture meaning in
the same way that our simple example does, where
similar words have similar vectors and relationships
between words are maintained, is not a simple task.

- Manual assignment of vectors would be impossibly
complex: individual dimensions cannot be directly
interpretable.

- As such, various algorithms have been developed,
some recently, that can take large corpora of text and
create meaningful models.

L
Distributional hypothesis

“Words which are similar in meaniigy occur n
similar contexts”

(Harris, 1954)

“Nout shall know a word by the company i+ keeps”
(Firth, 1957)

- Central idea: represent each word by some context:
- E.g., words co-occurring with the considered word.

- We can use different granularities of contexts: documents,
sentences, phrases, n-grams.

Phrase VS sentence

A phrase is a group of
that does not express
a complete thought.

A sentence is a group of
that expresses a
complete thought.

A sentence has both
subject and
predicate.

A phrase does not
have a subject or
predicate or both.

A phrase does not
give complete
information about
the subject or
predicate.

A sentence gives
complete
information about
the subject and the
predicate.

A phrase does not begin
with a capital letter and
end with punctuation
marks.

A sentence begins with
a capital letter and
ends with a full stop,
question or
exclamation mark.

Pediaa.com

Phrase VS sentence: Example

- Phrase: “Red apple”.
- This is a phrase consisting of two words, “red” and “apple’;

- It is not a complete thought on its own but conveys a simple
description of an apple's color.

- Sentence: “The quick brown fox jumps over the lazy dog”.

- This is a complete sentence;

- It consists of multiple words and forms a grammatically correct and
meaningful expression;

- In this sentence, the subject is “the quick brown fox”, the verb is
“lumps”, and the object is “over the lazy dog”;

- The sentence conveys a clear action, where the fox is jumping over
the dog.

Word-level n-grams

Thz guick e thie lazy dog

The guick broren he lazy dog

The auick Lirerwinn fox dog
The quick brcreyn 1ox dog
The aulck Lirciwin fox jurnped dag

The nuick broreyn fox umpad ower

Character-level n-grams

Character-level unigrams

Text Token Sequence Token Value
[Dlogs 1 D
DloJos 2 0
Ddldls 3 g
Dogls] 4 s

Character-level bigrams

Text Token Sequence Token Value

Dolos 1 Do

Dlgk 2 0g

Dofag 3 gs
Character-level trigrams

Text Token Sequence Token Value

Dogs 1 Dog

Dloc 2 0gs

A simple example (Neighbouring terms)

Word -«

| enjoyed eating some| pizza |at the restaurant

| |
: The company it keeps |
| |
| |

__________ T—-——=—=—=—===-=
|

\

Context

Neighbouring terms features

wte (OO00000 0 00O@O 00
SClelelelelel I I I I I lelelelel
S elelele] I Jeleleleleel X I X §
N el lelelelel Y Ielelelel X X X)

Seattle lSeahawksl map l Jerseys J, Wllson lBrownerl Lynch l Mlller 1
Denver Broncos weather highlights Sherman Ifedi Sanchez Marshall

(b) “Neighbouring terms” features

COUNTING
CO-OCCURRING WORDS

Window-based Co-occurrence Matrix

- In this method, given a text corpus, we count the number
of times each (context) word co-occurs:
- inside a window of a particular size,
- with the word of interest (i.e., target word).

- The resulting matrix is also known as (window-based)
- Word-word co-occurrence Matrix
- Term-context Matrix
- Count Matrix

- Each word is represented by a so-called Count Vector.

A simple example (1)

One way of creating a vector for a word:

- Let’'s count how often a (context) word co-occurs together with
specific other words.

= S O S S B BN SN SNBSS EEE BN SN BEE EEE BN SN BEE B B SN BEE B S BEE EEE B S BEE B B BEE BE B B BEE B B BEE BEE B B B B B e .

 He is reading a magazine * | was reading a newspaper
« She buys a magazine every month » He buys this newspaper every day

|
|
|
: » This magazine published my story « The newspaper published an article
|
|
|

The considered text corpus

L
A simple example (2)

- One way of creating a vector for a word:

- Let’'s count how often a (context) word co-occurs together with
specific other words.

* He is reading a magazine * | was reading a newspaper

* This magazine published my story The newspaper published an article

« She buys a magazine every month » He buys this newspaper every day
\ /

\/

The considered target words, i.e., magazine and newspaper

L
A simple example (3)

- One way of creating a vector for a word:

- Let’'s count how often a (context) word co-occurs together with
specific other words.

reading a magazine reading a newspaper
« This magazine published my The newspaper published an
buys a magazine every month buys this newspaper every day
\ /

\/

We select a window of size 2
with respect to the considered target words

L
A simple example (4)

- One way of creating a vector for a word:

- Let’'s count how often a (context) word co-occurs together with
specific other words.

reading a magazine reading a newspaper
« This magazine published my The newspaper published an
buys a magazine every month buys this newspaper every day

We build the window-based co-occurrence matrix

reading | a this published 'my | buys |the | an | every | month day

magazine

newspaper

A simple example (5)

- One way of creating a vector for a word:
- Let’'s count how often a (context) word co-occurs together with

specific other words.

reading a magazine

This magazine published my

buys a magazine every month

reading a newspaper
 The newspaper published an

buys this newspaper every day

target words

context words

| reading | a

this

published

my

buys

the

an

every

month

day

magazine :

newspaper |

A simple example (6)

- One way of creating a vector for a word:

- Let’'s count how often a (context) word co-occurs together with
specific other words.

reading a magazine reading a newspaper
« This magazine published my The newspaper published an
buys a magazine every month buys this newspaper every day

context words

| o
% | reading | a this published 'my | buys |the ' an every #month day |
| - R l I
ol | = — === - e o e o o o o = — o e o e | e e o
E I magazine ! 1 2 1 1 1 1 0 0 1 1 0

o | 1

o : newspaper : 1 1 1 1 0 1 1 1 1 0 1

©

i

How does this work in general?

- We calculate this count not only for specific target words,
but for all the words in the text corpus.

- Let our corpus contain just three sentences and the
window size be 1.

1.l enjoy flying
2. |like NLP
3. |like deep learning

- The resulting co-occurrence matrix will then be?
- EXERCISE

Exercise
| lenjoyflying '
! enjoy 1lying |
| | like NLP 1 1he fext
:_ | like deep learning corpus
I like enjoy deep learning NLP flying
I -
like
enjoy
dee
= —F
learning
NLP
flying | _

Solution
| enjoy flying
| like NLP
| like deep learning
I like enjoy deep learning NLP flying
1 |6 2 1 0 0 0 0
like
enjoy
dee
X= "7
learning
NLP
flying | _

Solution
| enjoy flying
| like NLP
| like deep learning
I like enjoy deep learning NLP flying
1 [o 2 1 o0 0 0 0 |
like 2 0 0 1 0 1 0
enjoy 1 0 0 0 0 0 1
X — deep 0 1 0 0 1 0 0
learning 0 O 0 1 0 0 0
NLP 0 1 0 0 0 0 0
flying | 0 0 1 0 0 0 0 |

To recap

Using a (Window-based) Word-word Co-occurrence Matrix
representation for large text corpora:

- Generates a |V| x |V| co-occurrence matrix X.

- The distinction between a target word and a context word
is arbitrary and that we are free to exchange the two
roles.

Raw frequency is a bad representation

- Frequency is clearly useful; if sugar appears a lot near
apricot, that's useful information.

- But overly frequent words like the, it, or they are not very
informative about the context.

- More frequent words dominate the vectors.
- Need a way that resolves this frequency paradox!

- Can use a weighting scheme like:
- TF-IDF (already seen in detail).
-+ Pointwise Mutual Information (PMI).

Pointwise Mutual Information (PMI)

- Pointwise Mutual Information:
- Do events x and y co-occur more than if they were independent?

Joint probability
P(x,y)
=1
PMI(x: y) 082 (P (X)P(Y)/i Independent

probability

- PMI between two words: (Church & Hanks 1989)

- Do words w; and w, co-occur more than if they were independent?

P(Wl' WZ))

PMI(w;, w,) = log, (p(wl)P(Wz)

L
Positive PMI (PPMI)

- PMI ranges from —oo to 400

- Negative values are problematic:
- Things are co-occurring less than we expect by chance.

- Unreliable without enormous corpora.
- Imagine w; and w, whose probability is each 107°.
- Hard to be sure P(wy,w,) is significantly different than 10712,

- We just replace negative PMI values by 0.
- Positive PMI (PPMI) between w; and w,:

P(w,,w
PPMI(Wl,W2)=maX(log2((W1, w2)),0)

P(w1)P(w>)

L
Computing PPMI (1)

- Let us consider the following term-context matrix X:

X computer data pinch result sugar
apricot 0 0 1 0 1
pineapple 0 0 1 0 1
digital 2 1 0 1 0
information 1 6 0 4 0

- Matrix X with W rows (words) and C columns (context
words)

- Please remember that W and C can be equal in real scenarios, in
particular W = C = |V|.

L
Computing PPMI (2)

P(w;.cj)
- PPMI(w;, ¢;) = max (logz (P(Wi)P(JCj)) , O)

- We need to compute:

P(Wi, c]-) = (Count of co-occurrence of w; and ¢; in the context) /
(Total word count in the context)

P(w;) = (Count of word w; in the context) / (Total word
count in the context)

P(cj) = (Count of word ¢; w.r.t. target words) / (Total word
count in the context)

L
Computing PPMI (3)

* fij is the number of times the word w; and ¢; co-occur.

fij
P(Wu C]) — Z Z i number of times the words w; and ¢; co-occur
=14j=171 with all the other words in the vocabulary
number of times the words w; co-occur
-—
_ 2 =1fi lj with the contextual words
- P(w;) =
Z =1 Z =1 fl]

number of times the words ¢; co-occur
fl —
P() = l 1 J with the target words

L
Computing PPMI (4)

Count(w,context)
computer data pinch result sugar
apricot 0 0 1 0 1
pineapple 0 0 1 0 1
digital 2 1 0 1 0
information 1 6 0 4 0

- P(w = information, ¢ = data) = 1% = 0.32

- P(w = information) = 1—; = 0.58 P(c =data) = 119 = 0.37

L
Computing PPMI (5)

p(w,context) p(w)
computer data pinch result sugar
apricot 0.00 000 005 000 0.05 0.11
pineapple 0.00 000 0.05 000 0.05 0.11
digital 0.11 II} ':]5 0.00 0.05 0.00 [} 21
information 0.05 I 0.32° 1 000 021 0.00 (053 ‘,
pl(context) 0.16 (037, 011 026 0.11

P

- P(w = information, ¢ = data) = E = O 32)

_»

- P(w = information) = —9 L o O 58) P(c = data) = — = 0.37

Computing PPMI (6)
p(w,context) p(w)

computer data pinch result sugar
apricot 0.00 000 005 000 0.05 0.11
pineapple 0.00 000 0.05 000 0.05 0.11
digital 0.11 /[l.ﬂﬁ 0.00 005 0.00 0.21
information 0.05 (0327 000 021 0.0 (0.58
pl(context) 0.16 (037, 011 026 0.11

- PPMI(information, data) = max (logz (Pilnformation,data)),)

P(information)P(data)

el |

— max (logz (0.5255.37) ’ O) =E-O-'5-7-:

Computing PPMI (7)

PPMI(w,context)

computer data pinch result sugar
apricot -
pineapple -
digital) -

information

Exercise
Count(w,context)
computer data pinch result sugar
apricot 0 0 1 0 1
pineapple 0 0 1 0 1
digital 2 1 0 1 0
information 1 6 0 4 0

- P(w = information, ¢ = result) = —

- P(w = information) = — P(c = result) = —

L
Weighting (P)PMI

- (P)PMlI is biased toward infrequent events.
- Very rare words have very high PMI values.

Count(w,context) PPMI(w,context)
computer data pinch result sugar computer data pinch result sugar
apricot 0 0 1 0 1 - -- -
pineapple 0 0 1 0 1 - - -
digital 2 1 0 1 0 0.00 - 0.00 -
information 1 6 0 4 0 0.00 - B

- Two solutions:
1. Give rare context words slightly higher probabilities.

2. Use add-k smoothing (which has a similar effect).
- We add a value of k to every frequency in the term-context matrix.

L
Slightly higher probability to context words

- Raise the context probabilities to a = 0.75 (a € [0,1]):

P(w,c
PPMI,(w,c) = max (logz W, ¢))

PP

count(c)®
Y.c count(c)®

P,(c) =

- This helps because P,(c) > P(c) for rare c

- Consider two context words, P(a) = 0.99 and P(b) = 0.01

0_990.75 0.010.75
*Fa(@) = 0.990.7540.01075 0.97 Fo(b) = 0.9907540.01075 0.03

L
Add-2 smoothing (1)

Count(w, context)
computer data pinch result sugar

apricot 0) 0 1 0 1
pineapple 0 0 1 0 1
digital 2 1 0 1 0
information 1 6 0 4 0

Add-2 Smoothed Count(w, context)
computer data pinch result sugar
apricot 2 2 3 2 3
pineapple 2 2 3 2 3
digital 4 3 2 3 2
information 3 8 2 6 2

L
Add-2 smoothing (2)

Add-2 Smoothed Count(w, context)
computer data pinch result sugar

apricot 2 2 3 2 3
pineapple 2 2 3 2 3
digital 4 3 2 3 2
information 3 8 2 6 2
p(w,context) [add-2] p(w)
computer data pinch result sugar
apricot 003 003 005 0.03 0.05 0.20
pineapple 003 003 005 0.03 0.05 0.20
digital 0.07 005 0.03 0.05 0.03 0.24
information 005 014 0.03 0.10 0.03 0.36

p(context) 0.19 025 017 0.22 0.17

L
PPMI versus add-2 smoothed PPMI (1)

p(w,context) p(w)
computer data pinch result sugar
apricot 0.00 000 0.05 000 0.05 0.11
pineapple 0.00 0.00 005 0.00 0.05 0.11
digital 0.11 005 0.00 005 0.00 0.21
information 0.05 032 000 021 0.00 0.58
p(context) 0.16 037 011 026 011
p(w,context) [add-2] p(w)
computer data pinch result sugar
apricot 0.03 003 005 0.03 0.05 0.20
pineapple 0.03 003 005 0.03 0.05 0.20
digital 0.07 005 003 0.05 0.03 0.24
information 0.05 014 003 0.10 o0.03 0.36

p(context) 0.19 0.25 017 0.22 0.17

PPMI versus add-2 smoothed PPMI (2)

PPMI(w,context)
computer data pinch result sugar

apricot
pineapple
digital -

information 0.00
PPMI(w,context) [add-2]
computer data pinch result sugar

apricot 0.00 0.00 0.00
pineapple 0.00 0.00 0.00
digital 0.00 000 000 0.00
information 0.00 000, 037 0.00

PPMI versus add-2 smoothed PPMI (3)

Count(w, context)

computer data pinch result sugar

apricot 0) 0 1 0 1
pineapple 0 0 1 0 1
digital 2 1 0 1 0
information 1 6 0 4 0

PPMI(w,context) [add-2]
computer data pinch result sugar

apricot 0.00 0.00 0.00
pineapple 0.00 0.00 0.00

digital 0.00 000 000 0.00

information 0.00 0.00, 037 0.00

From sparse to dense vectors

- A Co-occurrence Matrix in reality is constituted by a
very large number of words

- For each word, TF-IDF and PPMI vectors are:
- long (length |V| = 20,000 to 50,000);
- sparse (most elements are equal to zero).

- There are techniques to learn lower-dimensional
vectors for words, which are:
- short (length = 50 to 1,000) (usually around 300);
- dense (most elements are non-zero).

- These dense vectors are called embeddings.

	Diapositiva 1: Word embedding Vector semantics
	Diapositiva 2: Word embedding: Definition
	Diapositiva 3: Word embedding: Models
	Diapositiva 4: background
	Diapositiva 5: Representing DOCUMENTS as vectors (1)
	Diapositiva 6: Representing DOCUMENTS as vectors (2)
	Diapositiva 7: Representing DOCUMENTS as vectors (3)
	Diapositiva 8: Similarity of DOCUMENTS
	Diapositiva 9: Visualizing similarity of DOCUMENTS
	Diapositiva 10: WORDS can be represented as vectors too
	Diapositiva 11: In-document features
	Diapositiva 12: Similarity of WORDS
	Diapositiva 13: Representing WORDS as vectors (1) 1. Local representation
	Diapositiva 14: One-hot vectors (1)
	Diapositiva 15: One-hot vectors (2)
	Diapositiva 16: One-hot vectors (3)
	Diapositiva 17: Representing WORDS as vectors (2) 2. Distributed representation
	Diapositiva 18: Distributed representation (1)
	Diapositiva 19: Distributed representation (2)
	Diapositiva 20: Relationships between words
	Diapositiva 21: Distributed representation: Advantages
	Diapositiva 22: Distributed representation: Advantages
	Diapositiva 23: Local VS Distributed representation
	Diapositiva 24: Extending to larger vocabularies
	Diapositiva 25: Distributional hypothesis
	Diapositiva 26: Phrase VS sentence
	Diapositiva 27: Phrase VS sentence: Example
	Diapositiva 28: Word-level n-grams
	Diapositiva 29: Character-level n-grams
	Diapositiva 30: A simple example (Neighbouring terms)
	Diapositiva 31: Neighbouring terms features
	Diapositiva 32: Counting co-occurring words
	Diapositiva 33: Window-based Co-occurrence Matrix
	Diapositiva 34: A simple example (1)
	Diapositiva 35: A simple example (2)
	Diapositiva 36: A simple example (3)
	Diapositiva 37: A simple example (4)
	Diapositiva 38: A simple example (5)
	Diapositiva 39: A simple example (6)
	Diapositiva 40: How does this work in general?
	Diapositiva 41: Exercise
	Diapositiva 42: Solution
	Diapositiva 43: Solution
	Diapositiva 44: To recap
	Diapositiva 45: Raw frequency is a bad representation
	Diapositiva 46: Pointwise Mutual Information (PMI)
	Diapositiva 47: Positive PMI (PPMI)
	Diapositiva 48: Computing PPMI (1)
	Diapositiva 49: Computing PPMI (2)
	Diapositiva 50: Computing PPMI (3)
	Diapositiva 51: Computing PPMI (4)
	Diapositiva 52: Computing PPMI (5)
	Diapositiva 53: Computing PPMI (6)
	Diapositiva 54: Computing PPMI (7)
	Diapositiva 55: Exercise
	Diapositiva 56: Weighting (P)PMI
	Diapositiva 57: Slightly higher probability to context words
	Diapositiva 58: Add-2 smoothing (1)
	Diapositiva 59: Add-2 smoothing (2)
	Diapositiva 60: PPMI versus add-2 smoothed PPMI (1)
	Diapositiva 61: PPMI versus add-2 smoothed PPMI (2)
	Diapositiva 62: PPMI versus add-2 smoothed PPMI (3)
	Diapositiva 63: From sparse to dense vectors

