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THE TASK



What classification is and what is not

• Classification (a.k.a. “categorization”): a ubiquitous enabling 
technology in data science.
• Studied within pattern recognition, statistics, and machine learning.

• Definition: the activity of predicting to which, among a 
predefined finite set of groups (“classes”, or “categories”), a 
data item belongs to.

• Formulated as the task of generating a hypothesis (or 
“classifier”, or “model”):

ℎ: 𝐷 → 𝐶

where

• 𝐷 = {𝑥1, 𝑥2, … } is a domain of data items.

• 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑛} is a finite set of classes (the classification 
scheme).



What classification is and what is not

• The membership of a data item into a class must not be 

determinable with certainty.

• E.g., predicting whether a natural number belongs to Prime or 

NonPrime is not classication).

• In text classification, data items are textual:

• E.g., news articles, e-mails, tweets, product reviews, sentences, 

questions, queries, etc.

or partly textual:

• E.g., Web pages.



Main types of classication

Binary classification

• ℎ: 𝐷 → 𝐶 (each item belongs to exactly one class).

• 𝐶 = {𝑐1, 𝑐2}.
• E.g., assigning emails to Spam or Legitimate.

Single-Label Multi-Class (SLMC) classification

• ℎ: 𝐷 → 𝐶 (each item belongs to exactly one class).

• 𝐶 = {𝑐1, 𝑐2, … 𝑐𝑛}, with 𝑛 > 2.

• E.g., assigning news articles to one of HomeNews, 

International, Entertainment, Lifestyles, Sports.



Main types of classication

Multi-Label Multi-Class (MLMC) classification

• ℎ: 𝐷 → 2𝐶 (each item may belong to zero, one, or several 
classes).

• 𝐶 = {𝑐1, 𝑐2, … 𝑐𝑛}, with 𝑛 > 1.
• E.g., assigning computer science articles to classes in the ACM 

Classification System.

• May be solved as 𝑛 independent binary classification problems.

Ordinal classification (OC)

• As in SLMC, but for the fact that there is a total order 
𝑐1 ≼ 𝑐2≼ ⋯ ≼ 𝑐𝑛 on 𝐶 = {𝑐1, 𝑐2, … 𝑐𝑛}.
• E.g., assigning product reviews to one of Excellent, Good, 

SoAndSo, Poor, Disastrous.



Hard classification and soft classification

• The previous definitions denote “hard classification” 

(HC).

• “Soft classication” (SC) denotes the task of predicting a 

score for each pair (𝑑, 𝑐), where the score denotes the 

{probability / strength of evidence / confidence} that 𝑑
belongs to 𝑐.



Hard classification and soft classification

• Hard classification often consists of:
1. Training a soft classifier that outputs scores 𝑠(𝑑, 𝑐).

2. Picking a threshold 𝑡, such that:

• 𝑠(𝑑, 𝑐) ≥ 𝑡 is interpreted as predicting 𝑐1.

• 𝑠(𝑑, 𝑐) < 𝑡 is interpreted as predicting 𝑐2.

• In soft classification, scores are used for ranking.
• E.g., ranking items for a given class, ranking classes for a given 

item.

• HC is used for fully autonomous classifiers, while SC is 
used for interactive classifiers (i.e., with humans in the 
loop).



Dimensions of text classification

Text classification may be performed according to several 

dimensions (“axes”) orthogonal to each other.

• By topic: by far the most frequent case, its applications 

are ubiquitous.

• By sentiment: useful in market research, online 

reputation management, customer relationship 

management, social sciences, political science.

• By language (a.k.a. “language identification”); useful, 

e.g., in query processing within search engines.



Dimensions of text classification

• By type: e.g., AutomotiveNews vs. AutomotiveBlogs, 

useful in website classification and others.

• By author (a.k.a. “authorship attribution”).

• By native language (“native language identification”).

• By gender: useful in forensics and cybersecurity.

• …



APPLICATIONS OF 
TEXT CLASSICATION



Example 1. Knowledge organization

• Long tradition in both science and the humanities.

• The goal was organizing knowledge, i.e., conferring structure to 

an otherwise unstructured body of knowledge.

• The rationale is that using a structured body of knowledge 

is easier/more effective than if this knowledge is 

unstructured.

• Automated classification tries to automate the tedious 

task of assigning data items based on their content, a task 

otherwise performed by human annotators (or 

“assessors”, or “coders”).



Example 1. Knowledge organization

• Scores of applications (examples):

• Classifying news articles for selective dissemination

• Classifying scientific papers into specialized taxonomies

• Classifying patents

• Classifying “classified” ads

• Classifying answers to open-ended questions

• Classifying topic-related tweets by sentiment

• ...

• Retrieval (as in search engines) could also be viewed as 
(binary + soft) classification into Relevant vs. 

NonRelevant, but mostly soft → Ranking.



Example 2. Filtering

• Filtering (a.k.a. “routing”) refers to the activity of blocking 
a set of NonRelevant items from a dynamic stream, 

thereby leaving only the Relevant ones.

• E.g., when studying the sentiment of Twitter users 
towards Donald Trump, tweets that are not about 

Donald Trump must be “filtered out”.

• Filtering is thus an instance of binary (hard) classification, 

and its applications are ubiquitous.



Example 2. Filtering – Applications

• Spam filtering is an important example of filtering, 
attempting to tell Legitimate messages from Spam

messages.

• Detecting unsuitable content (e.g., violent content, 

racist content, cyberbullying, fake news) is also an 

important application, e.g., in PC filters or on interfaces to 

social media.



Example 3. Empowering other IR tasks

• Functional to improving the effectiveness of other tasks in 

IR or NLP.

• Some examples:

• Classifying queries by intent within search engines

• Classifying questions by type in QA systems

• Classifying named entities

• Word sense disambiguation in NLP systems

• ...

• Many of these tasks involve classifying very small texts 

(e.g., queries, questions, sentences).



SUPERVISED LEARNING AND 
TEXT CLASSICATION



Before supervised learning

• An old-fashioned way to build text classifiers was via 

knowledge engineering, i.e., manually building 

classification rules.

• E.g., (Viagra or Sildenafil or Cialis) → Spam

• Disadvantages: expensive to setup and to maintain.



Supervised learning and classification

• Supervised learning (SL) approach:

• A generic (task-independent) learning algorithm is used to train a 

classifier from a set of manually classified examples.

• The classifier learns, from these training examples, the 

characteristics a new text should have in order to be assigned to 

class 𝑐.

• Advantages:

• Generating training examples cheaper than writing classification 

rules.

• Easy update to changing conditions (e.g., addition of new classes, 

deletion of existing classes, shifted meaning of existing classes, 

etc.).
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Text representation



Representing text for classification purposes

• In order to be input to a learning algorithm (or a classifier), 

all training (or unlabeled) documents are converted into 

vectors in a common vector space.

• The dimensions of the vector space are called features, 

and the number 𝑘 of features used is called the 

dimensionality of the vector space.



Representing text for classification purposes

In order to generate a vector-based representation for a set 

of documents 𝐷, the following steps need to be taken:

• Feature Extraction

• (Feature Selection or Feature Synthesis)

• Feature Weighting



Feature extraction

• Feature extraction in text classification is the process of 

converting raw text data into a numerical or categorical 

format that can be used as input for machine learning 

algorithms.

• Text data, unlike structured data, cannot be directly used 

for classification tasks because machine learning 

algorithms typically work with numerical data. 

• Feature extraction is crucial in text classification as it 

transforms the text into a format that can be processed 

effectively by algorithms.



Feature extraction – Unigrams (1) 

• In classification by topic, a typical (simplest) choice is to 

make the set of features coincide with the set of words 

that occur in the training set (unigram model, a.k.a. “Bag-

of-Words”).

• This may be preceded by (a) stop words removal and/or (b) 

stemming or lemmatization; (b) is meant to improve statistical 

robustness.

• The dimensionality 𝑘 of the vector space is the number of 

words (or stems, or lemmas) that occur at least once in 

the training set, and can easily be 𝑂(105) or even 𝑂(106).



Feature extraction – Unigrams (2)

• Each document usually contains 𝑂 105 unique words!

• If we indicate the absence of a word from a document by 0, this 

means that these vectors are usually very sparse.

• Vector sparsity and high dimensionality are possibly 

the two most important characteristics that distinguish text 

classification from other instantiations of classification 

(e.g., in data mining).

• The unigram representation renounces to encoding word 

order and syntactic structure.

• Unigrams → ["the", "cat", "sat"]



Feature extraction – Bigrams

• Word 𝒏-grams (i.e., sequences of 𝑛 words that frequently 

occur in 𝐷 – a.k.a. “shingles”) may be optionally added; 

this is usually limited to 𝑛 = 2 (unigram+bigram model).

• The higher the value of 𝑛, the higher the semantic 

significance and the dimensionality 𝑘 of the resulting 

representation, but the higher the computational cost.

• The bigram representation can incorporate word order 

partially.

• Bigrams → ["the cat", "cat sat"]



Feature extraction – Bigrams



Feature extraction – Character n-grams

• An alternative to the process above is to make the set of 

features coincide with the set of character 𝒏-grams (e.g., 

𝑛 ∈ {3,4,5}) that occur in 𝐷.

• Useful especially for degraded text (e.g., resulting from OCR).



Feature extraction – TF-IDF

• TF-IDF is a numerical statistic that reflects the importance 
of a term within a document relative to a collection of 
documents (corpus).

• It is calculated by multiplying the term frequency (TF) in a 
document by the inverse document frequency (IDF) of the 
term across the corpus.

• TF-IDF is used to represent each document as a vector 
of TF-IDF scores for each term.

• TF-IDF can be applied not only to unigrams, but also to 
bigrams, trigrams, or combinations of them.



Feature extraction – Word Embeddings (1)

• Word embeddings are dense vector representations of 
words that capture semantic meaning.

• Techniques like SVD, GloVe, word2vec, and FastText can 
be used to generate word embeddings.

• Words in a document can be averaged or concatenated to 
create document embeddings.
• It is also possible to use Doc2Vec → Will be shown during the labs.

• Employ these document embeddings for classification 
w.r.t. a specific supervised classification technique.



Feature extraction – Word Embeddings (2)

• Embeddings (word, sentence, or document embeddings) 
capture semantic information → Words or documents 
appearing in similar contexts have similar vector 
representations.

• These representations do not just encode topics. They can also 
reflect, depending on the corpus:
• Sentiment or tone of the text,

• Syntactic roles of words,

• Semantic relations between concepts,

• Even stylistic or authorial features.

• In this case, the choice of the corpus and proper labeling are 
crucial for achieving good classification performance on 
aspects other than just topics.



Feature extraction – Contextualized WEs (1)

• Unlike traditional word embeddings like Word2Vec or 

GloVe, which provide fixed representations for words, 

contextualized embeddings adapt their representations 

based on the surrounding context in which the word 

appears.

• Preprocessing:

• Tokenization: Break the text into sentences or words, depending on 

the model's requirements.

• Special tokens: Add [CLS] and [SEP] tokens at the beginning and 

end of each text for BERT-style models.

• Padding: Ensure that all sequences are of the same length by 

padding or truncating as needed.



Feature extraction – Contextualized WEs (2)

• Obtain Embeddings
• Use a pre-trained BERT (or BERT-like) model to obtain 

contextualized word embeddings for your text data.

• You can leverage pre-trained models available in libraries like 
Hugging Face Transformers or other sources.

• Aggregation
• You can choose to aggregate the word embeddings to obtain a 

fixed-length representation for the entire document. 

• Common aggregation techniques include mean pooling, max 
pooling, or concatenating embeddings.

• Mean pooling, also known as average pooling, calculates the average of 
all the embeddings in the sequence.

• Max pooling calculates the maximum value for each dimension (feature) 
across all the embeddings in the sequence.



Feature extraction (1)

• The above is OK for classification by topic, but not necessarily 
when classifying by other dimensions!

• Examples
• In classification by author, features such average word length, average 

sentence length, punctuation frequency, frequency of subjunctive 
clauses, etc., are used.
• “You have such a scar on your neck, Mr. Eden,” the girl was saying. “How did it 

happen? I am sure it must have been some adventure.”

(Martin Eden, by Jack London)

• In classification by sentiment, Bag-of-Words is not enough, and deeper 
linguistic processing is necessary.

• The choice of features for a classification task (feature design) 
is dictated by the distinctions we want to capture and is left to 
the designer.



Feature extraction (2)

• When you use BoW, TF-IDF, or word embeddings for 

classification (even when it’s not topic-based), you can 

extend the vector with additional features to improve the 

model’s performance.

𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑣𝑒𝑐𝑡𝑜𝑟 = [𝑡𝑒𝑥𝑡_𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜 ∣∣ 𝑒𝑥𝑡𝑟𝑎_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠]

• Be careful with the type of additional features!



Feature extraction (3)

• The final feature vector is the concatenation of the text 

representation and the additional features of different 

kind:

𝑓𝑖𝑛𝑎𝑙_𝑣𝑒𝑐𝑡𝑜𝑟 = [𝑡𝑒𝑥𝑡_𝑣𝑒𝑐𝑡𝑜𝑟 ∣∣ 𝑛𝑢𝑚𝑒𝑟𝑖𝑐_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠

∣∣ 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠]

• 𝑡𝑒𝑥𝑡_𝑣𝑒𝑐𝑡𝑜𝑟 → text representation (BoW, TF-IDF, or embedding)

• 𝑛𝑢𝑚𝑒𝑟𝑖𝑐_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 → numerical features (e.g., text length,

 sentiment score)

• 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 → categorical features (e.g., author, 

 language, source)



Feature extraction – Other features (1)

• PoS
• Instead of just individual words, you can use Part-of-Speech tags 

as features.

• Document length
• The length of a document can be used as a feature.

• Short and long documents may have different characteristics in 
some classification tasks.

• Topic Modeling
• Techniques like Latent Dirichlet Allocation (LDA) or Non-Negative 

Matrix Factorization (NMF) can be used to discover topics within a 
collection of documents, and the topic distribution for each 
document can be used as features.



Feature extraction – Other features (2)

• Sentiment Analysis

• Sentiment scores or sentiment features derived from sentiment 

analysis can be used in sentiment classification tasks.

• NER

• Named Entity Recognition is an NLP technique that identifies and 

classifies named entities, such as names of people, organizations, 

locations, dates, and more, in text. 

• Leveraging NER output as features can provide valuable 

information to improve text classification, especially when the 

entities are crucial for understanding the content or context of the 

text.



Feature extraction – How to treat them? (1)

• Numerical features
• They can be simply concatenated to the text vector.

• Be careful with scale:

• Text representations (especially TF-IDF or embeddings) usually have 
small, balanced values.

• Numerical features with large magnitudes (e.g., “number of words = 
1500”), can dominate the classifier’s input → Normalize or standardize 
numerical features before concatenation.

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

scaled_numeric = scaler.fit_transform(numeric_features)

final_vector = np.concatenate((text_vector, 

scaled_numeric), axis=1)



Feature extraction – How to treat them? (2)

• Categorical features (like author, language, source) 

cannot be added directly → they must be numerically 

encoded.

• Converts each category into a binary vector.

• Example: 

• language = ["it", "en", "fr"] → [1, 0, 0], [0, 1, 0], [0, 0, 1].

• Works well for features with few categories.

• In neural models, categorical variables can be represented with 

small dense embeddings (e.g., 8–32 dimensions).



Feature selection

• Vectors of length 𝑂 105 or 𝑂 106 may result, esp. if 

word 𝑛-grams are used, in both “overfitting” and high 

computational cost.

• Feature selection (FS) has the goal of identifying the 

most discriminative features, so that the others may be 

discarded.

• The “filter” approach to FS consists in measuring (via a 

function 𝜑 the discriminative power 𝜑 𝑡𝑘 of each feature 

𝑡𝑘 and retaining only the top-scoring features.



Feature selection – Binary classification

• For binary classification, a typical choice is Mutual 
Information (MI).

• In probability theory and information theory, it is a 
measure of the mutual dependence between the two 
variables. 

𝑀𝐼 𝑡𝑘 , 𝑐𝑖 = ෍

𝑐∈{𝑐𝑖, ഥ𝑐𝑖}

෍

𝑡∈{𝑡𝑘,𝑡𝑘}

Pr 𝑡, 𝑐 log2

Pr(𝑡, 𝑐)

Pr 𝑡 Pr(𝑐)

• An alternative choice is chi-square feature selection.
• The chi-square test measures how much the observed frequency of 

a feature (e.g., a word) in a given class differs from the expected 
frequency if the feature and the class were independent.



Feature selection – Tools

• Mutual Information
• https://scikit-

learn.org/stable/modules/generated/sklearn.feature_selection.mutu
al_info_classif.html

• https://towardsdatascience.com/select-features-for-machine-
learning-model-with-mutual-information-534fe387d5c8 

• Chi-squared
• https://scikit-

learn.org/stable/modules/generated/sklearn.feature_selection.chi2.
html 

• https://towardsdatascience.com/chi-square-test-for-feature-
selection-in-machine-learning-206b1f0b8223

• http://ethen8181.github.io/machine-
learning/text_classification/chisquare.html 
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Feature synthesis

• Matrix decomposition techniques (e.g., PCA, SVD, LSA) can 

be used to synthesize new features that replace the features 

discussed above.

• These techniques are based on the principles of distributional 

semantics, which states that the semantics of a word “is” the 

words it co-occurs with in corpora of language use.

• Pros: synthetic features in the new vectorial representation.

• Cons: computationally expensive, sometimes prohibitively.

• Therefore: Word Embedding/Contextualized Word Embedding, 

i.e., the “new wave of distributional semantics”.



Feature weighting (1)

• Feature weighting means attributing a value 𝑤𝑘𝑖 to 

feature 𝑡𝑘 in the vector Ԧ𝑥𝑖 that represents document 𝑑𝑖: 

this value may be:

• Binary (representing presence/absence of 𝑡𝑘 in 𝑑𝑖).

• Numeric (representing the importance of 𝑡𝑘 for 𝑑𝑖). It can be 

obtained via feature weighting functions in the following two 

classes:

• Unsupervised: e.g, 𝑇𝐹 − 𝐼𝐷𝐹.

• Supervised: e.g., 𝑇𝐹 ∗ 𝑀𝐼, 𝑇𝐹 ∗ χ2.



Feature weighting (2)

• The choice of feature weighting method depends on the 
characteristics of your text data and the nature of your 
classification task.

• It is often a good practice to experiment with different 
weighting strategies and select the one that performs best 
for your specific use case through cross-validation and 
evaluation metrics. 

• Keep in mind that the effectiveness of these methods may 
vary depending on the size of your dataset, the 
complexity of the task, and the quality of your textual 
representation.



Feature weighting (3)

• Attention Mechanisms
• Incorporate attention mechanisms into your model architecture.

• The model can learn to assign different attention weights to words 
based on their importance in the context of the classification task.

• Word Embedding Fine-Tuning
• Fine-tune the word embeddings themselves during the training of your 

classification model.
• The embeddings will be updated to be more relevant for the specific task at 

hand → You fine-tune only the word vectors within your own classifier.

• Pre-trained Model Fine-Tuning
• If you are using a pre-trained language model like BERT or GPT, you 

can fine-tune the model on your classification task.
• The fine-tuning process adapts the model's internal representations to your 

specific task and classification criteria.



Document similarity

• Underlying the text classification process is the concept of 

similarity between formal representations of documents.

• To compute similarity among documents in a vector 

space, you can use various techniques and similarity 

metrics.

• The idea is to represent documents as vectors in a high-

dimensional space, where each dimension corresponds to 

a unique feature, term, or word, and then measure the 

similarity between these document vectors. 



Vector Space Representation

• Representation of documents in two-dimensional space 

defined by two terms

𝑡1

𝑡2

𝑑𝑟 = (𝑤1𝑟 , 𝑤2𝑟)

𝑤1𝑟 

𝑤2𝑟

𝑤1𝑠

𝑤2𝑠



𝑑𝑠 = (𝑤1𝑠 ,
𝑤2𝑠)

 = ° 
→ 𝑑𝑠  𝑑𝑟 



Vector Space Representation (Binary)



The Cosine Similarity

• Similarity between two vectors can be computed as follows:

𝑠𝑖𝑚 Ԧ𝑥, Ԧ𝑦 = cos 𝛼 =
( Ԧ𝑥 • Ԧ𝑦)

Ԧ𝑥 ∙ Ԧ𝑦

• For two documents represented as two vectors 

𝑠𝑖𝑚 𝑑𝑗 , 𝑑𝑘 =
𝑑𝑗•𝑑𝑘

𝑑𝑗 ∙ 𝑑𝑘

=
σ𝑖=1

𝑛 𝑤𝑖𝑗𝑤𝑖𝑘

σ𝑖=1
𝑛 (𝑤𝑖𝑗)2 σ𝑖=1

𝑛 (𝑤𝑖𝑘)2

• If 𝑤𝑖𝑗 > 0 and 𝑤𝑖𝑘 > 0 → 0 ≤ 𝑠𝑖𝑚 𝑑𝑗 , 𝑑𝑘 ≤ 1



The Cosine Similarity – Example

• Document A vector: 𝐴 = [2, 3, 1, 0, 1]

• Document B vector: 𝐵 = [1, 2, 0, 1, 2]

• Inner product: 

• 𝐴 • 𝐵 = (2 ∗ 1) + (3 ∗ 2) + (1 ∗ 0) + (0 ∗ 1) + (1 ∗ 2) = 2 + 6 + 0 + 0 +
2 = 10

• Eucledean norms:

• ∥ 𝐴 ∥= (22 + 32 + 12 + 02 + 12) = 14

• ∥ 𝐵 ∥= (12 + 22 + 02 + 12 + 22) = 10

• Cosine similarity: 
10

14∗ 10
= 0.6793

𝑠𝑖𝑚 𝐴, 𝐵 =
A • 𝐵

𝐴 ∙ 𝐵

=
σ𝑖=1

𝑛 𝑤𝑖𝑗𝑤𝑖𝑘

σ𝑖=1
𝑛 (𝑤𝑖𝑗)2 σ𝑖=1

𝑛 (𝑤𝑖𝑘)2



Supervised classification



Supervised learning and classification

Training 

documents

Unlabeled 
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documents
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SL for binary classification

• For binary classification, essentially any supervised learning 
algorithm can be used for training a classier; popular choices 
include:
• Support vector machines (SVMs)

• Boosted decision stumps (One-level decision tree)

• Logistic regression

• Naive Bayesian methods

• Lazy learning methods (e.g., k-NN)

• The “No-free-lunch principle” (Wolpert, 1996): there is no 
learning algorithm that can outperform all others in all contexts.

• Implementations need to cater for:
• The very high dimensionality typical of TC.

• The sparse nature of the representations involved.



A supervised learning method: SVMs

• A constrained optimization problem: find the separating 

surface (e.g., hyperplane) that maximizes the margin (i.e., 

the minimum distance between the hyperplane and the 

training examples).



A supervised learning method: SVMs

• Margin maximization conducive to good generalization 

accuracy on unseen data.

• Theoretically well-founded + good empirical performance 

on a variety of tasks.

• Publicly available implementations optimized for high-

dimensional, sparse feature spaces:

• E.g., SVM-Light, LibSVM.



A supervised learning method: SVMs

• Classication problems are often not linearly separable 

(LS).



A supervised learning method: SVMs

• Non-LS problems can become LS once mapped to a 

high-dimensional space.



A supervised learning method: SVMs

• Kernels are similarity functions 𝐾( Ԧ𝑥𝑖 , Ԧ𝑥𝑗) = 𝜌( Ԧ𝑥𝑖)𝜌( Ԧ𝑥𝑗), where  
𝜌(∙) is a mapping into a higher-dimensional space.

• SVMs can indeed use kernels instead of the standard dot 
product.

• Popular kernels are:

• 𝐾( Ԧ𝑥𝑖 , Ԧ𝑥𝑗) = Ԧ𝑥𝑖 ∙ Ԧ𝑥𝑗 (the linear kernel)

• 𝐾 Ԧ𝑥𝑖 , Ԧ𝑥𝑗 = (𝛾 Ԧ𝑥𝑖∙ Ԧ𝑥𝑗 + 𝑟)𝑑 𝛾 > 0  (the polynomial kernel)

• 𝐾 Ԧ𝑥𝑖 , Ԧ𝑥𝑗 = exp −𝛾 Ԧ𝑥𝑖 − Ԧ𝑥𝑗
2

 𝛾 > 0   (the RBF kernel)

• 𝐾 Ԧ𝑥𝑖 , Ԧ𝑥𝑗 = tanh(𝛾 Ԧ𝑥𝑖∙ Ԧ𝑥𝑗 + 𝑟)          (the sigmoid kernel)

• However, the linear kernel is usually employed in text 
classication applications.



SL for non-binary classification

• Some learning algorithms for non-binary classification are 
«SLMC-ready», e.g.:

• Decision trees

• Boosted decision stumps

• Logistic regression

• Naive Bayesian methods

• Lazy learning methods (e.g., k-NN)

• For other learners (notably: SVMs) to be used for SLMC 
classification, combinations / cascades of the binary versions 
need to be used.

• For ordinal classification, algorithms customised to OC need to 
be used (e.g., SVORIM, SVOREX).

Yang, Y., Chen, B., & Yang, Z. (2019). An Algorithm for Ordinal Classification 

Based on Pairwise Comparison. Journal of Classification, 1-22



Parameter optimization in supervised learning

• The trained classifiers often depend on one or more 

parameters, e.g., 𝛾, 𝑟, 𝑑 parameters of non-linear kernels.

• These parameters need to be optimized, e.g., via k-fold cross-

validation on the training set.



EVALUATIONS



Evaluating a classifier

• Two important aspects in the evaluation of a classifier are 
efficiency and effectiveness.

• Efficiency refers to the consumption of computational 
resources, and has two aspects:
• Training efficiency (also includes time devoted to performing 

feature selection and parameter optimization).

• Classification efficiency, usually considered more important than 
training efficiency, since classifier training is carried out: (a) offine
and (b) only once.

• In text classification papers, it is good practice to report 
training costs and classification costs.



Evaluating a classifier

• Effectiveness (a.k.a., accuracy) refers to how frequently 

classification decisions taken by a classifier are “correct”.

• Usually considered more important than efficiency, since 

accuracy issues “are there to stay”.

• Effectiveness tests are carried out on one or more 

datasets meant to simulate operational conditions of use.

• The main pillar of effectiveness testing is the evaluation 

measure we use.



Evaluation measures for classification



Evaluation measures for classification



Some “classic” datasets for evaluating text 
classication



Some more recent datasets

• https://imerit.net/blog/17-best-text-classification-datasets-

for-machine-learning-all-pbm/ 

• Text Classification Dataset Repositories

• Including TREC

• Sentiment Analysis and Review Datasets

• Social media content, reviews (also from Amazon)

• Online Content Evaluation Datasets

• Including hate speech detection dataset
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Tools to experiment with text classication

http://scikit-learn.org/

https://www.cs.waikato.ac.nz/ml/weka/

https://keras.io/

https://keras.io/examples/nlp/text_classification_from_scratch/

• Several publicly available environments where to play 
with text preprocessing routines, feature selection 
functions, feature weighting functions, learning algorithms, 
etc., such as:
• scikit-learn (http://scikit-learn.org/): Python-based, features 

various classification, regression and clustering algorithms 
including SVMs, random forests, gradient boosting, 𝑘-means (...), 
and is designed to interoperate with the Python numerical and 
scientific libraries NumPy and SciPy.

• Weka (https://www.cs.waikato.ac.nz/ml/weka/): Java-based, 
features various algorithms for data analysis and predictive 
modeling.

• keras (https://keras.io/): Keras is an open-source library that 
provides a Python interface for artificial neural networks. Keras acts 
as an interface for the TensorFlow library.

• https://keras.io/examples/nlp/text_classification_from_scratch/ 

http://scikit-learn.org/
https://www.cs.waikato.ac.nz/ml/weka/
https://keras.io/
https://keras.io/examples/nlp/text_classification_from_scratch/


Current trends

• Text Classification with Word Embeddings

• https://www.tensorflow.org/text/guide/word_embeddings

• https://medium.com/analytics-vidhya/text-classification-using-word-

embeddings-and-deep-learning-in-python-classifying-tweets-from-

6fe644fcfc81 

• Text Classification with BERT

• https://www.analyticsvidhya.com/blog/2021/06/why-and-how-to-

use-bert-for-nlp-text-classification/ 

• https://www.tensorflow.org/text/tutorials/classify_text_with_bert 
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