WORD EMBEDDING

Vector semantics

Prof. Marco Viviani marco.viviani@unimib.it

Word embedding: Definition

- The term word embedding indicates a set of techniques in Natural Language Processing (NLP) where words or phrases from the vocabulary are mapped to dense vectors of real numbers.
- Conceptually, it involves a mathematical embedding from a vector space with many dimensions per word to a vector space with a much lower dimension.

Word embedding: Models

- Models to generate this mapping include:
 - Models producing "static" embeddings
 - Count-based models (Distributed semantic models)
 - Predictive models (Neural network models)
 - Models producing "dynamic", "contextualized" embeddings
 - Contextual models (Transformers)

BACKGROUND

Text representation

Representing DOCUMENTS as vectors (1)

- Each document is represented by a vector of words.
 - Option 1: Binary representation.

		D = N		
		d_1	d_2	d_3
	bear	1	0	0
$V \dashv$	cat	0	1	0
	frog	0	0	1

$$d_1 = [1, 0, 0]$$

$$d_2 = [0, 1, 0]$$

$$d_3 = [0, 0, 1]$$

Representing DOCUMENTS as vectors (2)

- Each document is represented by a vector of words.
 - Option 2: Raw frequency representation.

	d_1	d_2	d_3
bear	85	0	0
cat	0	10	0
frog	0	0	44

$$d_1 = [85, 0, 0]$$

$$d_2 = [0, 10,$$

0]

$$d_3 = [0, 0, 44]$$

Representing DOCUMENTS as vectors (3)

- Each document is represented by a vector of words.
 - Option 3: Weighted representation.
 - Weighted term frequency (different possibilities)
 - TF-IDF

	d_1	d_2	d_3
bear	0.48	0	0
cat	0	0.48	0
frog	0	0	0.48

$$d_1 = [0.48, 0,$$

$$d_2 = [0, 0.48,$$

0]

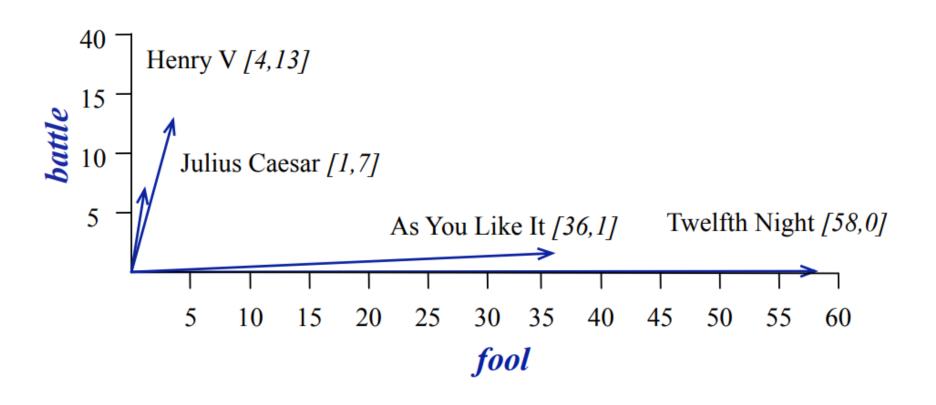
$$d_3 = [0, 0, 0.48]$$

Similarity of DOCUMENTS

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

- Vectors of the two comedies are similar. They are different with respect to the history plays.
 - Comedies have more "fools" and "wits" and fewer "battles".
- The vector representation of documents is at the basis of Information Retrieval → Vector Space Model.

Visualizing similarity of DOCUMENTS

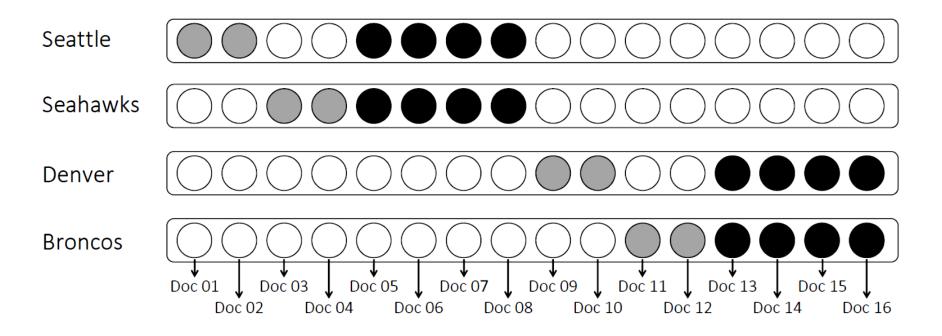


WORDS can be represented as vectors too

		/	/	ノーニへ	ノーニへ	
		As You Like It	Twelfth Night	Julius Caesar	Henry V	
Ĺ	battle	1	0	(7)	(13)]
_	good	114	80	62	89	_
Ę	(fool)	(36)	(58)	1	4	ì
Ī	wit	20	15	2	3	_

- In the term-document matrix representation, a possible interpretation could be:
 - battle is "the kind of word that occurs history plays, in Julius Caesar and Henry V especially".
 - fool is "the kind of word that occurs in comedies, especially Twelfth Night".

In-document features



(a) "In-documents" features

Similarity of WORDS

- Usually, the similarity of words is NOT computed by using the term-document representation.
- Two words are similar if their «context vectors» are similar.
 - We are going to detail this concept in the next slides.
- The employed matrix representation, in this case, has words on both rows and columns.
 - Different representations and meanings.
 - Next slides.

Representing WORDS as vectors (1)

1. Local representation

- Each word is represented by a vector of words.
 - Option 1: each element represents a different word.
 - Also known as "one-hot" or 1-of-V or local representation.

			V		
		bear	cat	frog	
	bear	1	0	0	
V =	cat	0	1	0	
	frog	0	0	1	

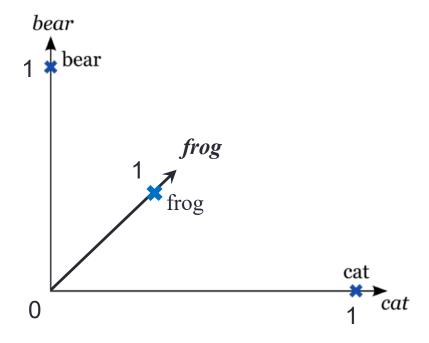
bear =
$$[1, 0, 0]$$
 cat = $[0, 1, 0]$ frog = $[0, 0, 1]$

$$cat = [0, 1, 0]$$

frog =
$$[0, 0, 1]$$

One-hot vectors (1)

- One-hot vectors tell us very little.
- We need a separate dimension for every word we want to represent (the base vectors in a vector space).



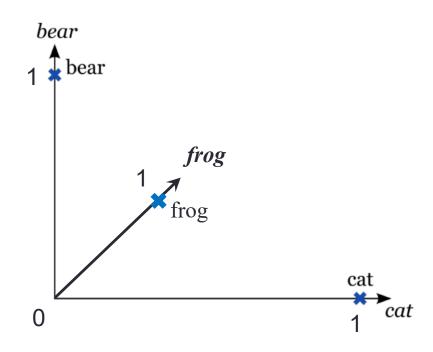
One-hot vectors (2)

Few problems with the one-hot approach for encoding:

- The number of dimensions (the columns) increases linearly as we add words to the vocabulary.
 - For a vocabulary of 50,000 words, each word is represented with 49,999 zeros, and a single "one" value in the correct location. As such, memory use is prohibitively large.
- The matrix is very sparse, mainly made up of zeros.
- There is no shared information between words and no commonalities between similar words.

One-hot vectors (3)

There is **no shared information between words** and **no commonalities between similar words**.



$$bear = [1, 0, 0]$$

$$frog = [0, 1, 0]$$

$$cat = [0, 0, 1]$$

Representing WORDS as vectors (2)

2. Distributed representation

- Each word is represented by a vector of words.
 - Option 2: IDEA: to each word of the vocabulary are associated k
 "context dimensions" that represent "properties" associated with the
 words of the vocabulary.

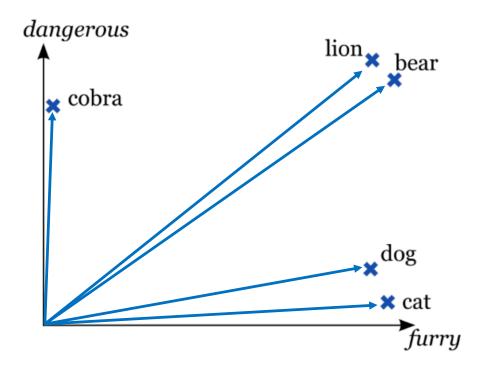
Also known as distributed representation.

 $\langle [C] = k \ll |V|$ furry dangerous mammal 0.85 bear 0.9 1 0.85 cat 0.15 1 frog 0 0.05 0

bear = [0.9, 0.85, 1.0] cat = [0.85, 0.15, 1.0]

Distributed representation (1)

• "Distributed vectors" allow to group similar words/objects together, depending on the considered **context**.



	furry	dangerous
bear	0.9	0.85
cat	0.85	0.15
cobra	0.0	0.8
lion	0.85	0.9
dog	0.8	0.15

Distributed representation (2)

• For simple scenarios, we can create a **k**-dimensional mapping for a simple example vocabulary by manually choosing contextual dimensions that make sense.

Vocabulary:

Man, woman, boy, girl, prince, princess, queen, king, monarch

	Femininity	Youth	Royalty
Man	0	0	0
Woman	1	0	0
Boy	0	1	0
Girl	1	1	0
Prince	0	1	1
Princess	1	1	1
Queen	1	0	1
King	0	0	1
Monarch	0.5	0.5	1

Each word gets a 1x3 vector

Similar words... similar vectors

@shane a lynn | @TeamEdgeTier

Relationships between words

 In a well-defined distributed representation model, calculations such as:

$$[king] - [man] + [woman] = [queen]$$

$$[Paris] - [France] + [Germany] = [Berlin]$$

(where [x] denotes the vector for the word x) will actually work out!

$$[king] - [man] + [woman] = [queen]$$

 $[0, 0, 1] - [0, 0, 0] + [1, 0, 0] = [1, 0, 1]$

Distributed representation: Advantages

Some well-known advantages:

- Each word is represented with a k-dimensional vector
 - Optimal representations are those with $k \ll |V|$.

Similar words have similar vectors

• There's a smaller distance between vector representation for "girl" and "princess", than from "girl" to "prince".

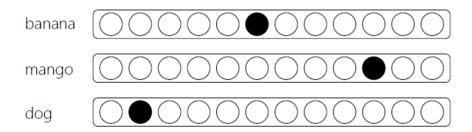
To be continued...

Distributed representation: Advantages

... cont'd

- The resulting matrix is much less sparse (less empty space), and we could potentially add further words to the vocabulary without increasing the dimensionality.
 - For instance, the word "child" might be represented with [0.5, 1, 0].
- Relationships between words are captured and maintained, e.g., the movement from king to queen, is the same as the movement from boy to girl, and could be represented by [+1, 0, 0].

Local VS Distributed representation



(a) Local representation

Local (or one-hot) representation

• Every term in vocabulary V is represented by a binary vector of length |V|, where one position in the vector is set to one and the rest to zero.

Distributed representation

• Every term in vocabulary V is represented by a real-valued vector of length k. The vector can be *sparse* or *dense*. The vector dimensions may be *observed* (e.g., hand-crafted features) or *latent* (e.g., embedding dimensions).

Extending to larger vocabularies

- Forming k-dimensional vectors that capture meaning in the same way that our simple example does, where similar words have similar vectors and relationships between words are maintained, is not a simple task.
- Manual assignment of vectors would be impossibly complex: individual dimensions cannot be directly interpretable.
- As such, various algorithms have been developed, some recently, that can take large corpora of text and create meaningful models.

Distributional hypothesis

"Words which are similar in meaning occur in similar contexts"

(Harris, 1954)

"You shall know a word by the company it keeps" (Firth, 1957)

- Central idea: represent each word by some context:
 - E.g., words co-occurring with the considered word.
 - We can use <u>different granularities of contexts</u>: <u>documents</u>, <u>sentences</u>, <u>phrases</u>, <u>n-grams</u>.

Phrase VS sentence

A phrase is a group of that does not express a complete thought. A sentence is a group of that expresses a complete thought.

A phrase does not have a subject or predicate or both.

A sentence has both subject and predicate.

A phrase does not give complete information about the subject or predicate. A sentence gives complete information about the subject and the predicate.

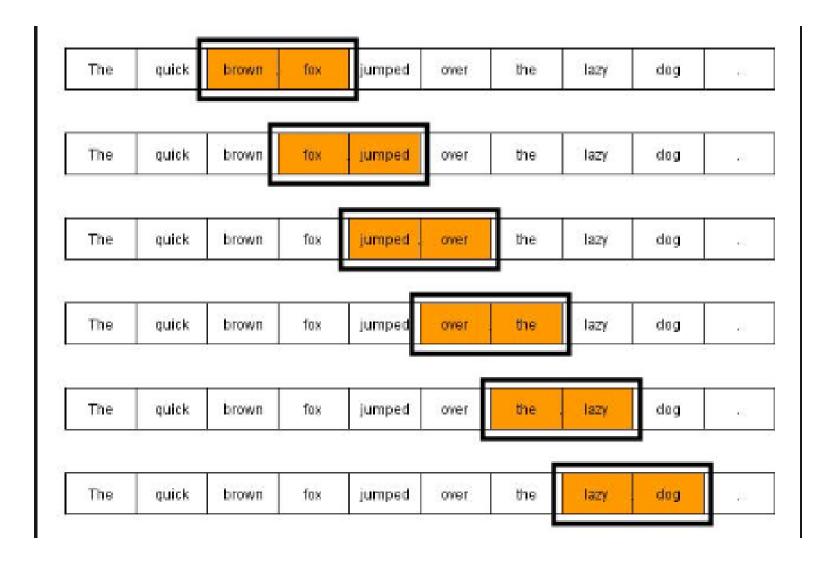
A phrase does not begin with a capital letter and end with punctuation marks. A sentence begins with a capital letter and ends with a full stop, question or exclamation mark.

Pediaa.com

Phrase VS sentence: Example

- Phrase: "Red apple".
 - This is a phrase consisting of two words, "red" and "apple";
 - It is not a complete thought on its own but conveys a simple description of an apple's color.
- Sentence: "The quick brown fox jumps over the lazy dog".
 - This is a complete sentence;
 - It consists of multiple words and forms a grammatically correct and meaningful expression;
 - In this sentence, the subject is "the quick brown fox", the verb is "jumps", and the object is "over the lazy dog";
 - The sentence conveys a clear action, where the fox is jumping over the dog.

Word-level *n*-grams



Character-level *n*-grams

Character-level unigrams

<u>Text</u>	Token Sequence	Token Value
Dogs	1	D
Dogs	2	0
Dogs	3	g
Dogs	4	S

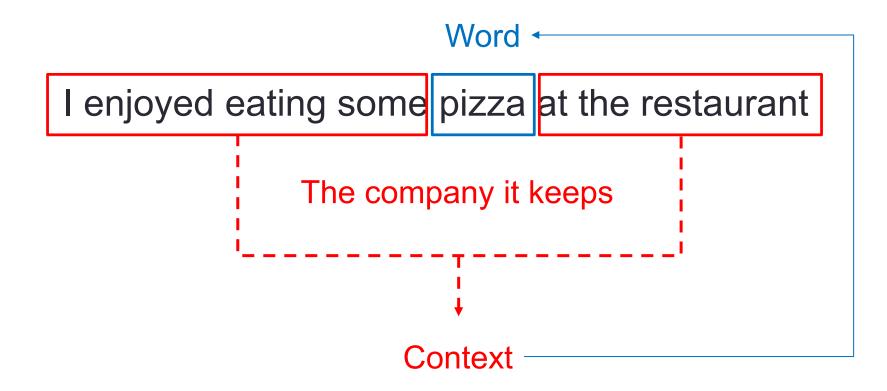
Character-level bigrams

<u>Text</u>	Token Sequence	Token Value
Dogs	1	Do
Dogs	2	og
Dogs	3	gs

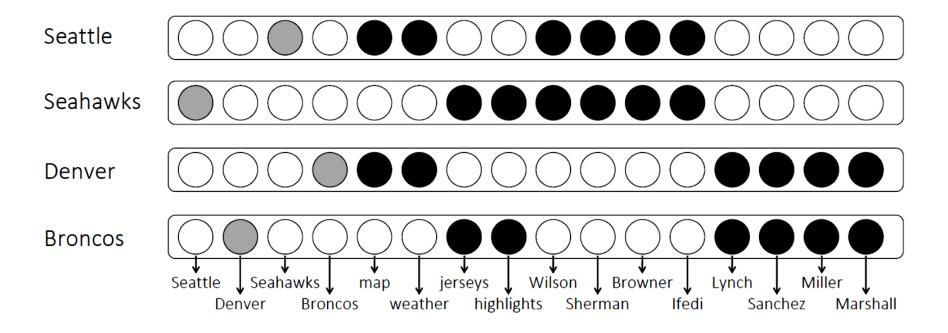
Character-level trigrams

<u>Text</u>	Token Sequence	Token Value
Dogs	1	Dog
Dogs	2	ogs

A simple example (Neighbouring terms)



Neighbouring terms features



(b) "Neighbouring terms" features

COUNTINGCO-OCCURRING WORDS

Window-based Co-occurrence Matrix

- In this method, given a <u>text corpus</u>, we <u>count</u> the <u>number</u>
 of times each (context) word co-occurs:
 - inside a window of a particular size,
 - with the word of interest (i.e., target word).
- The resulting matrix is also known as (window-based)
 - Word-word co-occurrence Matrix
 - Term-context Matrix
 - Count Matrix
- Each word is represented by a so-called Count Vector.

A simple example (1)

- One way of creating a vector for a word:
 - Let's count how often a (context) word co-occurs together with specific other words.

- He is reading a magazine
- This magazine published my story
- She buys a magazine every month
- I was reading a newspaper
- The newspaper published an article
- He buys this newspaper every day

The considered text corpus

A simple example (2)

- One way of creating a vector for a word:
 - Let's count how often a (context) word co-occurs together with specific other words.

- He is reading a magazine
- This magazine published my story
- She buys a **magazine** every month
- I was reading a newspaper
- The **newspaper** published an article
- He buys this newspaper every day

The considered <u>target words</u>, i.e., <u>magazine</u> and <u>newspaper</u>

A simple example (3)

- One way of creating a vector for a word:
 - Let's count how often a (context) word co-occurs together with specific other words.

- He is reading a magazine
- This magazine published my story
- She buys a magazine every month
- I was reading a newspaper
- The **newspaper** published an article
- He buys this newspaper every day

We select a <u>window</u> of **size 2** with respect to the considered target words

A simple example (4)

- One way of creating a vector for a word:
 - Let's count how often a (context) word co-occurs together with specific other words.

- He is reading a magazine
- She buys a **magazine** every month
- I was reading a newspaper
- This **magazine** published my story The **newspaper** published an article
 - He buys this newspaper every day

We build the window-based co-occurrence matrix

	reading	а	this	published	my	buys	the	an	every	month	day
magazine											
newspaper											

A simple example (5)

- One way of creating a vector for a word:
 - Let's count how often a (context) word co-occurs together with specific other words.

- He is reading a magazine
- She buys a **magazine** every month
- I was reading a newspaper
- This **magazine** published my story The **newspaper** published an article
 - He buys this newspaper every day

context words

ords			reading	а	this	published	my	buys	the	an	every	month	day
et wo	! !	magazine											
arge	i i	newspaper											

A simple example (6)

- One way of creating a vector for a word:
 - Let's count how often a (context) word co-occurs together with specific other words.

- He is reading a magazine
- She buys a **magazine** every month
- I was reading a newspaper
- This **magazine** published my story The **newspaper** published an article
 - He buys this newspaper every day

context words

ords -		reading	а	this	published	my	buys	the	an	every	month	day
et wo	magazine	1	2	1	1	1	1	0	0	1	1	0
arge	newspaper	1	1	1	1	0	1	1	1	1	0	1

How does this work in general?

- We calculate this count **not only** for specific target words, but **for all** the words in the text corpus.
- Let our corpus contain just three sentences and the window size be 1:
 - 1. I enjoy flying
 - 2. I like NLP
 - 3. I like deep learning
- The resulting co-occurrence matrix will then be?
 - EXERCISE

Exercise

```
I enjoy flying
                                                   The text
                                I like NLP
                                                   corpus
                           I like deep learning
                           enjoy deep learning
                                                     NLP flying
                       like
          I
         like
        enjoy
        deep
X =
      learning
        NLP
       flying
```

Solution

I enjoy flying
I like NLP
I like deep learning

$$X = \begin{bmatrix} I & like & enjoy & deep & learning & NLP & flying \\ I & & & & & & \\ like & & & & & \\ enjoy & & & & & \\ enjoy & & & & \\ deep & & & & \\ learning & & & \\ NLP & & & \\ flying & & & \\ \end{bmatrix}$$

Solution

I enjoy flying
I like NLP
I like deep learning

		I	like	enjoy	deep	learning	NLP	flying
	I	0	2	1	0	0	0	0
	like	2	0	0	1	0	1	0
	enjoy	1	0	0	0	0	0	1
Y _	deep	0	1	0	0	1	0	0
Λ –	learning	0	0	0	1	0	0	0
	NLP	0	1	0	0	0	0	0
	flying	0	0	1	0	0	0	0

To recap

Using a (Window-based) Word-word Co-occurrence Matrix representation for large text corpora:

- Generates a $|V| \times |V|$ co-occurrence matrix X.
- The distinction between a target word and a context word is arbitrary and that we are free to exchange the two roles.

Raw frequency is a bad representation

- Frequency is clearly useful; if sugar appears a lot near apricot, that's useful information.
- But overly frequent words like the, it, or they are not very informative about the context.
- More frequent words dominate the vectors.
 - Need a way that resolves this frequency paradox!
 - Can use a <u>weighting scheme</u> like:
 - TF-IDF (already seen in detail).
 - Pointwise Mutual Information (PMI).

Pointwise Mutual Information (PMI)

- Pointwise Mutual Information:
 - Do events x and y co-occur more than if they were independent?

$$PMI(x, y) = \log_2 \left(\frac{P(x, y)}{P(x)P(y)} \right)$$
Independent probability

- PMI between two words: (Church & Hanks 1989)
 - Do words w_1 and w_2 co-occur more than if they were independent?

PMI
$$(w_1, w_2) = \log_2 \left(\frac{P(w_1, w_2)}{P(w_1)P(w_2)} \right)$$

Positive PMI (PPMI)

- PMI ranges from $-\infty$ to $+\infty$
- Negative values are problematic:
 - Things are co-occurring less than we expect by chance.
 - Unreliable without enormous corpora.
 - Imagine w_1 and w_2 whose probability is each 10^{-6} .
 - Hard to be sure $P(w_1, w_2)$ is significantly different than 10^{-12} .
- We just replace negative PMI values by 0.
 - Positive PMI (PPMI) between w_1 and w_2 :

PPMI
$$(w_1, w_2) = \max \left(\log_2 \left(\frac{P(w_1, w_2)}{P(w_1)P(w_2)} \right), 0 \right)$$

Computing PPMI (1)

Let us consider the following term-context matrix X:

X	 computer	data	pinch	result	sugar	***
apricot	 0	0	1	0	1	
pineapple	 0	0	1	0	1	
digital	 2	1	0	1	0	
information	 1	6	0	4	0	

- Matrix X with W rows (words) and C columns (context words)
 - Please remember that W and C can be equal in real scenarios, in particular W = C = |V|.

Computing PPMI (2)

• PPMI
$$(w_i, c_j) = \max \left(\log_2 \left(\frac{P(w_i, c_j)}{P(w_i)P(c_j)} \right), 0 \right)$$

We need to compute:

$$P(w_i, c_j) =$$
(Count of co-occurrence of w_i and c_j in the context) / (Total word count in the context)

$$P(w_i) = (\text{Count of word } w_i \text{ in the context}) / (\text{Total word count in the context})$$

$$P(c_j) = \text{(Count of word } c_j \text{ w.r.t. target words) / (Total word count in the context)}$$

Computing PPMI (3)

• f_{ij} is the number of times the word w_i and c_j co-occur.

•
$$P(w_i, c_j) = \frac{f_{ij}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{ij}}$$
 number of times the words w_i and c_j co-occur with all the other words in the vocabulary

•
$$P(w_i) = \frac{\sum_{j=1}^C f_{ij}}{\sum_{i=1}^W \sum_{j=1}^C f_{ij}}$$
 number of times the words w_i co-occur with the contextual words

•
$$P(c_j) = \frac{\sum_{i=1}^{W} f_{ij}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{ij}}$$
 number of times the words c_j co-occur with the target words

Computing PPMI (4)

Count(w,context)

	computer	data	pinch	result	sugar
apricot	0	0	1	0	1
pineapple	0	0	1	0	1
digital	2	1	0	1	0
information	1	6	0	4	0

•
$$P(w = \text{information}, c = \text{data}) = \frac{6}{19} = 0.32$$

•
$$P(w = \text{information}) = \frac{11}{19} = 0.58$$
 $P(c = \text{data}) = \frac{7}{19} = 0.37$

Computing PPMI (5)

	p(w)					
	computer	data	pinch	result	sugar	
apricot	0.00	0.00	0.05	0.00	0.05	0.11
pineapple	0.00	0.00	0.05	0.00	0.05	0.11
digital	0.11	0.05	0.00	0.05	0.00	0.21
information	0.05	(0.32)	0.00	0.21	0.00	(0.58)
p(context)	0.16	(0.37)	0.11	0.26	0.11	

•
$$P(w = \text{information}, c = \text{data}) = \frac{6}{19} = 0.32$$

•
$$P(w = \text{information}) = \frac{11}{19} = (0.58)$$
 $P(c = \text{data}) = \frac{7}{19} = (0.37)$

Computing PPMI (6)

		p(w,cont	ext)			p(w)
	computer	data	pinch	result	sugar	
apricot	0.00	0.00	0.05	0.00	0.05	0.11
pineapple	0.00	0.00	0.05	0.00	0.05	0.11
digital	0.11	0.05	0.00	0.05	0.00	0.21
information	0.05	(0.32)	0.00	0.21	0.00	(0.58)
		`~_~				`'
p(context)	0.16	(0.37)	0.11	0.26	0.11	

•
$$PPMI$$
(information, data) = $\max \left(\log_2 \left(\frac{P(\text{information,data})}{P(\text{information})P(\text{data})} \right), 0 \right)$
= $\max \left(\log_2 \left(\frac{0.32}{0.58*0.37} \right), 0 \right) = 0.57$

Computing PPMI (7)

PPMI(w,context)

	computer	data	pinch	result	sugar
apricot	-	-	2.25	-	2.25
pineapple	-	-	2.25	-	2.25
digital	1.66	0.00		0.00	-
information	0.00	0.57	-	0.47	-

Exercise

Count(w,context)

	computer	data	pinch	result	sugar
apricot	0	0	1	0	1
pineapple	0	0	1	0	1
digital	2	1	0	1	0
information	1	6	0	4	0

•
$$P(w = information, c = result) = -$$

•
$$P(w = information) = P(c = result) = -$$

Weighting (P)PMI

- (P)PMI is biased toward infrequent events.
 - Very <u>rare words have very high PMI values</u>.

		PPMI(w,context)								
	computer	data	pinch	result	sugar	computer	data	pinch	result	sugar
apricot	0	0	1	0	1	-	-	2.25	-	2.25
pineapple	0	0	1	0	1		-	2.25	-	2.25
digital	2	1	0	1	0	1.66	0.00	-	0.00	-
information	1	6	0	4	0	0.00	0.57	-	0.47	-

- Two solutions:
 - 1. Give rare context words slightly higher probabilities.
 - 2. Use add-k smoothing (which has a similar effect).
 - We add a value of k to every frequency in the term-context matrix.

Slightly higher probability to context words

• Raise the context probabilities to $\alpha = 0.75$ ($\alpha \in [0,1]$):

$$PPMI_{\alpha}(w,c) = \max\left(\log_2 \frac{P(w,c)}{P(w)P_{\alpha}(c)}, 0\right)$$

$$P_{\alpha}(c) = \frac{count(c)^{\alpha}}{\sum_{c} count(c)^{\alpha}}$$

- This helps because $P_{\alpha}(c) > P(c)$ for rare c
 - Consider two context words, P(a) = 0.99 and P(b) = 0.01

•
$$P_{\alpha}(a) = \frac{0.99^{0.75}}{0.99^{0.75} + 0.01^{0.75}} = 0.97$$
 $P_{\alpha}(b) = \frac{0.01^{0.75}}{0.99^{0.75} + 0.01^{0.75}} = 0.03$

Add-2 smoothing (1)

Count(w, context)

	computer	data	pinch	result	sugar
apricot	0	0	1	0	1
pineapple	0	0	1	0	1
digital	2	1	0	1	0
information	1	6	0	4	0

Add-2 Smoothed Count(w, context)

	computer	data	pinch	result	sugar
apricot	2	2	3	2	3
pineapple	2	2	3	2	3
digital	4	3	2	3	2
information	3	8	2	6	2

Add-2 smoothing (2)

Add-2 Smoothed Count(w, context)

	computer	data	pinch	result	sugar
apricot	2	2	3	2	3
pineapple	2	2	3	2	3
digital	4	3	2	3	2
information	3	8	2	6	2

	ı	p(w)				
	computer	data	pinch	result	sugar	
apricot	0.03	0.03	0.05	0.03	0.05	0.20
pineapple	0.03	0.03	0.05	0.03	0.05	0.20
digital	0.07	0.05	0.03	0.05	0.03	0.24
information	0.05	0.14	0.03	0.10	0.03	0.36
p(context)	0.19	0.25	0.17	0.22	0.17	

PPMI versus add-2 smoothed PPMI (1)

p(w,context)						
	computer	data	pinch	result	sugar	
apricot	0.00	0.00	0.05	0.00	0.05	0.11
pineapple	0.00	0.00	0.05	0.00	0.05	0.11
digital	0.11	0.05	0.00	0.05	0.00	0.21
information	0.05	0.32	0.00	0.21	0.00	0.58
p(context)	0.16	0.37	0.11	0.26	0.11	
		p(w,con	text) [ad	dd-2]		p(w)
	computer	p(w,con data	text) [ad	dd-2] result	sugar	p(w)
apricot		• • •		·	sugar 0.05	p(w) 0.20
apricot pineapple	computer	data	pinch	result	_	
	computer 0.03	data 0.03	pinch 0.05	result 0.03	0.05	0.20
pineapple	0.03 0.03 0.07	data 0.03 0.03	pinch 0.05 0.05	0.03 0.03	0.05 0.05	0.20 0.20

PPMI versus add-2 smoothed PPMI (2)

PPMI(w,context)

	computer	data	pinch	result	sugar
apricot	-	-	2.25	-	2.25
pineapple	_	_	2.25	-	2.25
digital	1.66	0.00	-	0.00	-
information	0.00	0.57	-	0.47	-

PPMI(w,context) [add-2]

	computer	data	pinch	result	sugar
apricot	0.00	0.00	0.56	0.00	0.56
pineapple	0.00	0.00	0.56	0.00	0.56
digital	0.62	0.00	0.00	0.00	0.00
information	0.00	0.58	0.00	0.37	0.00

PPMI versus add-2 smoothed PPMI (3)

Count(w, context)

	computer	data	pinch	result	sugar
apricot	0	0	1	0	1
pineapple	0	0	1	0	1
digital	2	1	0	1	0
information	1	6	0	4	0

PPMI(w,context) [add-2]

	computer	data	pinch	result	sugar
apricot	0.00	0.00	0.56	0.00	0.56
pineapple	0.00	0.00	0.56	0.00	0.56
digital	0.62	0.00	0.00	0.00	0.00
information	0.00	0.58	0.00	0.37	0.00

From sparse to dense vectors

- A Co-occurrence Matrix in reality is constituted by a very large number of words
 - For each word, TF-IDF and PPMI vectors are:
 - **long** (length |V| = 20,000 to 50,000);
 - sparse (most elements are equal to zero).
- There are techniques to learn lower-dimensional vectors for words, which are:
 - short (length = 50 to 1,000) (usually around 300);
 - dense (most elements are non-zero).
- These <u>dense vectors</u> are called <u>embeddings</u>.