TEXT CLASSIFICATION

. . . ' i
Prof. Marco Viviani 1 L,
marco.viviani@unimib.it HTTon A\
S &



mailto:marco.viviani@unimib.it

THE TASK




What classification is and what is not

- Classification (a.k.a. “categorization”): a ubiquitous enabling
technology in data science.

- Studied within pattern recognition, statistics, and machine learning.

- Definition: the activity of predicting to which, among a
predefined finite set of groups (“classes”, or categorles ), a
data item belongs to.

- Formulated as the task of generating a hypothesis (or
“classifier”, or “model”):

h:D > C

where
D = {xq, x5, ...} is @a domain of data items.

C ={cq,cy,...,cy} is afinite set of classes (the classification
scheme).



What classification is and what is not

- The membership of a data item into a class must not be
determinable with certainty.

- E.g., predicting whether a natural number belongs to Prime or
NonPrime iS not classication).

- In text classification, data items are textual:

- E.g., news articles, e-mails, tweets, product reviews, sentences,
questions, queries, etc.

or partly textual:
- E.g., Web pages.



Main types of classication

Binary classification
- h: D = C (each item belongs to exactly one class).

- C = {Cl' CZ}'
- E.g., assigning emails to Spam or Legitimate.

Single-Label Multi-Class (SLMC) classification
- h: D = C (each item belongs to exactly one class).

- C ={cq,Cy,...Cp}, With n > 2.

- E.g., assigning news articles to one of HomeNews,
International, Entertainment, Lifestyles, Sports.



Main types of classication

Multi-Label Multi-Class (MLMC) classification

- h: D = 2¢ (each item may belong to zero, one, or several
classes).
- C ={cq,Cy, ...Cp}, With n > 1.
- E.g., assigning computer science articles to classes in the ACM

Classification System.
- May be solved as n independent binary classification problems.

Ordinal classification (OC)
- As in SLMC, but for the fact that there is a total order
C1 X X< c,onC ={cq,Cy,...Cup}
- E.g., assigning product reviews to one of Excellent, Good,
SoAndSo, Poor, Disastrous.



Hard classification and soft classification

- The previous definitions denote “hard classification”
(HC).

- “Soft classication” (SC) denotes the task of predicting a
score for each pair (d, c¢), where the score denotes the
{probability / strength of evidence / confidence} that d
belongs to c.



Hard classification and soft classification

- Hard classification often consists of:
1. Training a soft classifier that outputs scores s(d, ¢).

2. Picking a threshold t, such that:
- s(d,c) = tis interpreted as predicting c;.
+ s(d,c) < tis interpreted as predicting c,.

- In soft classification, scores are used for ranking.

- E.g., ranking items for a given class, ranking classes for a given
item.

- HC is used for fully autonomous classifiers, while SC is
used for interactive classifiers (i.e., with humans in the
loop).



Dimensions of text classification

Text classification may be performed according to several
dimensions (“axes”) orthogonal to each other.

- By topic: by far the most frequent case, its applications
are ubiquitous.

- By sentiment: useful in market research, online
reputation management, customer relationship
management, social sciences, political science.

- By language (a.k.a. “language identification”); useful,
e.g., in query processing within search engines.



Dimensions of text classification

- By type: e.g., AutomotiveNews VS. AutomotiveBlogs,
useful in website classification and others.

- By author (a.k.a. “authorship attribution™).
- By native language (“native language identification”).

- By gender: useful in forensics and cybersecurity.



APPLICATIONS OF
TEXT CLASSICATION




Example 1. Knowledge organization

- Long tradition in both science and the humanities.

- The goal was organizing knowledge, i.e., conferring structure to
an otherwise unstructured body of knowledge.

- The rationale is that using a structured body of knowledge
Is easier/more effective than if this knowledge is
unstructured.

- Automated classification tries to automate the tedious
task of assigning data items based on their content, a task
otherwise performed by human annotators (or
‘assessors”, or “‘coders”).



Example 1. Knowledge organization

- Scores of applications (examples):
- Classifying news articles for selective dissemination
- Classifying scientific papers into specialized taxonomies
- Classifying patents
- Classifying “classified” ads
- Classifying answers to open-ended questions
- Classifying topic-related tweets by sentiment

- Retrieval (as in search engines) could also be viewed as
(binary + soft) classification into Relevant vs.

NonRelevant, but mostly soft > Ranking.



Example 2. Filtering

- Filtering (a.k.a. “routing”) refers to the activity of blocking
a set of NonRelevant items from a dynamic stream,

thereby leaving only the Relevant ones.

- E.g., when studying the sentiment of Twitter users
towards Donald Trump, tweets that are not about

Donald Trump must be “filtered out”.

- Filtering is thus an instance of binary (hard) classification,
and its applications are ubiquitous.



L
Example 2. Filtering — Applications

- Spam filtering is an important example of filtering,
attempting to tell Legitimate messages from Spam

MesSsages.

- Detecting unsuitable content (e.g., violent content,
racist content, cyberbullying, fake news) is also an
important application, e.g., in PC filters or on interfaces to
social media.



Example 3. Empowering other IR tasks

- Functional to improving the effectiveness of other tasks in
IR or NLP.

- Some examples:
- Classifying queries by intent within search engines
- Classifying questions by type in QA systems
- Classifying named entities
- Word sense disambiguation in NLP systems

- Many of these tasks involve classifying very small texts
(e.g., queries, questions, sentences).



SUPERVISED LEARNING AND
TEXT CLASSICATION




Before supervised learning

- An old-fashioned way to build text classifiers was via

knowledge engineering, i.e., manually building
classification rules.

- E.g., (Viagraor Sildenafil or Cialis) => Spam

- Disadvantages: expensive to setup and to maintain.



Supervised learning and classification

- Supervised learning (SL) approach:

- A generic (task-independent) learning algorithm is used to train a
classifier from a set of manually classified examples.

- The classifier learns, from these training examples, the
characteristics a new text should have in order to be assigned to
class c.

- Advantages:

- Generating training examples cheaper than writing classification
rules.

- Easy update to changing conditions (e.g., addition of new classes,
deletion of existing classes, shifted meaning of existing classes,
etc.).



Supervised learning and classification

Training Unlabeled
documents documents

Content extraction

Classif. Classifier Document
scheme training classification

Classified
documents

Validation




Supervised learning and classification

Training Unlabeled
documents documents

Content extraction

Classif. Classifier Document
scheme training classification

Classified
documents

Validation




Text representation




Representing text for classification purposes

- In order to be input to a learning algorithm (or a classifier),
all training (or unlabeled) documents are converted into

vectors in a common vector space.

- The dimensions of the vector space are called features,
and the number k of features used is called the
dimensionality of the vector space.



Representing text for classification purposes

In order to generate a vector-based representation for a set
of documents D, the following steps need to be taken:

Feature Extraction
- (Feature Selection or Feature Synthesis)

Feature Weighting



Feature extraction

- Feature extraction in text classification is the process of
converting raw text data into a numerical or categorical
format that can be used as input for machine learning
algorithms.

- Text data, unlike structured data, cannot be directly used
for classification tasks because machine learning
algorithms typically work with numerical data.

- Feature extraction is crucial in text classification as it
transforms the text into a format that can be processed
effectively by algorithms.



Feature extraction — Unigrams (1)

- In classification by topic, a typical (simplest) choice is to
make the set of features coincide with the set of words
that occur in the training set (unigram model, a.k.a. “Bag-
of-Words").

- This may be preceded by (a) stop words removal and/or (b)
stemming or lemmatization; (b) is meant to improve statistical
robustness.

- The dimensionality k of the vector space is the number of
words (or stems, or lemmas) that occur at least once in
the training set, and can easily be 0(10°) or even 0(109).



Feature extraction — Unigrams (2)

- Each document usually contains 0(10°) unique words!

- If we indicate the absence of a word from a document by 0, this
means that these vectors are usually very sparse.

- Vector sparsity and high dimensionality are possibly
the two most important characteristics that distinguish text
classification from other instantiations of classification
(e.g., in data mining).

- The unigram representation renounces to encoding word
order and syntactic structure.

R Unigrams — ["the ’ Cat"’ "Sat"]



Feature extraction — Bigrams

- Word n-grams (i.e., sequences of n words that frequently
occur in D — a.k.a. “shingles”) may be optionally added;
this is usually limited to n = 2 (unigram+bigram model).

- The higher the value of n, the higher the semantic
significance and the dimensionality k of the resulting
representation, but the higher the computational cost.

- The bigram representation can incorporate word order
partially.

- Bigrams — ["the cat", "cat sat"]



Feature extraction — Bigrams

@ swimmer likes swimming thus he swims

A swimmer likes swimming thus he swims

Word Unigrams : : , , ,
A swimmer [ike§ swimming thus he swims

A swimmer likes swimming| thus he swims

A swimmer| likes swimming thus he swims

A pwimmer likeg swimming thus he swims

Word Bigrams : : : : ,
A swimmer [ikes swimming| thus he swims

A swimmer likes swimming thusg he swims




Feature extraction — Character n-grams

- An alternative to the process above is to make the set of
features coincide with the set of character n-grams (e.g.,
n € {3,4,5}) that occur in D.

- Useful especially for degraded text (e.g., resulting from OCR).

[t wag a dark and stormy night

It was [a dark and stormy night

[t was a dark and stormy night
Character 5-grams It

was a |dark and stormy night

It wias a dark and stormy night

It wak a dark and stormy night




Feature extraction — TF-IDF

- TF-IDF is a numerical statistic that reflects the importance
of a term within a document relative to a collection of
documents (corpus).

- It is calculated by multiplying the term frequency (TF) in a
document by the inverse document frequency (IDF) of the
term across the corpus.

- TF-IDF is used to represent each document as a vector
of TF-IDF scores for each term.

- TF-IDF can be applied not only to unigrams, but also to
bigrams, trigrams, or combinations of them.



Feature extraction — Word Embeddings (1)

- Word embeddings are dense vector representations of
words that capture semantic meaning.

- Techniques like SVD, GloVe, word2vec, and FastText can
be used to generate word embeddings.

- Words in a document can be averaged or concatenated to
create document embeddings.

- Itis also possible to use Doc2Vec - Will be shown during the labs.

- Employ these document embeddings for classification
w.r.t. a specific supervised classification technique.



L
Feature extraction — Word Embeddings (2)

- Embeddings (word, sentence, or document embeddings)
capture semantic information - Words or documents
appearing in similar contexts have similar vector
representations.

- These representations do not just encode topics. They can also
reflect, depending on the corpus:
- Sentiment or tone of the text,
- Syntactic roles of words,
- Semantic relations between concepts,
- Even stylistic or authorial features.

- In this case, the choice of the corpus and proper labeling are
crucial for achieving good classification performance on
aspects other than just topics.



Feature extraction — Contextualized WEs (1)

- Unlike traditional word embeddings like Word2Vec or
GloVe, which provide fixed representations for words,
contextualized embeddings adapt their representations
based on the surrounding context in which the word
appears.

- Preprocessing:
- Tokenization: Break the text into sentences or words, depending on
the model's requirements.

- Special tokens: Add [CLS] and [SEP] tokens at the beginning and
end of each text for BERT-style models.

- Padding: Ensure that all sequences are of the same length by
padding or truncating as needed.



Feature extraction — Contextualized WEs (2)

- Obtain Embeddings

- Use a pre-trained BERT (or BERT-like) model to obtain
contextualized word embeddings for your text data.

- You can leverage pre-trained models available in libraries like
Hugging Face Transformers or other sources.

- Aggregation
- You can choose to aggregate the word embeddings to obtain a
fixed-length representation for the entire document.

- Common aggregation techniques include mean pooling, max
pooling, or concatenating embeddings.
- Mean pooling, also known as average pooling, calculates the average of
all the embeddings in the sequence.
- Max pooling calculates the maximum value for each dimension (feature)
across all the embeddings in the sequence.



Feature extraction (1)

- The above is OK for classification by topic, but not necessarily
when classifying by other dimensions!

- Examples

- In classification by author, features such average word length, average

sentence length, punctuation frequency, frequency of subjunctive
clauses, etc., are used.

« “You have such a scar on your neck, Mr. Eden,” the girl was saying. “How did it
happen? I am sure it must have been some adventure.”

(Martin Eden, by Jack London)

- In classification by sentiment, Bag-of-Words is not enough, and deeper
linguistic processing is necessary.

- The choice of features for a classification task (feature design)

is dictated by the distinctions we want to capture and is left to
the designer.



Feature extraction (2)

- When you use BoW, TF-IDF, or word embeddings for
classification (even when it's not topic-based), you can

extend the vector with additional features to improve the
model’s performance.

feature_vector = [text_representatio || extra_features]

- Be careful with the type of additional features!



Feature extraction (3)

- The final feature vector is the concatenation of the text
representation and the additional features of different
kind:

final_vector = [text_vector || numeric_features
|| categorical_features]|

- text_vector — text representation (BoW, TF-IDF, or embedding)
- numeric_features — numerical features (e.g., text length,
sentiment score)
- categorical_features — categorical features (e.g., author,
language, source)



Feature extraction — Other features (1)

- PoS

- Instead of just individual words, you can use Part-of-Speech tags
as features.

- Document length
- The length of a document can be used as a feature.

- Short and long documents may have different characteristics in
some classification tasks.

- Topic Modeling
- Techniques like Latent Dirichlet Allocation (LDA) or Non-Negative
Matrix Factorization (NMF) can be used to discover topics within a

collection of documents, and the topic distribution for each
document can be used as features.



Feature extraction — Other features (2)

- Sentiment Analysis

- Sentiment scores or sentiment features derived from sentiment
analysis can be used in sentiment classification tasks.

- NER

- Named Entity Recognition is an NLP technique that identifies and
classifies named entities, such as names of people, organizations,
locations, dates, and more, in text.

- Leveraging NER output as features can provide valuable
information to improve text classification, especially when the
entities are crucial for understanding the content or context of the
text.



Feature extraction — How to treat them? (1)

- Numerical features

- They can be simply concatenated to the text vector.
- Be careful with scale:

- Text representations (especially TF-IDF or embeddings) usually have
small, balanced values.

- Numerical features with large magnitudes (e.g., “number of words =
1500”), can dominate the classifier’s input — Normalize or standardize
numerical features before concatenation.

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler ()
scaled numeric = scaler.fit transform(numeric features)
final vector = np.concatenate ((text vector,

scaled numeric), axis=l)



Feature extraction — How to treat them? (2)

- Categorical features (like author, language, source)
cannot be added directly - they must be numerically
encoded.

- Converts each category into a binary vector.
- Example:
- language = ["it", "en", "fr"] — [1, 0, 0], [0, 1, 0], [0, O, 1].
- Works well for features with few categories.

- In neural models, categorical variables can be represented with
small dense embeddings (e.g., 8—32 dimensions).



Feature selection

- Vectors of length 0(10°) or 0(10°) may result, esp. if
word n-grams are used, in both “overfitting” and high
computational cost.

- Feature selection (FS) has the goal of identifying the
most discriminative features, so that the others may be
discarded.

- The “filter” approach to FS consists in measuring (via a
function ¢ the discriminative power ¢(t;) of each feature
t,, and retaining only the top-scoring features.



Feature selection — Binary classification

- For binary classification, a typical choice is Mutual
Information (MlI).

- In probability theory and information theory, it is a
measure of the mutual dependence between the two

variables.

- Pr(t, c)
MI(t, ¢;) = z z Pr(t, c) log, Pr(t) Pr(c)

ce{cy,Ci} tE{ty,tr}

- An alternative choice is chi-square feature selection.

- The chi-square test measures how much the observed frequency of
a feature (e.g., a word) in a given class differs from the expected
frequency if the feature and the class were independent.



Feature selection — Tools

- Mutual Information

- https://scikit-
learn.org/stable/modules/generated/sklearn.feature selection.mutu
al info classif.html

- https://towardsdatascience.com/select-features-for-machine-
learning-model-with-mutual-information-534fe387d5c8

- Chi-squared

- https://scikit-
learn.org/stable/modules/generated/sklearn.feature selection.chi?.
html

- https://towardsdatascience.com/chi-square-test-for-feature-
selection-in-machine-learning-206b1f0b8223

- http://ethen8181.qgithub.io/machine-
learning/text classification/chisquare.html



https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_classif.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_classif.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_classif.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_classif.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_classif.html
https://towardsdatascience.com/select-features-for-machine-learning-model-with-mutual-information-534fe387d5c8
https://towardsdatascience.com/select-features-for-machine-learning-model-with-mutual-information-534fe387d5c8
https://towardsdatascience.com/select-features-for-machine-learning-model-with-mutual-information-534fe387d5c8
https://towardsdatascience.com/select-features-for-machine-learning-model-with-mutual-information-534fe387d5c8
https://towardsdatascience.com/select-features-for-machine-learning-model-with-mutual-information-534fe387d5c8
https://towardsdatascience.com/select-features-for-machine-learning-model-with-mutual-information-534fe387d5c8
https://towardsdatascience.com/select-features-for-machine-learning-model-with-mutual-information-534fe387d5c8
https://towardsdatascience.com/select-features-for-machine-learning-model-with-mutual-information-534fe387d5c8
https://towardsdatascience.com/select-features-for-machine-learning-model-with-mutual-information-534fe387d5c8
https://towardsdatascience.com/select-features-for-machine-learning-model-with-mutual-information-534fe387d5c8
https://towardsdatascience.com/select-features-for-machine-learning-model-with-mutual-information-534fe387d5c8
https://towardsdatascience.com/select-features-for-machine-learning-model-with-mutual-information-534fe387d5c8
https://towardsdatascience.com/select-features-for-machine-learning-model-with-mutual-information-534fe387d5c8
https://towardsdatascience.com/select-features-for-machine-learning-model-with-mutual-information-534fe387d5c8
https://towardsdatascience.com/select-features-for-machine-learning-model-with-mutual-information-534fe387d5c8
https://towardsdatascience.com/select-features-for-machine-learning-model-with-mutual-information-534fe387d5c8
https://towardsdatascience.com/select-features-for-machine-learning-model-with-mutual-information-534fe387d5c8
https://towardsdatascience.com/select-features-for-machine-learning-model-with-mutual-information-534fe387d5c8
https://towardsdatascience.com/select-features-for-machine-learning-model-with-mutual-information-534fe387d5c8
https://towardsdatascience.com/select-features-for-machine-learning-model-with-mutual-information-534fe387d5c8
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.chi2.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.chi2.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.chi2.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.chi2.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.chi2.html
https://towardsdatascience.com/chi-square-test-for-feature-selection-in-machine-learning-206b1f0b8223
https://towardsdatascience.com/chi-square-test-for-feature-selection-in-machine-learning-206b1f0b8223
https://towardsdatascience.com/chi-square-test-for-feature-selection-in-machine-learning-206b1f0b8223
https://towardsdatascience.com/chi-square-test-for-feature-selection-in-machine-learning-206b1f0b8223
https://towardsdatascience.com/chi-square-test-for-feature-selection-in-machine-learning-206b1f0b8223
https://towardsdatascience.com/chi-square-test-for-feature-selection-in-machine-learning-206b1f0b8223
https://towardsdatascience.com/chi-square-test-for-feature-selection-in-machine-learning-206b1f0b8223
https://towardsdatascience.com/chi-square-test-for-feature-selection-in-machine-learning-206b1f0b8223
https://towardsdatascience.com/chi-square-test-for-feature-selection-in-machine-learning-206b1f0b8223
https://towardsdatascience.com/chi-square-test-for-feature-selection-in-machine-learning-206b1f0b8223
https://towardsdatascience.com/chi-square-test-for-feature-selection-in-machine-learning-206b1f0b8223
https://towardsdatascience.com/chi-square-test-for-feature-selection-in-machine-learning-206b1f0b8223
https://towardsdatascience.com/chi-square-test-for-feature-selection-in-machine-learning-206b1f0b8223
https://towardsdatascience.com/chi-square-test-for-feature-selection-in-machine-learning-206b1f0b8223
https://towardsdatascience.com/chi-square-test-for-feature-selection-in-machine-learning-206b1f0b8223
https://towardsdatascience.com/chi-square-test-for-feature-selection-in-machine-learning-206b1f0b8223
https://towardsdatascience.com/chi-square-test-for-feature-selection-in-machine-learning-206b1f0b8223
https://towardsdatascience.com/chi-square-test-for-feature-selection-in-machine-learning-206b1f0b8223
https://towardsdatascience.com/chi-square-test-for-feature-selection-in-machine-learning-206b1f0b8223
https://towardsdatascience.com/chi-square-test-for-feature-selection-in-machine-learning-206b1f0b8223
http://ethen8181.github.io/machine-learning/text_classification/chisquare.html
http://ethen8181.github.io/machine-learning/text_classification/chisquare.html
http://ethen8181.github.io/machine-learning/text_classification/chisquare.html
http://ethen8181.github.io/machine-learning/text_classification/chisquare.html

Feature synthesis

- Matrix decomposition techniques (e.g., PCA, SVD, LSA) can
be used to synthesize new features that replace the features

discussed above.

- These techniques are based on the principles of distributional
semantics, which states that the semantics of a word “is” the
words it co-occurs with in corpora of language use.

- Pros: synthetic features in the new vectorial representation.
- Cons: computationally expensive, sometimes prohibitively.

- Therefore: Word Embedding/Contextualized Word Embedding,
I.e., the “new wave of distributional semantics”.



L
Feature weighting (1)

- Feature weighting means attributing a value wy; to
feature t, in the vector x; that represents document d;:

this value may be:

- Binary (representing presence/absence of t; in d;).

- Numeric (representing the importance of t;, for d;). It can be
obtained via feature weighting functions in the following two
classes:

- Unsupervised: e.g, TF — IDF.
- Supervised: e.g., TF * MI, TF * .



L
Feature weighting (2)

- The choice of feature weighting method depends on the
characteristics of your text data and the nature of your
classification task.

- It is often a good practice to experiment with different
weighting strategies and select the one that performs best
for your specific use case through cross-validation and
evaluation metrics.

- Keep in mind that the effectiveness of these methods may
vary depending on the size of your dataset, the
complexity of the task, and the quality of your textual
representation.



L
Feature weighting (3)

- Attention Mechanisms
- Incorporate attention mechanisms into your model architecture.

- The model can learn to assign different attention weights to words
based on their importance in the context of the classification task.

- Word Embedding Fine-Tuning
- Fine-tune the word embeddings themselves during the training of your
classification model.

- The embeddings will be updated to be more relevant for the specific task at
hand - You fine-tune only the word vectors within your own classifier.

- Pre-trained Model Fine-Tuning
- If you are using a pre-trained language model like BERT or GPT, you
can fine-tune the model on your classification task.

- The fine-tuning process adapts the model's internal representations to your
specific task and classification criteria.



Document similarity

- Underlying the text classification process is the concept of
similarity between formal representations of documents.

- To compute similarity among documents in a vector
space, you can use various techniques and similarity
metrics.

- The idea is to represent documents as vectors in a high-
dimensional space, where each dimension corresponds to
a unique feature, term, or word, and then measure the
similarity between these document vectors.



Vector Space Representation

- Representation of documents in two-dimensional space
defined by two terms




Vector Space Representation (Binary)

man

“dog bite man”
dog man bite [I, 1, 1]

doc_ | I I |
doc_2 I 0 I

bite | “dog bite”
[1,0, 1]



The Cosine Similarity

- Similarity between two vectors can be computed as follows:
(X *¥)
11 - Iyl

sim(x,y) = cosa =

. For two documents represented as two vectors

—_— — n
djedy i=1 WijWik

|| Nldell Jzyzl(wij)2J2?=1(wik)2

sim(d;, dy) =

. |le] > (0 and Wi > 0-0< Slm(Z,d_,;) <1



The Cosine Similarity — Example

AeB
- Document A vector: A =[2,3,1,0,1] sim(4, B) = 12 1Bl
- Document B vector: B = [1,2,0,1, 2] _ Yi=1 WijWik
\/Z?:l(wij)z VI (Wig)?

- Inner product:

cAeB=02+1)+@B*2)+(1*0)+(0x1)+(1*2)=2+6+0+0+
2 =10

- Eucledean norms:
“NAN=(22+32+12+02+12) =14
- I B ll= /(12 + 22 + 02 + 12 + 22) = /10

10
TaTio = 0.6793

- Cosine similarity:



Supervised classification




Supervised learning and classification

Training Unlabeled
documents documents

Content extraction

Classif. Classifier Document
scheme training classification

Classified
documents

Validation




SL for binary classification

- For binary classification, essentially any supervised learning
algorithm can be used for training a classier; popular choices
iInclude:

- Support vector machines (SVMs)

- Boosted decision stumps (One-level decision tree)
- Logistic regression

- Naive Bayesian methods

- Lazy learning methods (e.g., k-NN)

- The “No-free-lunch principle” (Wolpert, 1996): there is no
learning algorithm that can outperform all others in all contexts.

- Implementations need to cater for:
- The very high dimensionality typical of TC.
- The sparse nature of the representations involved.



A supervised learning method: SVMs

- A constrained optimization problem: find the separating
surface (e.g., hyperplane) that maximizes the margin (i.e.,
the minimum distance between the hyperplane and the
training examples).

(a) Larger margin (b) Smaller margin



A supervised learning method: SVMs

- Margin maximization conducive to good generalization
accuracy on unseen data.

- Theoretically well-founded + good empirical performance
on a variety of tasks.

- Publicly available implementations optimized for high-
dimensional, sparse feature spaces:
- E.g., SVM-Light, LibSVM.



A supervised learning method: SVMs

- Classication problems are often not linearly separable
(LS).




A supervised learning method: SVMs

- Non-LS problems can become LS once mapped to a
high-dimensional space.




A supervised learning method: SVMs

- Kernels are similarity functions K (%;, x;) = p(X;)p(%;), where
p(+) Is a mapping into a higher-dimensional space.

- SVMs can indeed use kernels instead of the standard dot
product.

- Popular kernels are:

- K(%, %) = %; - X; (the linear kernel)
cK(%,%) = (% X +1)Py >0 (the polynomial kernel)
- K(%,%) = exp (—y[|%: - %) ¥ > 0 (the RBF kernel)
- K(%;,%;) = tanh(yX;- % + 1) (the sigmoid kernel)

- However, the linear kernel is usually employed in text
classication applications.



SL for non-binary classification

- Some learning algorithms for non-binary classification are
«SLMC-ready», e.g.:
- Decision trees
- Boosted decision stumps
- Logistic regression
- Naive Bayesian methods
- Lazy learning methods (e.g., k-NN)

- For other learners (notably: SVMs) to be used for SLMC
classification, combinations / cascades of the binary versions
need to be used.

- For ordinal classification, algorithms customised to OC need to
be used (e.g., SVORIM, SVOREX).

Yang, Y., Chen, B., & Yang, Z. (2019). An Algorithm for Ordinal Classification
Based on Pairwise Comparison. Journal of Classification, 1-22



Parameter optimization in supervised learning

- The trained classifiers often depend on one or more
parameters, e.qg., y,r,d parameters of non-linear kernels.

- These parameters need to be optimized, e.qg., via k-fold cross-
validation on the training set.

Iteration 1 - Train
Iteration 2 Train - Train Train Train
Iteration 3 Train Train - Train Train
Iteration 4 Train Train Train - Train
Train -

Train Train Train

Iteration 5 Train Train Train




EVALUATIONS




Evaluating a classifier

- Two important aspects in the evaluation of a classifier are
efficiency and effectiveness.

- Efficiency refers to the consumption of computational
resources, and has two aspects:

- Training efficiency (also includes time devoted to performing
feature selection and parameter optimization).

- Classification efficiency, usually considered more important than
training efficiency, since classifier training is carried out: (a) offine
and (b) only once.

- In text classification papers, it is good practice to report
training costs and classification costs.



Evaluating a classifier

- Effectiveness (a.k.a., accuracy) refers to how frequently
classification decisions taken by a classifier are “correct”.

- Usually considered more important than efficiency, since
accuracy issues “are there to stay”.

- Effectiveness tests are carried out on one or more
datasets meant to simulate operational conditions of use.

- The main pillar of effectiveness testing is the evaluation
measure we use.



Evaluation measures for classification

» Each type of classification (binary/SLMC/MLMC /ordinal) and

mode of classification (hard/soft) requires its own measure

» For binary (hard) classification, given the contingency table A

true
YES | No

Yes || TP | FP
No FN | TN

the standard measure is Fj, the harmonic mean of precision

TP rpP '
(ﬂ' = W) aIld I‘eCaH (p — W)S l'e"

predicted

P TP _ 21'P
YT x4+ )p 2TP+FP+FN

» F} is robust to the presence of imbalance in the test set



Evaluation measures for classification

» For multi-label multi-class classification, F; must be averaged
across the classes, according to

1. microaveraging: compute F; from the “collective” contingency
table obtained by summing cells (e.g., TP = Zc,-ec TF;)
2. macroaveraging: compute Fi(c;) for all ¢; € C and then average

» Micro usually gives higher scores than macro ...

» For single-label multi-class classification, the most widely used
measure is (“vanilla”) accuracy

ZCz‘EC Ais
Zc.,; ,Cj eC A"'J

where A;; is the number of documents in ¢; which are predicted
to be in ¢;

A=



Some “classic” datasets for evaluating text
classication

2]
-
£ g z
e & = =
5 o g 2 &
3 2 & 2 | £ | &
= k< b 7 z Eo q>
= - 8 s 2 8| B
= - = O | & |- -
Reuters-21578 || = 13,000 | = 9,600 | =~ 3,200 | 115 | No | EN | MLMC
RCV1-v2 || = 800,000 | =~ 20,000 | = 780,000 99 | Yes | EN | MLMC
20Newsgroups || =~ 20,000 — — 20 | Yes | EN | MLMC
OHSUMED-S || = 16,000 | = 12,500 | = 3,500 97 | Yes | EN | MLMC
TripAdvisor-15763 || = 15,700 | = 10,500 | = 5,200 5| No | EN | Ordinal
Amazon-83713 || = 83,700 | = 20,000 | = 63,700 5| No | EN | Ordinal




Some more recent datasets

- https://imerit.net/bloq/17-best-text-classification-datasets-
for-machine-learning-all-pbm/

- Text Classification Dataset Repositories
- Including TREC

- Sentiment Analysis and Review Datasets
- Social media content, reviews (also from Amazon)

- Online Content Evaluation Datasets
- Including hate speech detection dataset


https://imerit.net/blog/17-best-text-classification-datasets-for-machine-learning-all-pbm/
https://imerit.net/blog/17-best-text-classification-datasets-for-machine-learning-all-pbm/
https://imerit.net/blog/17-best-text-classification-datasets-for-machine-learning-all-pbm/
https://imerit.net/blog/17-best-text-classification-datasets-for-machine-learning-all-pbm/
https://imerit.net/blog/17-best-text-classification-datasets-for-machine-learning-all-pbm/
https://imerit.net/blog/17-best-text-classification-datasets-for-machine-learning-all-pbm/
https://imerit.net/blog/17-best-text-classification-datasets-for-machine-learning-all-pbm/
https://imerit.net/blog/17-best-text-classification-datasets-for-machine-learning-all-pbm/
https://imerit.net/blog/17-best-text-classification-datasets-for-machine-learning-all-pbm/
https://imerit.net/blog/17-best-text-classification-datasets-for-machine-learning-all-pbm/
https://imerit.net/blog/17-best-text-classification-datasets-for-machine-learning-all-pbm/
https://imerit.net/blog/17-best-text-classification-datasets-for-machine-learning-all-pbm/
https://imerit.net/blog/17-best-text-classification-datasets-for-machine-learning-all-pbm/
https://imerit.net/blog/17-best-text-classification-datasets-for-machine-learning-all-pbm/
https://imerit.net/blog/17-best-text-classification-datasets-for-machine-learning-all-pbm/
https://imerit.net/blog/17-best-text-classification-datasets-for-machine-learning-all-pbm/
https://imerit.net/blog/17-best-text-classification-datasets-for-machine-learning-all-pbm/
https://imerit.net/blog/17-best-text-classification-datasets-for-machine-learning-all-pbm/
https://imerit.net/blog/17-best-text-classification-datasets-for-machine-learning-all-pbm/
https://imerit.net/blog/17-best-text-classification-datasets-for-machine-learning-all-pbm/

Tools to experiment with text classication

- Several publicly available environments where to play
with text preprocessing routines, feature selection
functions, feature weighting functions, learning algorithms,
etc., such as:

- scikit-learn (http://scikit-learn.org/): Python-based, features
various classification, regression and clustering algorithms
including SVMs, random forests, gradient boosting, k-means (...),
and is designed to interoperate with the Python numerical and
scientific libraries NumPy and SciPy.

- Weka (https://www.cs.waikato.ac.nz/ml/weka/): Java-based,
features various algorithms for data analysis and predictive
modeling.

- keras (https://keras.io/): Keras is an open-source library that
provides a Python interface for artificial neural networks. Keras acts
as an interface for the TensorFlow library.

- https://keras.io/examples/nip/text classification _from_scratch/



http://scikit-learn.org/
https://www.cs.waikato.ac.nz/ml/weka/
https://keras.io/
https://keras.io/examples/nlp/text_classification_from_scratch/

Current trends

- Text Classification with Word Embeddings
- https://www.tensorflow.org/text/quide/word embeddings

- https://medium.com/analytics-vidhya/text-classification-using-word-
embeddings-and-deep-learning-in-python-classifying-tweets-from-
bfeb644fcfc81

- Text Classification with BERT

- https://www.analyticsvidhya.com/bloq/2021/06/why-and-how-to-
use-bert-for-nlp-text-classification/

- https://www.tensorflow.org/text/tutorials/classify text with bert



https://www.tensorflow.org/text/guide/word_embeddings
https://www.tensorflow.org/text/guide/word_embeddings
https://medium.com/analytics-vidhya/text-classification-using-word-embeddings-and-deep-learning-in-python-classifying-tweets-from-6fe644fcfc81
https://medium.com/analytics-vidhya/text-classification-using-word-embeddings-and-deep-learning-in-python-classifying-tweets-from-6fe644fcfc81
https://medium.com/analytics-vidhya/text-classification-using-word-embeddings-and-deep-learning-in-python-classifying-tweets-from-6fe644fcfc81
https://medium.com/analytics-vidhya/text-classification-using-word-embeddings-and-deep-learning-in-python-classifying-tweets-from-6fe644fcfc81
https://medium.com/analytics-vidhya/text-classification-using-word-embeddings-and-deep-learning-in-python-classifying-tweets-from-6fe644fcfc81
https://medium.com/analytics-vidhya/text-classification-using-word-embeddings-and-deep-learning-in-python-classifying-tweets-from-6fe644fcfc81
https://medium.com/analytics-vidhya/text-classification-using-word-embeddings-and-deep-learning-in-python-classifying-tweets-from-6fe644fcfc81
https://medium.com/analytics-vidhya/text-classification-using-word-embeddings-and-deep-learning-in-python-classifying-tweets-from-6fe644fcfc81
https://medium.com/analytics-vidhya/text-classification-using-word-embeddings-and-deep-learning-in-python-classifying-tweets-from-6fe644fcfc81
https://medium.com/analytics-vidhya/text-classification-using-word-embeddings-and-deep-learning-in-python-classifying-tweets-from-6fe644fcfc81
https://medium.com/analytics-vidhya/text-classification-using-word-embeddings-and-deep-learning-in-python-classifying-tweets-from-6fe644fcfc81
https://medium.com/analytics-vidhya/text-classification-using-word-embeddings-and-deep-learning-in-python-classifying-tweets-from-6fe644fcfc81
https://medium.com/analytics-vidhya/text-classification-using-word-embeddings-and-deep-learning-in-python-classifying-tweets-from-6fe644fcfc81
https://medium.com/analytics-vidhya/text-classification-using-word-embeddings-and-deep-learning-in-python-classifying-tweets-from-6fe644fcfc81
https://medium.com/analytics-vidhya/text-classification-using-word-embeddings-and-deep-learning-in-python-classifying-tweets-from-6fe644fcfc81
https://medium.com/analytics-vidhya/text-classification-using-word-embeddings-and-deep-learning-in-python-classifying-tweets-from-6fe644fcfc81
https://medium.com/analytics-vidhya/text-classification-using-word-embeddings-and-deep-learning-in-python-classifying-tweets-from-6fe644fcfc81
https://medium.com/analytics-vidhya/text-classification-using-word-embeddings-and-deep-learning-in-python-classifying-tweets-from-6fe644fcfc81
https://medium.com/analytics-vidhya/text-classification-using-word-embeddings-and-deep-learning-in-python-classifying-tweets-from-6fe644fcfc81
https://medium.com/analytics-vidhya/text-classification-using-word-embeddings-and-deep-learning-in-python-classifying-tweets-from-6fe644fcfc81
https://medium.com/analytics-vidhya/text-classification-using-word-embeddings-and-deep-learning-in-python-classifying-tweets-from-6fe644fcfc81
https://medium.com/analytics-vidhya/text-classification-using-word-embeddings-and-deep-learning-in-python-classifying-tweets-from-6fe644fcfc81
https://medium.com/analytics-vidhya/text-classification-using-word-embeddings-and-deep-learning-in-python-classifying-tweets-from-6fe644fcfc81
https://medium.com/analytics-vidhya/text-classification-using-word-embeddings-and-deep-learning-in-python-classifying-tweets-from-6fe644fcfc81
https://medium.com/analytics-vidhya/text-classification-using-word-embeddings-and-deep-learning-in-python-classifying-tweets-from-6fe644fcfc81
https://medium.com/analytics-vidhya/text-classification-using-word-embeddings-and-deep-learning-in-python-classifying-tweets-from-6fe644fcfc81
https://medium.com/analytics-vidhya/text-classification-using-word-embeddings-and-deep-learning-in-python-classifying-tweets-from-6fe644fcfc81
https://medium.com/analytics-vidhya/text-classification-using-word-embeddings-and-deep-learning-in-python-classifying-tweets-from-6fe644fcfc81
https://medium.com/analytics-vidhya/text-classification-using-word-embeddings-and-deep-learning-in-python-classifying-tweets-from-6fe644fcfc81
https://medium.com/analytics-vidhya/text-classification-using-word-embeddings-and-deep-learning-in-python-classifying-tweets-from-6fe644fcfc81
https://www.analyticsvidhya.com/blog/2021/06/why-and-how-to-use-bert-for-nlp-text-classification/
https://www.analyticsvidhya.com/blog/2021/06/why-and-how-to-use-bert-for-nlp-text-classification/
https://www.analyticsvidhya.com/blog/2021/06/why-and-how-to-use-bert-for-nlp-text-classification/
https://www.analyticsvidhya.com/blog/2021/06/why-and-how-to-use-bert-for-nlp-text-classification/
https://www.analyticsvidhya.com/blog/2021/06/why-and-how-to-use-bert-for-nlp-text-classification/
https://www.analyticsvidhya.com/blog/2021/06/why-and-how-to-use-bert-for-nlp-text-classification/
https://www.analyticsvidhya.com/blog/2021/06/why-and-how-to-use-bert-for-nlp-text-classification/
https://www.analyticsvidhya.com/blog/2021/06/why-and-how-to-use-bert-for-nlp-text-classification/
https://www.analyticsvidhya.com/blog/2021/06/why-and-how-to-use-bert-for-nlp-text-classification/
https://www.analyticsvidhya.com/blog/2021/06/why-and-how-to-use-bert-for-nlp-text-classification/
https://www.analyticsvidhya.com/blog/2021/06/why-and-how-to-use-bert-for-nlp-text-classification/
https://www.analyticsvidhya.com/blog/2021/06/why-and-how-to-use-bert-for-nlp-text-classification/
https://www.analyticsvidhya.com/blog/2021/06/why-and-how-to-use-bert-for-nlp-text-classification/
https://www.analyticsvidhya.com/blog/2021/06/why-and-how-to-use-bert-for-nlp-text-classification/
https://www.analyticsvidhya.com/blog/2021/06/why-and-how-to-use-bert-for-nlp-text-classification/
https://www.analyticsvidhya.com/blog/2021/06/why-and-how-to-use-bert-for-nlp-text-classification/
https://www.analyticsvidhya.com/blog/2021/06/why-and-how-to-use-bert-for-nlp-text-classification/
https://www.analyticsvidhya.com/blog/2021/06/why-and-how-to-use-bert-for-nlp-text-classification/
https://www.analyticsvidhya.com/blog/2021/06/why-and-how-to-use-bert-for-nlp-text-classification/
https://www.analyticsvidhya.com/blog/2021/06/why-and-how-to-use-bert-for-nlp-text-classification/
https://www.tensorflow.org/text/tutorials/classify_text_with_bert
https://www.tensorflow.org/text/tutorials/classify_text_with_bert

	Diapositiva 1: Text classification
	Diapositiva 2: The task
	Diapositiva 3: What classification is and what is not
	Diapositiva 4: What classification is and what is not
	Diapositiva 5: Main types of classication
	Diapositiva 6: Main types of classication
	Diapositiva 8: Hard classification and soft classification
	Diapositiva 10: Hard classification and soft classification
	Diapositiva 11: Dimensions of text classification
	Diapositiva 12: Dimensions of text classification
	Diapositiva 13: Applications of  text classication
	Diapositiva 14: Example 1. Knowledge organization
	Diapositiva 15: Example 1. Knowledge organization
	Diapositiva 16: Example 2. Filtering
	Diapositiva 17: Example 2. Filtering – Applications
	Diapositiva 18: Example 3. Empowering other IR tasks
	Diapositiva 19: Supervised learning and text classication
	Diapositiva 20: Before supervised learning
	Diapositiva 21: Supervised learning and classification
	Diapositiva 22: Supervised learning and classification
	Diapositiva 23: Supervised learning and classification
	Diapositiva 24: Text representation
	Diapositiva 25: Representing text for classification purposes
	Diapositiva 26: Representing text for classification purposes
	Diapositiva 27: Feature extraction
	Diapositiva 28: Feature extraction – Unigrams (1) 
	Diapositiva 29: Feature extraction – Unigrams (2)
	Diapositiva 30: Feature extraction – Bigrams
	Diapositiva 31: Feature extraction – Bigrams
	Diapositiva 32: Feature extraction – Character n-grams
	Diapositiva 33: Feature extraction – TF-IDF
	Diapositiva 34: Feature extraction – Word Embeddings (1)
	Diapositiva 35: Feature extraction – Word Embeddings (2)
	Diapositiva 36: Feature extraction – Contextualized WEs (1)
	Diapositiva 37: Feature extraction – Contextualized WEs (2)
	Diapositiva 39: Feature extraction (1)
	Diapositiva 40: Feature extraction (2)
	Diapositiva 41: Feature extraction (3)
	Diapositiva 42: Feature extraction – Other features (1)
	Diapositiva 43: Feature extraction – Other features (2)
	Diapositiva 44: Feature extraction – How to treat them? (1)
	Diapositiva 45: Feature extraction – How to treat them? (2)
	Diapositiva 46: Feature selection
	Diapositiva 47: Feature selection – Binary classification
	Diapositiva 48: Feature selection – Tools
	Diapositiva 49: Feature synthesis
	Diapositiva 50: Feature weighting (1)
	Diapositiva 51: Feature weighting (2)
	Diapositiva 52: Feature weighting (3)
	Diapositiva 53: Document similarity
	Diapositiva 54: Vector Space Representation
	Diapositiva 55: Vector Space Representation (Binary)
	Diapositiva 56: The Cosine Similarity
	Diapositiva 57: The Cosine Similarity – Example
	Diapositiva 69: Supervised classification
	Diapositiva 70: Supervised learning and classification
	Diapositiva 71: SL for binary classification
	Diapositiva 72: A supervised learning method: SVMs
	Diapositiva 73: A supervised learning method: SVMs
	Diapositiva 74: A supervised learning method: SVMs
	Diapositiva 75: A supervised learning method: SVMs
	Diapositiva 76: A supervised learning method: SVMs
	Diapositiva 77: SL for non-binary classification
	Diapositiva 78: Parameter optimization in supervised learning
	Diapositiva 79: evaluations
	Diapositiva 80: Evaluating a classifier
	Diapositiva 81: Evaluating a classifier
	Diapositiva 82: Evaluation measures for classification
	Diapositiva 83: Evaluation measures for classification
	Diapositiva 84: Some “classic” datasets for evaluating text classication
	Diapositiva 85: Some more recent datasets
	Diapositiva 86: Tools to experiment with text classication
	Diapositiva 87: Current trends

