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INTRO



What is clustering?

• (Document) Clustering: the process of grouping a set of 

objects (documents) into classes of similar objects 

(documents).

• Documents within a cluster should be similar.

• Documents from different clusters should be dissimilar.

• The commonest form of unsupervised learning.

• Unsupervised learning = learning from raw data.

• Opposed to supervised learning where a classification of examples is 

given.

• A common and important task that finds many applications Text 

Mining and NLP tasks.



Clustering VS Classification

Classification Clustering

Supervised learning Unsupervised learning

Classes are human-defined

and part of the input to the

learning algorithm

Clusters are inferred from

the data without human input

Output = membership in

class only

Output = membership in

class + distance/similarity from/with 

the centroid (“degree of cluster

membership”)



The cluster hypothesis

Documents in the same cluster behave similarly with 
respect to relevance to information needs.

• All applications of clustering in 

Information Retrieval (IR) are 

based (directly or indirectly) on 

the cluster hypothesis.

• C. J. van Rijsbergen (1979): 

«closely-associated documents 

tend to be relevant to the same 

requests».



A data set with clear cluster structure

• How would you 

design an 

algorithm for 

finding the 

three clusters in 

this case?

→ DISTANCE



BASIC ISSUES AND NOTIONS



Issues for clustering

• Representation for clustering

• Document representation.

• Vector space? Normalization?

• Need a notion of similarity/distance.

• How many clusters?

• Fixed a priori?

• Completely data-driven?

• Avoid “trivial” clusters - too large or small.



Notion of similarity/distance

• Ideal: semantic similarity.

• Practical: term-statistical similarity.

• Docs as vectors.

• For many algorithms, easier to think in terms of a distance (rather 

than similarity) between docs.

• We will mostly speak of Euclidean distance.

• But real implementations use cosine similarity.

• Today: towards semantic similarity.

• Possibility of using Word Embedding or Contextualized Word 

Embedding vectors.



Clustering algorithms

• Flat algorithms

• Flat clustering creates a flat set of clusters without any explicit 

structure that would relate clusters to each other.

• Usually start with a random (partial) partitioning.

• Refine it iteratively:

• 𝑘-means clustering.

• Model-based clustering.

• Hierarchical algorithms

• Hierarchical clustering creates a hierarchy of clusters.

• Bottom-up, agglomerative.

• Top-down, divisive.



“Hard” VS “soft” clustering

• Hard clustering: Each document belongs to exactly one 

cluster.

• More common and easier to do.

• Soft clustering: A document can belong to more than one 

cluster (in a soft assignment, a document has fractional 

membership in several clusters).

• Makes more sense for applications like creating browsable

hierarchies.

• You may want to put a pair of sneakers in two clusters: (𝑖) sports 

apparel and (𝑖𝑖) shoes.

• You can only do that with a soft clustering approach.



FLAT CLUSTERING



Problem statement (1)

We can define the goal in hard flat clustering as follows.

• Given:
• (𝑖) a set of documents 𝐷 = {𝑑1, 𝑑2, … , 𝑑𝑁},

• (𝑖𝑖) a desired number of clusters 𝑘,

• (𝑖𝑖𝑖) an objective function that evaluates the quality of a clustering.

• We want to compute an assignement 

𝛾: 𝐷 → 𝜔1, 𝜔2, … , 𝜔𝑘

that minimizes (or, in other cases, maximizes) the 
objective function.



Problem statement (2)

• In most cases, we also demant that 𝛾 is surjective, i.e., 

that none of the 𝑘 clusters is empty.

• The objective function is often defined in terms of 

similarity or distance between documents.

• For (textual) documents, the type of similarity we want is 

usually topic similarity or high values on the same 

dimensions in the Vector Space Model.

• E.g., documents about China have high values on dimensions like 

Chinese, Beijing, and Mao, whereas documents about the UK tend 

to have high values for London, Britain, and King.



𝑘-means

• 𝑘-means is the most important flat clustering algorithm.

• Assumption: documents are represented as length-

normalized vectors in a real-valued space in the familiar 

way.

• Its objective is to minimize the average squared Euclidean 

distance of documents from their cluster centers.



Euclidean distance

• The Euclidean distance between two vectors 𝑢 and Ԧ𝑣 is 

defined as: 

𝑑 𝑢, Ԧ𝑣 = 𝑢 − Ԧ𝑣

= 𝑢1 − 𝑣1
2 + 𝑢2 − 𝑣2

2 + ⋯ + 𝑢𝑛 − 𝑣𝑛
2

= ෍
𝑖=1

𝑛

𝑢𝑖 − 𝑣𝑖
2



Distance and Similarity

𝐴(𝑥1, 𝑦1)

𝐵(𝑥2, 𝑦2)

𝒅



𝑘-means – Centroid

• A cluster center is defined as the centroid (or mean, or 

center of gravity) 𝜇 of the documents in a cluster 𝜔:

𝜇 𝜔 =
1

|𝜔|
෍

Ԧ𝑥∈𝜔

Ԧ𝑥

• Reassignment of instances to clusters is based on 

distance to the current cluster centroids.

• (Or one can equivalently phrase it in terms of similarities).



Ideal clustering



𝑘-means algorithm (1)

• The first step of 𝑘-means is to select as initial cluster 

centers, 𝑘 randomly selected documents, i.e., the seeds:

{𝑠1, 𝑠2, … , 𝑠𝑘}.

• For each cluster 𝜔𝑗, 𝑠𝑗 = Ԧ𝜇(𝜔𝑗).

• For each doc 𝑑𝑖:

• Assign 𝑑𝑖 to the cluster 𝜔𝑗 such that 𝑑𝑖𝑠𝑡(𝑑𝑖 , 𝑠𝑗) is minimal.



𝑘-means algorithm (2)

• The algorithm then moves the cluster centers around in 

space in order to minimize distance.

• This is done iteratively by repeating two steps until a 

stopping criterion is met:

1. Reassigning documents to the cluster with the closest centroid.

2. Recomputing each centroid based on the current members of its 

cluster.



𝑘-means algorithm (3)



45

𝑘-means example (1)
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𝑘-means example (2)
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𝑘-means example (3)



Termination conditions

• Several possibilities, e.g.,

• A fixed number of iterations → insufficient number of iteration (poor 

quality).

• Doc partition unchanged → good clustering, runtime could be too 

long.

• Centroid positions do not change.

• The distance between documents and centroids falls below a 

certain threshold.



Seed Choice

• Results can vary based on 
random seed selection.

• Some seeds can result in poor 
convergence rate, or 
convergence to sub-optimal 
clusterings.
• Select good seeds using a 

heuristic (e.g., doc least similar to
any existing mean).

• Try out multiple starting points.

• Initialize with the results of 
another method.

• In the above, if we 

start with B and E as 

centroids we converge 

to {A,B,C} and {D,E,F}

Example showing

sensitivity to seeds



Seed Choice

• Results can vary based on 
random seed selection.

• Some seeds can result in poor 
convergence rate, or 
convergence to sub-optimal 
clusterings.
• Select good seeds using a 

heuristic (e.g., doc least similar to
any existing mean).

• Try out multiple starting points.

• Initialize with the results of 
another method.

• If we start with D and F 

you converge to 

{A,B,D,E} {C,F}

Example showing

sensitivity to seeds



How many clusters?

• Number of clusters 𝑘 is given.

• Partition 𝑛 docs into predetermined number of clusters.

• 𝑘 not specified in advance.

• Finding the “right” number of clusters is part of the problem.

• Given docs, partition into an “appropriate” number of subsets.

• Trade-off between having more clusters (better focus within each 

cluster) and having too many clusters.

• E.g., for query results - ideal value of 𝑘 not known up front - though UI 

may impose limits.



𝑘-means and Python: A simple example

1. Fetch some textual documents;

2. Represent each textual document as a vector;

3. Perform 𝑘-means clustering;

4. Evaluate qualitatively the result of the clustering.



Phase 1: Fetch some textual documents

• The simplest solution:

documents = ["This little kitty came to play when I was   

 eating at a restaurant.", "Merley has the 

 best squooshy kitten belly.", "Google 

  Translate app is incredible.", "If you 

  open 100 tab in google you get a smiley 

  face.", "Best cat photo I've ever 

  taken.", "Climbing ninja cat.",  

  "Impressed with google map feedback.",

             "Key promoter extension for Google 

  Chrome."] 



Phase 2: Represent each doc as a vector

from sklearn.feature_extraction.text import 

TfidfVectorizer

vectorizer = TfidfVectorizer(stop_words={'english'})

X = vectorizer.fit_transform(documents)



Phase 3: Perform 𝑘-means clustering

from sklearn.cluster import Kmeans

k = 4  #or any other number

Labels = model.labels_

model = KMeans(n_clusters = k, init = 'k-means++’, 

max_iter = 100, n_init = 1)

model.fit(X)



Phase 4: Qualitative analysis

import pandas as pd

clusters = pd.DataFrame(list(zip(documents,labels)), 

columns = ['document','cluster’])

print(documents.sort_values(by = ['cluster']))



Flat clustering with embeddings?

• Flat clustering does not care where the vectors come from → It 
just needs numeric representations of your data points in some 
embedding space.

• Flat clustering with semantic vectors is not only possible, but 
also often better than clustering TF-IDF vectors, because:

• Semantic embeddings capture meaning and synonymy;

• They are dense and continuous, unlike sparse TF-IDF vectors;

• They enable context-aware grouping.

Task Typical Embedding Description

Word clustering Word2Vec, GloVe, fastText
Each word → 1 vector 

(static)

Document/sentence 

clustering
BERT, Sentence-BERT, etc.

Each document, sentence, 

(or paragraph) → 1 vector 

(contextualized)



HIERARCHICAL CLUSTERING



Hierarchical Clustering (HC)

• Hierarchical outputs a hierarchy, a structure that is more 

informative than the unstructured set of clusters returned 

by flat clustering.

• Hierarchical clustering does not require to prespecify the 

number of clusters.

• Advantages of hierarchical clustering come at the cost of 

lower efficiency.

• The most common hierarchical clustering algorithms have a 

complexity that is at least quadratic in the number of documents 

compared to the linear complexity of 𝑘-means.



Bottom-up and top-down HC

• Hierarchical clustering algorithms are either bottom-up or 
top-down.

• Bottom-up clustering treat each document as a singleton 
cluster at the outset and then successively merge (or 
agglomerate) pairs of clusters until all clusters have been 
merged into a single cluster that contains all documents.
• It is therefore called Hierarchical Agglomerative Clustering or HAC.

• Top-down clustering requires a method for splitting a 
cluster. It proceeds by splitting clusters recursively until 
individual documents are reached.
• It is therefore called Hierarchical Divisive Clustering or HDC.



Hierarchical Agglomerative Clustering (HAC)

• Starts with each doc in a separate cluster.

• Then repeatedly joins the closest pair of clusters, until there is only 

one cluster.

• Hierarchical clustering employs a measure of distance/similarity to 

create new clusters.

• The history of merging forms a binary tree or hierarchy.



Dendrogram (1)

• An HAC clustering is typically visualized as a 

dendrogram. 

• It builds a tree-based hierarchical taxonomy (dendrogram) from a 

set of documents.

animal

vertebrate

fish    reptile   amphib   mammal         worm   insect    crustacean

invertebrate



Dendrogram (2)

Clustering obtained by 

cutting the dendrogram at 

a desired level: each 

connected component 

forms a cluster.

Two possible cuts of the 

dendogram are shown: 

• at 0.4 into 24 clusters,

• at 0.1 into 12 clusters.



Dendrogram (3)

Source: https://www.kdnuggets.com/2018/06/5-clustering-algorithms-data-scientists-need-know.html

https://www.kdnuggets.com/2018/06/5-clustering-algorithms-data-scientists-need-know.html
https://www.kdnuggets.com/2018/06/5-clustering-algorithms-data-scientists-need-know.html
https://www.kdnuggets.com/2018/06/5-clustering-algorithms-data-scientists-need-know.html
https://www.kdnuggets.com/2018/06/5-clustering-algorithms-data-scientists-need-know.html
https://www.kdnuggets.com/2018/06/5-clustering-algorithms-data-scientists-need-know.html
https://www.kdnuggets.com/2018/06/5-clustering-algorithms-data-scientists-need-know.html
https://www.kdnuggets.com/2018/06/5-clustering-algorithms-data-scientists-need-know.html
https://www.kdnuggets.com/2018/06/5-clustering-algorithms-data-scientists-need-know.html
https://www.kdnuggets.com/2018/06/5-clustering-algorithms-data-scientists-need-know.html
https://www.kdnuggets.com/2018/06/5-clustering-algorithms-data-scientists-need-know.html
https://www.kdnuggets.com/2018/06/5-clustering-algorithms-data-scientists-need-know.html
https://www.kdnuggets.com/2018/06/5-clustering-algorithms-data-scientists-need-know.html
https://www.kdnuggets.com/2018/06/5-clustering-algorithms-data-scientists-need-know.html


HAC (typical) steps

• Step 1:
• Each data point is assigned to a cluster.

• Step 2:
• Compute the proximity matrix using a particular distance (or similarity)

metric.

• Step 3:
• Merge the clusters based on a metric for the distance (or similarity)

between clusters.

• Step 4: 
• Update the distance matrix.

• Step 5: 
• Repeat Step 3 and Step 4 until only a single cluster remains.



Steps 1, 2: Proximity matrix (data points)

• At this stage, clustering can be, for example, performed 

by using 𝑘-means.



Steps 3, 4, 5: Closest pair of clusters
• The main question in hierarchical clustering is how to calculate the 

distance/similarity between clusters and update the proximity matrix.
• Many variants to defining closest pair of clusters (merging criteria).

• Single-link
• Distance of the least distant.

• Similarity of the most cosine-similar.

• Complete-link
• Distance of the furthest points.

• The least cosine-similar.

• Group-average
• Average distance/cosine similarity between pairs of elements.

• Centroid
• Clusters whose centroids (centers of gravity) are the least distant/most similar.



Single-link: Example

𝜔𝑖 𝜔𝑗

𝑥

𝑦

(a) Single-link: Minimum distance (or maximum similarity)



Single-link HAC

• In single-link clustering, the distance (similarity) of two 
clusters is the distance of their least distant (similarity of 
their most similar) members (the merge criterion is local).

• Use minimum distance (maximum similarity) of pairs:

𝑑(𝜔𝑖 , 𝜔𝑗) = min
𝑥∈𝜔𝑖,𝑦∈𝜔𝑗

𝑑(𝑥, 𝑦)

• After merging 𝜔𝑖 and 𝜔𝑗, the similarity of the resulting 
cluster to another cluster, 𝜔𝑘, is:

𝑑((𝜔𝑖 ∪ 𝜔𝑗), 𝜔𝑘) = min 𝑑(𝜔𝑖 , 𝜔𝑘), 𝑑(𝜔𝑗 , 𝜔𝑘)



Single-link: Example with distance (1)

• 𝑑 𝜔𝑖 , 𝜔𝑗 = min
𝑥∈𝜔𝑖,𝑦∈𝜔𝑗

𝑑 𝑥, 𝑦

• 𝑑((𝜔𝑖 ∪ 𝜔𝑗), 𝜔𝑘) = min( 𝑑(𝜔𝑖 , 𝜔𝑘), 𝑑(𝜔𝑗 , 𝜔𝑘))

𝜔𝟏 𝜔𝟐 𝜔𝟑 𝜔𝟒 𝜔𝟓

𝜔𝟏 0 17 21 31 23

𝜔𝟐 17 0 30 34 21

𝜔𝟑 21 30 0 28 39

𝜔𝟒 31 34 28 0 43

𝜔𝟓 23 21 39 43 0



Single-link: Example with distance (2)

• 𝑑 𝜔𝑖 , 𝜔𝑗 = min
𝑥∈𝜔𝑖,𝑦∈𝜔𝑗

𝑑 𝑥, 𝑦

𝜔𝟏 𝜔𝟐 𝜔𝟑 𝜔𝟒 𝜔𝟓

𝜔𝟏 0 17 21 31 23

𝜔𝟐 17 0 30 34 21

𝜔𝟑 21 30 0 28 39

𝜔𝟒 31 34 28 0 43

𝜔𝟓 23 21 39 43 0



Single-link: Example with distance (3)

• 𝑑((𝜔𝑖 ∪ 𝜔𝑗), 𝜔𝑘) = min( 𝑑(𝜔𝑖 , 𝜔𝑘), 𝑑(𝜔𝑗 , 𝜔𝑘))

• 𝑑((𝜔1 ∪ 𝜔2), 𝜔3) = min( 𝑑(𝜔1, 𝜔3), 𝑑(𝜔2, 𝜔3)) = min(21,30) = 21

• 𝑑((𝜔1 ∪ 𝜔2), 𝜔4) = min( 𝑑(𝜔1, 𝜔4), 𝑑(𝜔2, 𝜔4)) = min(31,34) = 31

• 𝑑((𝜔1 ∪ 𝜔2), 𝜔5) = min( 𝑑(𝜔1, 𝜔5), 𝑑(𝜔2, 𝜔5)) = min(23,21) = 21

𝜔𝟏 𝜔𝟐 𝜔𝟑 𝜔𝟒 𝜔𝟓

𝜔𝟏 0 17 21 31 23

𝜔𝟐 17 0 30 34 21

𝜔𝟑 21 30 0 28 39

𝜔𝟒 31 34 28 0 43

𝜔𝟓 23 21 39 43 0



Single-link: Example with distance (4)

• Since 𝑑 𝜔1 ∪ 𝜔2 , 𝜔3 = 𝑑 𝜔1 ∪ 𝜔2 , 𝜔5 = 21, we can 

join cluster 𝜔1 ∪ 𝜔2  with 𝜔3 and 𝜔5

• Hence, this means that later, we have to compute

𝑑 𝜔1 ∪ 𝜔2) ∪ 𝜔3, 𝜔5 , 𝜔4

𝜔1 ∪ 𝜔2 𝜔𝟑 𝜔𝟒 𝜔𝟓

𝜔1 ∪ 𝜔2 0 21 31 21

𝜔𝟑 21 0 28 39

𝜔𝟒 31 28 0 43

𝜔𝟓 21 39 43 0



Single-link: Example with distance (5)

• 𝑑 𝜔1 ∪ 𝜔2) ∪ 𝜔3, 𝜔5 , 𝜔4 =

= min 𝑑 𝜔1 ∪ 𝜔2 , 𝜔4 , 𝑑 𝜔3, 𝜔4 , 𝑑 𝜔5, 𝜔4 = 28

• 𝑑 𝜔1 ∪ 𝜔2 , 𝜔4 = 31

• 𝑑 𝜔3, 𝜔4 = 28   min 31, 28, 43 = 28

• 𝑑 𝜔5, 𝜔4 = 43

𝜔1 ∪ 𝜔2 𝜔𝟑 𝜔𝟒 𝜔𝟓

𝜔1 ∪ 𝜔2 0 21 31 21

𝜔𝟑 21 0 28 39

𝜔𝟒 31 28 0 43

𝜔𝟓 21 39 43 0



Single-link: Example with distance (6)

(𝜔1 ∪ 𝜔2) ∪ 𝜔3, 𝜔5 𝜔𝟒

(𝜔1 ∪ 𝜔2) ∪ 𝜔3, 𝜔5 0 28

𝜔𝟒 28 0

𝜔1

𝜔2

𝜔3

𝜔5

𝜔4



Complete-link: Example

𝜔𝑖 𝜔𝑗

𝑥
𝑦

(b) Complete-link: Maximum distance (or minimum similarity)



Complete-link HAC

• In complete-link clustering or complete-linkage clustering, the 
distance (similarity) of two clusters is the distance of their 
furthest (similarity of their most dissimilar) members (the merge 
criterion is non-local).

• Use maximum distance (minimum similarity) of pairs:

𝑑(𝜔𝑖 , 𝜔𝑗) = max
𝑥∈𝜔𝑖,𝑦∈𝜔𝑗

𝑑(𝑥, 𝑦)

• After merging 𝜔𝑖 and 𝜔𝑗, the similarity of the resulting cluster to 
another cluster, 𝜔𝑘, is:

𝑑 𝜔𝑖 ∪ 𝜔𝑗 , 𝜔𝑘 = max 𝑑(𝜔𝑖 , 𝜔𝑘), 𝑑(𝜔𝑗 , 𝜔𝑘)



HAC: Comparison

• SL: sensitive to noise and outliers → One stray point 

can link two otherwise separate clusters.

• CL: slightly slower than SL.



Hierarchical Divisive Clustering (HDC) (1)

• We start at the top with all documents in one cluster.

• The cluster is split using a flat clustering algorithm.

• This procedure is applied recursively until each document 

is in its own singleton cluster.



Hierarchical Divisive Clustering (HDC) (2)

• Divisive hierarchical clustering with 𝑘-means is one of the 

efficient clustering methods among all the clustering 

methods.

• In this method, a cluster is split into 𝑘-smaller clusters 

under continuous iteration using 𝑘-means clustering until 

every element has its own cluster.

• It has the advantage of being more efficient than HAC if 

we do not generate a complete hierarchy all the way 

down to individual document leaves.



EVALUATION



What is a good clustering?

• When evaluating clustering results, we can use both internal 

evaluation and external evaluation criteria.

• Internal evaluation

• Measures the quality of clustering based on the data and the clustering 

results, without using any external information or ground truth.

• The evaluation is performed using metrics that assess the structure and 

characteristics of the clusters formed by the algorithm.

• External evaluation

• Involves comparing the clustering results to some external, 

independent criterion or ground truth.

• In this case, we have access to information about the true cluster 

assignments of the data.



Internal evaluation criteria

• A good clustering will produce high quality clusters in 
which:
• The intra-class (that is, intra-cluster) similarity is high.

• The inter-class similarity is low.

• The measured quality of a clustering depends on both the 
document representation and the similarity measure used.
• The representation does not capture relevant information in the 

text.

• The algorithm may struggle to find meaningful patterns, and clusters 
may not reflect the actual structure of the data.

• The similarity measure does not align with the nature of the data.

• The algorithm may group documents incorrectly, leading to suboptimal 
clustering results.



Internal evaluation: Silhouette (1)

• The Silhouette analysis measures how well an 
observation is clustered and it estimates the average 
distance between clusters.

• The Silhouette plot displays a measure of how close each 
point in one cluster is to points in the neighboring clusters.

• The Silhouette Coefficient (𝑆) is calculated using the 
mean intra-cluster distance 𝑎(𝑖) and the mean nearest-
cluster distance 𝑏(𝑖) for each sample 𝑖.

𝑆 𝑖 =
𝑏 𝑖 – 𝑎 𝑖

max(𝑎 𝑖 , 𝑏 𝑖 )



Internal evaluation: Silhouette (2)



Internal evaluation: Silhouette (3)

• 𝑆(𝑖) will lies between [−1,1].

• If the Silhouette value is close to 1, sample is well-clustered

and already assigned to a very appropriate cluster.

• If the Silhouette value is about to 0, sample could be assigned 

to another cluster closest to it and the sample lies equally far 

away from both the clusters. That means it indicates 

overlapping clusters.

• If the Silhouette value is close to –1, sample is misclassified

and is merely placed somewhere in between the clusters.



External evaluation criteria

• Quality measured by its ability to discover some or all of 

the hidden patterns or latent classes in gold standard 

data.

• Assesses a clustering with respect to ground truth… 

requires labeled data.

• Assume documents with 𝐶 gold standard classes, while 

our clustering algorithms produce 𝑘 clusters, 𝜔1, 𝜔2, … , 𝜔𝑘

with 𝑛𝑖 members.



External evaluation: Purity (1)

• Simple measure: purity, the ratio between the dominant 

class in the cluster 𝜔𝑖 and the size of cluster 𝜔𝑖.

𝑃𝑢𝑟𝑖𝑡𝑦(𝜔𝑖) =
1

𝑛𝑖
max𝑗( 𝑛𝑖𝑗) 𝑗 ∈ 𝐶

• Bad clustering have purity values close to 0, a perfect 

clustering has a purity of 1.

• Biased because having 𝑛 clusters maximizes purity.



External evaluation: Purity (2)

• Cluster I: 𝑃𝑢𝑟𝑖𝑡𝑦(𝐼) = 1/6(max(5,1,0)) = 5/6

• Cluster II: 𝑃𝑢𝑟𝑖𝑡𝑦(𝐼𝐼) = 1/6(max(1,4,1)) = 4/6

• Cluster III: 𝑃𝑢𝑟𝑖𝑡𝑦(𝐼𝐼𝐼) = 1/5(max(2,0,3)) = 3/5

• •

• •

• •

• •

• •

• •

• •

• •

•

Cluster I Cluster II Cluster III



External evaluation: The Rand Index (1)

• It measures the percentage of decisions that are correct.

• A true positive (TP) decision assigns two similar documents to the 

same cluster.

• A true negative (TN) decision assigns two dissimilar documents to 

different clusters.

• A false positive (FP) decision assigns two dissimilar documents to 

the same cluster.

• A false negative (FN) decision assigns two similar documents to 

different clusters.

𝑅𝐼 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁



External evaluation: The Rand Index (2)

Number of points
Same Cluster in 

clustering

Different Clusters in 

clustering

Same class in ground 

truth 20 24

Different classes in 

ground truth 20 72

𝑅𝐼 =
20 + 72

20 + 20 + 24 + 72
≈ 0.68



Precision, Recall and 𝐹-measure

• The Rand Index gives equal weight to false positives and 

false negatives.

• Separating similar documents is sometimes worse than 

putting pairs of dissimilar documents in the same cluster. 

• We can use the 𝐹-measure to penalize false negatives 

more strongly than false positives by selecting a value 𝛽 > 

1, thus giving more weight to recall.

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 𝑅 =

𝑇𝑃

𝑇𝑃+𝐹𝑁
 𝐹𝛽 =

𝛽2+1 𝑃𝑅

𝛽2𝑃+𝑅



Example

• 𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
=

20

20+20
= 0.5

• 𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
=

20

20+24
≈ 0.455

• 𝑅𝐼 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
≈ 0.68

• 𝐹𝛽 =
𝛽2+1 𝑃𝑅

𝛽2𝑃+𝑅
 𝐹1 ≈ 0.48 𝐹5 ≈ 0.456



Clustering in R and Python

• Introduction to text clustering in R:

• https://recast.ai/blog/text-clustering-with-r-an-introduction-for-data-

scientists/ 

• Introduction to text clustering in Python:

• http://brandonrose.org/clustering

• https://scikit-

learn.org/stable/auto_examples/text/plot_document_clustering.html 
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