
TEXT CLUSTERING

Prof. Marco Viviani

marco.viviani@unimib.it

mailto:marco.viviani@unimib.it

INTRO

What is clustering?

• (Document) Clustering: the process of grouping a set of

objects (documents) into classes of similar objects

(documents).

• Documents within a cluster should be similar.

• Documents from different clusters should be dissimilar.

• The commonest form of unsupervised learning.

• Unsupervised learning = learning from raw data.

• Opposed to supervised learning where a classification of examples is

given.

• A common and important task that finds many applications Text

Mining and NLP tasks.

Clustering VS Classification

Classification Clustering

Supervised learning Unsupervised learning

Classes are human-defined

and part of the input to the

learning algorithm

Clusters are inferred from

the data without human input

Output = membership in

class only

Output = membership in

class + distance/similarity from/with

the centroid (“degree of cluster

membership”)

The cluster hypothesis

Documents in the same cluster behave similarly with
respect to relevance to information needs.

• All applications of clustering in

Information Retrieval (IR) are

based (directly or indirectly) on

the cluster hypothesis.

• C. J. van Rijsbergen (1979):

«closely-associated documents

tend to be relevant to the same

requests».

A data set with clear cluster structure

• How would you

design an

algorithm for

finding the

three clusters in

this case?

→ DISTANCE

BASIC ISSUES AND NOTIONS

Issues for clustering

• Representation for clustering

• Document representation.

• Vector space? Normalization?

• Need a notion of similarity/distance.

• How many clusters?

• Fixed a priori?

• Completely data-driven?

• Avoid “trivial” clusters - too large or small.

Notion of similarity/distance

• Ideal: semantic similarity.

• Practical: term-statistical similarity.

• Docs as vectors.

• For many algorithms, easier to think in terms of a distance (rather

than similarity) between docs.

• We will mostly speak of Euclidean distance.

• But real implementations use cosine similarity.

• Today: towards semantic similarity.

• Possibility of using Word Embedding or Contextualized Word

Embedding vectors.

Clustering algorithms

• Flat algorithms

• Flat clustering creates a flat set of clusters without any explicit

structure that would relate clusters to each other.

• Usually start with a random (partial) partitioning.

• Refine it iteratively:

• 𝑘-means clustering.

• Model-based clustering.

• Hierarchical algorithms

• Hierarchical clustering creates a hierarchy of clusters.

• Bottom-up, agglomerative.

• Top-down, divisive.

“Hard” VS “soft” clustering

• Hard clustering: Each document belongs to exactly one

cluster.

• More common and easier to do.

• Soft clustering: A document can belong to more than one

cluster (in a soft assignment, a document has fractional

membership in several clusters).

• Makes more sense for applications like creating browsable

hierarchies.

• You may want to put a pair of sneakers in two clusters: (𝑖) sports

apparel and (𝑖𝑖) shoes.

• You can only do that with a soft clustering approach.

FLAT CLUSTERING

Problem statement (1)

We can define the goal in hard flat clustering as follows.

• Given:
• (𝑖) a set of documents 𝐷 = {𝑑1, 𝑑2, … , 𝑑𝑁},

• (𝑖𝑖) a desired number of clusters 𝑘,

• (𝑖𝑖𝑖) an objective function that evaluates the quality of a clustering.

• We want to compute an assignement

𝛾: 𝐷 → 𝜔1, 𝜔2, … , 𝜔𝑘

that minimizes (or, in other cases, maximizes) the
objective function.

Problem statement (2)

• In most cases, we also demant that 𝛾 is surjective, i.e.,

that none of the 𝑘 clusters is empty.

• The objective function is often defined in terms of

similarity or distance between documents.

• For (textual) documents, the type of similarity we want is

usually topic similarity or high values on the same

dimensions in the Vector Space Model.

• E.g., documents about China have high values on dimensions like

Chinese, Beijing, and Mao, whereas documents about the UK tend

to have high values for London, Britain, and King.

𝑘-means

• 𝑘-means is the most important flat clustering algorithm.

• Assumption: documents are represented as length-

normalized vectors in a real-valued space in the familiar

way.

• Its objective is to minimize the average squared Euclidean

distance of documents from their cluster centers.

Euclidean distance

• The Euclidean distance between two vectors 𝑢 and Ԧ𝑣 is

defined as:

𝑑 𝑢, Ԧ𝑣 = 𝑢 − Ԧ𝑣

= 𝑢1 − 𝑣1
2 + 𝑢2 − 𝑣2

2 + ⋯ + 𝑢𝑛 − 𝑣𝑛
2

= ෍
𝑖=1

𝑛

𝑢𝑖 − 𝑣𝑖
2

Distance and Similarity

𝐴(𝑥1, 𝑦1)

𝐵(𝑥2, 𝑦2)

𝒅

𝑘-means – Centroid

• A cluster center is defined as the centroid (or mean, or

center of gravity) 𝜇 of the documents in a cluster 𝜔:

𝜇 𝜔 =
1

|𝜔|
෍

Ԧ𝑥∈𝜔

Ԧ𝑥

• Reassignment of instances to clusters is based on

distance to the current cluster centroids.

• (Or one can equivalently phrase it in terms of similarities).

Ideal clustering

𝑘-means algorithm (1)

• The first step of 𝑘-means is to select as initial cluster

centers, 𝑘 randomly selected documents, i.e., the seeds:

{𝑠1, 𝑠2, … , 𝑠𝑘}.

• For each cluster 𝜔𝑗, 𝑠𝑗 = Ԧ𝜇(𝜔𝑗).

• For each doc 𝑑𝑖:

• Assign 𝑑𝑖 to the cluster 𝜔𝑗 such that 𝑑𝑖𝑠𝑡(𝑑𝑖 , 𝑠𝑗) is minimal.

𝑘-means algorithm (2)

• The algorithm then moves the cluster centers around in

space in order to minimize distance.

• This is done iteratively by repeating two steps until a

stopping criterion is met:

1. Reassigning documents to the cluster with the closest centroid.

2. Recomputing each centroid based on the current members of its

cluster.

𝑘-means algorithm (3)

45

𝑘-means example (1)

46

𝑘-means example (2)

47

𝑘-means example (3)

Termination conditions

• Several possibilities, e.g.,

• A fixed number of iterations → insufficient number of iteration (poor

quality).

• Doc partition unchanged → good clustering, runtime could be too

long.

• Centroid positions do not change.

• The distance between documents and centroids falls below a

certain threshold.

Seed Choice

• Results can vary based on
random seed selection.

• Some seeds can result in poor
convergence rate, or
convergence to sub-optimal
clusterings.
• Select good seeds using a

heuristic (e.g., doc least similar to
any existing mean).

• Try out multiple starting points.

• Initialize with the results of
another method.

• In the above, if we

start with B and E as

centroids we converge

to {A,B,C} and {D,E,F}

Example showing

sensitivity to seeds

Seed Choice

• Results can vary based on
random seed selection.

• Some seeds can result in poor
convergence rate, or
convergence to sub-optimal
clusterings.
• Select good seeds using a

heuristic (e.g., doc least similar to
any existing mean).

• Try out multiple starting points.

• Initialize with the results of
another method.

• If we start with D and F

you converge to

{A,B,D,E} {C,F}

Example showing

sensitivity to seeds

How many clusters?

• Number of clusters 𝑘 is given.

• Partition 𝑛 docs into predetermined number of clusters.

• 𝑘 not specified in advance.

• Finding the “right” number of clusters is part of the problem.

• Given docs, partition into an “appropriate” number of subsets.

• Trade-off between having more clusters (better focus within each

cluster) and having too many clusters.

• E.g., for query results - ideal value of 𝑘 not known up front - though UI

may impose limits.

𝑘-means and Python: A simple example

1. Fetch some textual documents;

2. Represent each textual document as a vector;

3. Perform 𝑘-means clustering;

4. Evaluate qualitatively the result of the clustering.

Phase 1: Fetch some textual documents

• The simplest solution:

documents = ["This little kitty came to play when I was

 eating at a restaurant.", "Merley has the

 best squooshy kitten belly.", "Google

 Translate app is incredible.", "If you

 open 100 tab in google you get a smiley

 face.", "Best cat photo I've ever

 taken.", "Climbing ninja cat.",

 "Impressed with google map feedback.",

 "Key promoter extension for Google

 Chrome."]

Phase 2: Represent each doc as a vector

from sklearn.feature_extraction.text import

TfidfVectorizer

vectorizer = TfidfVectorizer(stop_words={'english'})

X = vectorizer.fit_transform(documents)

Phase 3: Perform 𝑘-means clustering

from sklearn.cluster import Kmeans

k = 4 #or any other number

Labels = model.labels_

model = KMeans(n_clusters = k, init = 'k-means++’,

max_iter = 100, n_init = 1)

model.fit(X)

Phase 4: Qualitative analysis

import pandas as pd

clusters = pd.DataFrame(list(zip(documents,labels)),

columns = ['document','cluster’])

print(documents.sort_values(by = ['cluster']))

Flat clustering with embeddings?

• Flat clustering does not care where the vectors come from → It
just needs numeric representations of your data points in some
embedding space.

• Flat clustering with semantic vectors is not only possible, but
also often better than clustering TF-IDF vectors, because:

• Semantic embeddings capture meaning and synonymy;

• They are dense and continuous, unlike sparse TF-IDF vectors;

• They enable context-aware grouping.

Task Typical Embedding Description

Word clustering Word2Vec, GloVe, fastText
Each word → 1 vector

(static)

Document/sentence

clustering
BERT, Sentence-BERT, etc.

Each document, sentence,

(or paragraph) → 1 vector

(contextualized)

HIERARCHICAL CLUSTERING

Hierarchical Clustering (HC)

• Hierarchical outputs a hierarchy, a structure that is more

informative than the unstructured set of clusters returned

by flat clustering.

• Hierarchical clustering does not require to prespecify the

number of clusters.

• Advantages of hierarchical clustering come at the cost of

lower efficiency.

• The most common hierarchical clustering algorithms have a

complexity that is at least quadratic in the number of documents

compared to the linear complexity of 𝑘-means.

Bottom-up and top-down HC

• Hierarchical clustering algorithms are either bottom-up or
top-down.

• Bottom-up clustering treat each document as a singleton
cluster at the outset and then successively merge (or
agglomerate) pairs of clusters until all clusters have been
merged into a single cluster that contains all documents.
• It is therefore called Hierarchical Agglomerative Clustering or HAC.

• Top-down clustering requires a method for splitting a
cluster. It proceeds by splitting clusters recursively until
individual documents are reached.
• It is therefore called Hierarchical Divisive Clustering or HDC.

Hierarchical Agglomerative Clustering (HAC)

• Starts with each doc in a separate cluster.

• Then repeatedly joins the closest pair of clusters, until there is only

one cluster.

• Hierarchical clustering employs a measure of distance/similarity to

create new clusters.

• The history of merging forms a binary tree or hierarchy.

Dendrogram (1)

• An HAC clustering is typically visualized as a

dendrogram.

• It builds a tree-based hierarchical taxonomy (dendrogram) from a

set of documents.

animal

vertebrate

fish reptile amphib mammal worm insect crustacean

invertebrate

Dendrogram (2)

Clustering obtained by

cutting the dendrogram at

a desired level: each

connected component

forms a cluster.

Two possible cuts of the

dendogram are shown:

• at 0.4 into 24 clusters,

• at 0.1 into 12 clusters.

Dendrogram (3)

Source: https://www.kdnuggets.com/2018/06/5-clustering-algorithms-data-scientists-need-know.html

https://www.kdnuggets.com/2018/06/5-clustering-algorithms-data-scientists-need-know.html
https://www.kdnuggets.com/2018/06/5-clustering-algorithms-data-scientists-need-know.html
https://www.kdnuggets.com/2018/06/5-clustering-algorithms-data-scientists-need-know.html
https://www.kdnuggets.com/2018/06/5-clustering-algorithms-data-scientists-need-know.html
https://www.kdnuggets.com/2018/06/5-clustering-algorithms-data-scientists-need-know.html
https://www.kdnuggets.com/2018/06/5-clustering-algorithms-data-scientists-need-know.html
https://www.kdnuggets.com/2018/06/5-clustering-algorithms-data-scientists-need-know.html
https://www.kdnuggets.com/2018/06/5-clustering-algorithms-data-scientists-need-know.html
https://www.kdnuggets.com/2018/06/5-clustering-algorithms-data-scientists-need-know.html
https://www.kdnuggets.com/2018/06/5-clustering-algorithms-data-scientists-need-know.html
https://www.kdnuggets.com/2018/06/5-clustering-algorithms-data-scientists-need-know.html
https://www.kdnuggets.com/2018/06/5-clustering-algorithms-data-scientists-need-know.html
https://www.kdnuggets.com/2018/06/5-clustering-algorithms-data-scientists-need-know.html

HAC (typical) steps

• Step 1:
• Each data point is assigned to a cluster.

• Step 2:
• Compute the proximity matrix using a particular distance (or similarity)

metric.

• Step 3:
• Merge the clusters based on a metric for the distance (or similarity)

between clusters.

• Step 4:
• Update the distance matrix.

• Step 5:
• Repeat Step 3 and Step 4 until only a single cluster remains.

Steps 1, 2: Proximity matrix (data points)

• At this stage, clustering can be, for example, performed

by using 𝑘-means.

Steps 3, 4, 5: Closest pair of clusters
• The main question in hierarchical clustering is how to calculate the

distance/similarity between clusters and update the proximity matrix.
• Many variants to defining closest pair of clusters (merging criteria).

• Single-link
• Distance of the least distant.

• Similarity of the most cosine-similar.

• Complete-link
• Distance of the furthest points.

• The least cosine-similar.

• Group-average
• Average distance/cosine similarity between pairs of elements.

• Centroid
• Clusters whose centroids (centers of gravity) are the least distant/most similar.

Single-link: Example

𝜔𝑖 𝜔𝑗

𝑥

𝑦

(a) Single-link: Minimum distance (or maximum similarity)

Single-link HAC

• In single-link clustering, the distance (similarity) of two
clusters is the distance of their least distant (similarity of
their most similar) members (the merge criterion is local).

• Use minimum distance (maximum similarity) of pairs:

𝑑(𝜔𝑖 , 𝜔𝑗) = min
𝑥∈𝜔𝑖,𝑦∈𝜔𝑗

𝑑(𝑥, 𝑦)

• After merging 𝜔𝑖 and 𝜔𝑗, the similarity of the resulting
cluster to another cluster, 𝜔𝑘, is:

𝑑((𝜔𝑖 ∪ 𝜔𝑗), 𝜔𝑘) = min 𝑑(𝜔𝑖 , 𝜔𝑘), 𝑑(𝜔𝑗 , 𝜔𝑘)

Single-link: Example with distance (1)

• 𝑑 𝜔𝑖 , 𝜔𝑗 = min
𝑥∈𝜔𝑖,𝑦∈𝜔𝑗

𝑑 𝑥, 𝑦

• 𝑑((𝜔𝑖 ∪ 𝜔𝑗), 𝜔𝑘) = min(𝑑(𝜔𝑖 , 𝜔𝑘), 𝑑(𝜔𝑗 , 𝜔𝑘))

𝜔𝟏 𝜔𝟐 𝜔𝟑 𝜔𝟒 𝜔𝟓

𝜔𝟏 0 17 21 31 23

𝜔𝟐 17 0 30 34 21

𝜔𝟑 21 30 0 28 39

𝜔𝟒 31 34 28 0 43

𝜔𝟓 23 21 39 43 0

Single-link: Example with distance (2)

• 𝑑 𝜔𝑖 , 𝜔𝑗 = min
𝑥∈𝜔𝑖,𝑦∈𝜔𝑗

𝑑 𝑥, 𝑦

𝜔𝟏 𝜔𝟐 𝜔𝟑 𝜔𝟒 𝜔𝟓

𝜔𝟏 0 17 21 31 23

𝜔𝟐 17 0 30 34 21

𝜔𝟑 21 30 0 28 39

𝜔𝟒 31 34 28 0 43

𝜔𝟓 23 21 39 43 0

Single-link: Example with distance (3)

• 𝑑((𝜔𝑖 ∪ 𝜔𝑗), 𝜔𝑘) = min(𝑑(𝜔𝑖 , 𝜔𝑘), 𝑑(𝜔𝑗 , 𝜔𝑘))

• 𝑑((𝜔1 ∪ 𝜔2), 𝜔3) = min(𝑑(𝜔1, 𝜔3), 𝑑(𝜔2, 𝜔3)) = min(21,30) = 21

• 𝑑((𝜔1 ∪ 𝜔2), 𝜔4) = min(𝑑(𝜔1, 𝜔4), 𝑑(𝜔2, 𝜔4)) = min(31,34) = 31

• 𝑑((𝜔1 ∪ 𝜔2), 𝜔5) = min(𝑑(𝜔1, 𝜔5), 𝑑(𝜔2, 𝜔5)) = min(23,21) = 21

𝜔𝟏 𝜔𝟐 𝜔𝟑 𝜔𝟒 𝜔𝟓

𝜔𝟏 0 17 21 31 23

𝜔𝟐 17 0 30 34 21

𝜔𝟑 21 30 0 28 39

𝜔𝟒 31 34 28 0 43

𝜔𝟓 23 21 39 43 0

Single-link: Example with distance (4)

• Since 𝑑 𝜔1 ∪ 𝜔2 , 𝜔3 = 𝑑 𝜔1 ∪ 𝜔2 , 𝜔5 = 21, we can

join cluster 𝜔1 ∪ 𝜔2 with 𝜔3 and 𝜔5

• Hence, this means that later, we have to compute

𝑑 𝜔1 ∪ 𝜔2) ∪ 𝜔3, 𝜔5 , 𝜔4

𝜔1 ∪ 𝜔2 𝜔𝟑 𝜔𝟒 𝜔𝟓

𝜔1 ∪ 𝜔2 0 21 31 21

𝜔𝟑 21 0 28 39

𝜔𝟒 31 28 0 43

𝜔𝟓 21 39 43 0

Single-link: Example with distance (5)

• 𝑑 𝜔1 ∪ 𝜔2) ∪ 𝜔3, 𝜔5 , 𝜔4 =

= min 𝑑 𝜔1 ∪ 𝜔2 , 𝜔4 , 𝑑 𝜔3, 𝜔4 , 𝑑 𝜔5, 𝜔4 = 28

• 𝑑 𝜔1 ∪ 𝜔2 , 𝜔4 = 31

• 𝑑 𝜔3, 𝜔4 = 28 min 31, 28, 43 = 28

• 𝑑 𝜔5, 𝜔4 = 43

𝜔1 ∪ 𝜔2 𝜔𝟑 𝜔𝟒 𝜔𝟓

𝜔1 ∪ 𝜔2 0 21 31 21

𝜔𝟑 21 0 28 39

𝜔𝟒 31 28 0 43

𝜔𝟓 21 39 43 0

Single-link: Example with distance (6)

(𝜔1 ∪ 𝜔2) ∪ 𝜔3, 𝜔5 𝜔𝟒

(𝜔1 ∪ 𝜔2) ∪ 𝜔3, 𝜔5 0 28

𝜔𝟒 28 0

𝜔1

𝜔2

𝜔3

𝜔5

𝜔4

Complete-link: Example

𝜔𝑖 𝜔𝑗

𝑥
𝑦

(b) Complete-link: Maximum distance (or minimum similarity)

Complete-link HAC

• In complete-link clustering or complete-linkage clustering, the
distance (similarity) of two clusters is the distance of their
furthest (similarity of their most dissimilar) members (the merge
criterion is non-local).

• Use maximum distance (minimum similarity) of pairs:

𝑑(𝜔𝑖 , 𝜔𝑗) = max
𝑥∈𝜔𝑖,𝑦∈𝜔𝑗

𝑑(𝑥, 𝑦)

• After merging 𝜔𝑖 and 𝜔𝑗, the similarity of the resulting cluster to
another cluster, 𝜔𝑘, is:

𝑑 𝜔𝑖 ∪ 𝜔𝑗 , 𝜔𝑘 = max 𝑑(𝜔𝑖 , 𝜔𝑘), 𝑑(𝜔𝑗 , 𝜔𝑘)

HAC: Comparison

• SL: sensitive to noise and outliers → One stray point

can link two otherwise separate clusters.

• CL: slightly slower than SL.

Hierarchical Divisive Clustering (HDC) (1)

• We start at the top with all documents in one cluster.

• The cluster is split using a flat clustering algorithm.

• This procedure is applied recursively until each document

is in its own singleton cluster.

Hierarchical Divisive Clustering (HDC) (2)

• Divisive hierarchical clustering with 𝑘-means is one of the

efficient clustering methods among all the clustering

methods.

• In this method, a cluster is split into 𝑘-smaller clusters

under continuous iteration using 𝑘-means clustering until

every element has its own cluster.

• It has the advantage of being more efficient than HAC if

we do not generate a complete hierarchy all the way

down to individual document leaves.

EVALUATION

What is a good clustering?

• When evaluating clustering results, we can use both internal

evaluation and external evaluation criteria.

• Internal evaluation

• Measures the quality of clustering based on the data and the clustering

results, without using any external information or ground truth.

• The evaluation is performed using metrics that assess the structure and

characteristics of the clusters formed by the algorithm.

• External evaluation

• Involves comparing the clustering results to some external,

independent criterion or ground truth.

• In this case, we have access to information about the true cluster

assignments of the data.

Internal evaluation criteria

• A good clustering will produce high quality clusters in
which:
• The intra-class (that is, intra-cluster) similarity is high.

• The inter-class similarity is low.

• The measured quality of a clustering depends on both the
document representation and the similarity measure used.
• The representation does not capture relevant information in the

text.

• The algorithm may struggle to find meaningful patterns, and clusters
may not reflect the actual structure of the data.

• The similarity measure does not align with the nature of the data.

• The algorithm may group documents incorrectly, leading to suboptimal
clustering results.

Internal evaluation: Silhouette (1)

• The Silhouette analysis measures how well an
observation is clustered and it estimates the average
distance between clusters.

• The Silhouette plot displays a measure of how close each
point in one cluster is to points in the neighboring clusters.

• The Silhouette Coefficient (𝑆) is calculated using the
mean intra-cluster distance 𝑎(𝑖) and the mean nearest-
cluster distance 𝑏(𝑖) for each sample 𝑖.

𝑆 𝑖 =
𝑏 𝑖 – 𝑎 𝑖

max(𝑎 𝑖 , 𝑏 𝑖)

Internal evaluation: Silhouette (2)

Internal evaluation: Silhouette (3)

• 𝑆(𝑖) will lies between [−1,1].

• If the Silhouette value is close to 1, sample is well-clustered

and already assigned to a very appropriate cluster.

• If the Silhouette value is about to 0, sample could be assigned

to another cluster closest to it and the sample lies equally far

away from both the clusters. That means it indicates

overlapping clusters.

• If the Silhouette value is close to –1, sample is misclassified

and is merely placed somewhere in between the clusters.

External evaluation criteria

• Quality measured by its ability to discover some or all of

the hidden patterns or latent classes in gold standard

data.

• Assesses a clustering with respect to ground truth…

requires labeled data.

• Assume documents with 𝐶 gold standard classes, while

our clustering algorithms produce 𝑘 clusters, 𝜔1, 𝜔2, … , 𝜔𝑘

with 𝑛𝑖 members.

External evaluation: Purity (1)

• Simple measure: purity, the ratio between the dominant

class in the cluster 𝜔𝑖 and the size of cluster 𝜔𝑖.

𝑃𝑢𝑟𝑖𝑡𝑦(𝜔𝑖) =
1

𝑛𝑖
max𝑗(𝑛𝑖𝑗) 𝑗 ∈ 𝐶

• Bad clustering have purity values close to 0, a perfect

clustering has a purity of 1.

• Biased because having 𝑛 clusters maximizes purity.

External evaluation: Purity (2)

• Cluster I: 𝑃𝑢𝑟𝑖𝑡𝑦(𝐼) = 1/6(max(5,1,0)) = 5/6

• Cluster II: 𝑃𝑢𝑟𝑖𝑡𝑦(𝐼𝐼) = 1/6(max(1,4,1)) = 4/6

• Cluster III: 𝑃𝑢𝑟𝑖𝑡𝑦(𝐼𝐼𝐼) = 1/5(max(2,0,3)) = 3/5

• •

• •

• •

• •

• •

• •

• •

• •

•

Cluster I Cluster II Cluster III

External evaluation: The Rand Index (1)

• It measures the percentage of decisions that are correct.

• A true positive (TP) decision assigns two similar documents to the

same cluster.

• A true negative (TN) decision assigns two dissimilar documents to

different clusters.

• A false positive (FP) decision assigns two dissimilar documents to

the same cluster.

• A false negative (FN) decision assigns two similar documents to

different clusters.

𝑅𝐼 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁

External evaluation: The Rand Index (2)

Number of points
Same Cluster in

clustering

Different Clusters in

clustering

Same class in ground

truth 20 24

Different classes in

ground truth 20 72

𝑅𝐼 =
20 + 72

20 + 20 + 24 + 72
≈ 0.68

Precision, Recall and 𝐹-measure

• The Rand Index gives equal weight to false positives and

false negatives.

• Separating similar documents is sometimes worse than

putting pairs of dissimilar documents in the same cluster.

• We can use the 𝐹-measure to penalize false negatives

more strongly than false positives by selecting a value 𝛽 >

1, thus giving more weight to recall.

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 𝑅 =

𝑇𝑃

𝑇𝑃+𝐹𝑁
 𝐹𝛽 =

𝛽2+1 𝑃𝑅

𝛽2𝑃+𝑅

Example

• 𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
=

20

20+20
= 0.5

• 𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
=

20

20+24
≈ 0.455

• 𝑅𝐼 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
≈ 0.68

• 𝐹𝛽 =
𝛽2+1 𝑃𝑅

𝛽2𝑃+𝑅
 𝐹1 ≈ 0.48 𝐹5 ≈ 0.456

Clustering in R and Python

• Introduction to text clustering in R:

• https://recast.ai/blog/text-clustering-with-r-an-introduction-for-data-

scientists/

• Introduction to text clustering in Python:

• http://brandonrose.org/clustering

• https://scikit-

learn.org/stable/auto_examples/text/plot_document_clustering.html

https://recast.ai/blog/text-clustering-with-r-an-introduction-for-data-scientists/
https://recast.ai/blog/text-clustering-with-r-an-introduction-for-data-scientists/
https://recast.ai/blog/text-clustering-with-r-an-introduction-for-data-scientists/
https://recast.ai/blog/text-clustering-with-r-an-introduction-for-data-scientists/
https://recast.ai/blog/text-clustering-with-r-an-introduction-for-data-scientists/
https://recast.ai/blog/text-clustering-with-r-an-introduction-for-data-scientists/
https://recast.ai/blog/text-clustering-with-r-an-introduction-for-data-scientists/
https://recast.ai/blog/text-clustering-with-r-an-introduction-for-data-scientists/
https://recast.ai/blog/text-clustering-with-r-an-introduction-for-data-scientists/
https://recast.ai/blog/text-clustering-with-r-an-introduction-for-data-scientists/
https://recast.ai/blog/text-clustering-with-r-an-introduction-for-data-scientists/
https://recast.ai/blog/text-clustering-with-r-an-introduction-for-data-scientists/
https://recast.ai/blog/text-clustering-with-r-an-introduction-for-data-scientists/
https://recast.ai/blog/text-clustering-with-r-an-introduction-for-data-scientists/
https://recast.ai/blog/text-clustering-with-r-an-introduction-for-data-scientists/
https://recast.ai/blog/text-clustering-with-r-an-introduction-for-data-scientists/
https://recast.ai/blog/text-clustering-with-r-an-introduction-for-data-scientists/
https://recast.ai/blog/text-clustering-with-r-an-introduction-for-data-scientists/
http://brandonrose.org/clustering
http://brandonrose.org/clustering
https://scikit-learn.org/stable/auto_examples/text/plot_document_clustering.html
https://scikit-learn.org/stable/auto_examples/text/plot_document_clustering.html
https://scikit-learn.org/stable/auto_examples/text/plot_document_clustering.html
https://scikit-learn.org/stable/auto_examples/text/plot_document_clustering.html

	Diapositiva 1: Text clustering
	Diapositiva 2: INTRO
	Diapositiva 3: What is clustering?
	Diapositiva 4: Clustering VS Classification
	Diapositiva 5: The cluster hypothesis
	Diapositiva 6: A data set with clear cluster structure
	Diapositiva 25: Basic issues and notions
	Diapositiva 26: Issues for clustering
	Diapositiva 28: Notion of similarity/distance
	Diapositiva 29: Clustering algorithms
	Diapositiva 30: “Hard” VS “soft” clustering
	Diapositiva 31: Flat clustering
	Diapositiva 32: Problem statement (1)
	Diapositiva 33: Problem statement (2)
	Diapositiva 36: k-means
	Diapositiva 37: Euclidean distance
	Diapositiva 38: Distance and Similarity
	Diapositiva 39: k-means – Centroid
	Diapositiva 40: Ideal clustering
	Diapositiva 42: k-means algorithm (1)
	Diapositiva 43: k-means algorithm (2)
	Diapositiva 44: k-means algorithm (3)
	Diapositiva 45: k-means example (1)
	Diapositiva 46: k-means example (2)
	Diapositiva 47: k-means example (3)
	Diapositiva 48: Termination conditions
	Diapositiva 50: Seed Choice
	Diapositiva 51: Seed Choice
	Diapositiva 53: How many clusters?
	Diapositiva 55: k-means and Python: A simple example
	Diapositiva 56: Phase 1: Fetch some textual documents
	Diapositiva 57: Phase 2: Represent each doc as a vector
	Diapositiva 58: Phase 3: Perform k-means clustering
	Diapositiva 59: Phase 4: Qualitative analysis
	Diapositiva 60: Flat clustering with embeddings?
	Diapositiva 63: Hierarchical clustering
	Diapositiva 64: Hierarchical Clustering (HC)
	Diapositiva 65: Bottom-up and top-down HC
	Diapositiva 66: Hierarchical Agglomerative Clustering (HAC)
	Diapositiva 67: Dendrogram (1)
	Diapositiva 68: Dendrogram (2)
	Diapositiva 69: Dendrogram (3)
	Diapositiva 70: HAC (typical) steps
	Diapositiva 71: Steps 1, 2: Proximity matrix (data points)
	Diapositiva 72: Steps 3, 4, 5: Closest pair of clusters
	Diapositiva 73: Single-link: Example
	Diapositiva 74: Single-link HAC
	Diapositiva 75: Single-link: Example with distance (1)
	Diapositiva 76: Single-link: Example with distance (2)
	Diapositiva 77: Single-link: Example with distance (3)
	Diapositiva 78: Single-link: Example with distance (4)
	Diapositiva 79: Single-link: Example with distance (5)
	Diapositiva 80: Single-link: Example with distance (6)
	Diapositiva 81: Complete-link: Example
	Diapositiva 82: Complete-link HAC
	Diapositiva 88: HAC: Comparison
	Diapositiva 89: Hierarchical Divisive Clustering (HDC) (1)
	Diapositiva 90: Hierarchical Divisive Clustering (HDC) (2)
	Diapositiva 91: evaluation
	Diapositiva 92: What is a good clustering?
	Diapositiva 93: Internal evaluation criteria
	Diapositiva 94: Internal evaluation: Silhouette (1)
	Diapositiva 95: Internal evaluation: Silhouette (2)
	Diapositiva 96: Internal evaluation: Silhouette (3)
	Diapositiva 97: External evaluation criteria
	Diapositiva 98: External evaluation: Purity (1)
	Diapositiva 99: External evaluation: Purity (2)
	Diapositiva 100: External evaluation: The Rand Index (1)
	Diapositiva 101: External evaluation: The Rand Index (2)
	Diapositiva 102: Precision, Recall and maiuscola F-measure
	Diapositiva 103: Example
	Diapositiva 104: Clustering in R and Python

