

TEXT CLUSTERING

Prof. Marco Viviani

marco.viviani@unimib.it

INTRO

What is clustering?

- **(Document) Clustering**: the process of grouping a set of objects (**documents**) into classes of similar objects (documents).
 - Documents within a cluster should be similar.
 - Documents from different clusters should be dissimilar.
- The commonest form of **unsupervised learning**.
 - Unsupervised learning = learning from **raw data**.
 - **Opposed to supervised learning** where a classification of examples is given.
 - A common and important task that finds many applications Text Mining and NLP tasks.

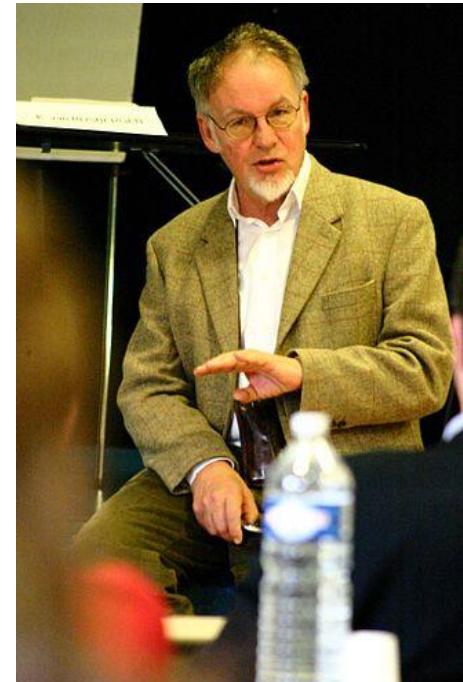
Clustering VS Classification

Classification	Clustering
Supervised learning	Unsupervised learning
Classes are human-defined and part of the input to the learning algorithm	Clusters are inferred from the data without human input
Output = membership in class only	Output = membership in class + distance/similarity from/with the centroid ("degree of cluster membership")

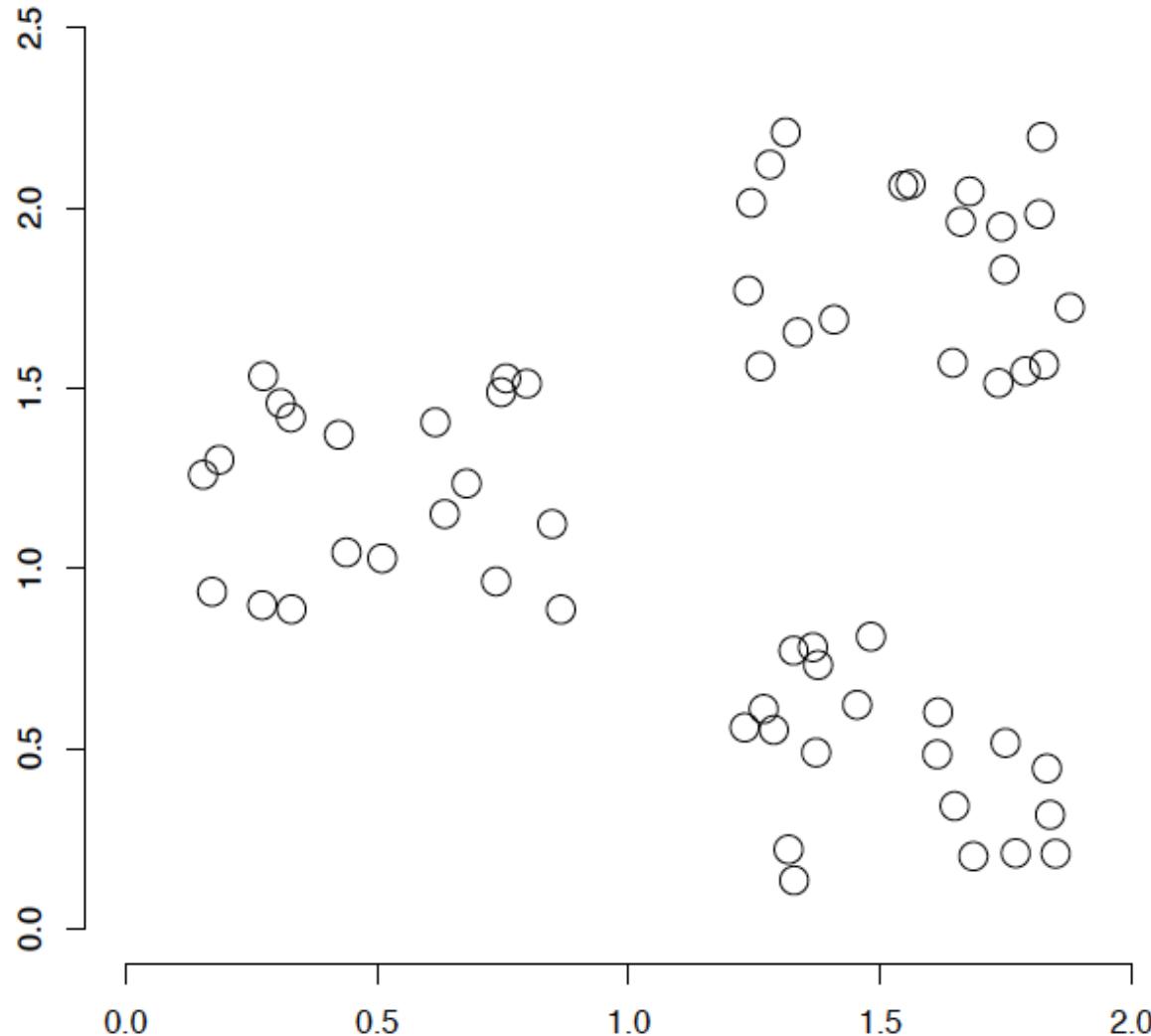
The cluster hypothesis

Documents in the same cluster behave similarly with respect to relevance to information needs.

- All applications of clustering in **Information Retrieval (IR)** are based (directly or indirectly) on the **cluster hypothesis**.
- C. J. van Rijsbergen (1979): «closely-associated documents tend to be relevant to the same requests».



A data set with clear cluster structure



- How would you design an algorithm for finding the three clusters in this case?

→ DISTANCE

BASIC ISSUES AND NOTIONS

Issues for clustering

- Representation for clustering
 - Document representation.
 - Vector space? Normalization?
 - Need a notion of **similarity/distance**.
- How many clusters?
 - Fixed a priori?
 - Completely data-driven?
 - **Avoid “trivial” clusters** - too large or small.

Notion of similarity/distance

- **Ideal**: semantic similarity.
- **Practical**: term-statistical similarity.
 - Docs as vectors.
 - For many algorithms, easier to think in terms of a **distance** (rather than **similarity**) between docs.
 - We will mostly speak of Euclidean distance.
 - But real implementations use **cosine similarity**.
- **Today**: towards semantic similarity.
 - Possibility of using **Word Embedding** or **Contextualized Word Embedding** vectors.

Clustering algorithms

- **Flat algorithms**
 - Flat clustering creates a flat set of clusters without any explicit structure that would relate clusters to each other.
 - Usually start with a **random (partial) partitioning**.
 - Refine it iteratively:
 - *k*-means clustering.
 - Model-based clustering.
- **Hierarchical algorithms**
 - Hierarchical clustering creates a hierarchy of clusters.
 - Bottom-up, **agglomerative**.
 - Top-down, **divisive**.

“Hard” VS “soft” clustering

- **Hard clustering**: Each document belongs to exactly one cluster.
 - More common and easier to do.
- **Soft clustering**: A document can belong to more than one cluster (in a **soft** assignment, a document has fractional membership in several clusters).
 - Makes more sense for applications like **creating browsable hierarchies**.
 - You may want to put a pair of sneakers in two clusters: (*i*) sports apparel and (*ii*) shoes.
 - You can only do that with a soft clustering approach.

FLAT CLUSTERING

Problem statement (1)

We can define the goal in **hard flat clustering** as follows.

- Given:
 - (i) a **set of documents** $D = \{d_1, d_2, \dots, d_N\}$,
 - (ii) a **desired number of clusters** k ,
 - (iii) an **objective function** that evaluates the quality of a clustering.
- We want to compute an **assignment**

$$\gamma: D \rightarrow \{\omega_1, \omega_2, \dots, \omega_k\}$$

that **minimizes** (or, in other cases, **maximizes**) the objective function.

Problem statement (2)

- In most cases, we also demand that γ is **surjective**, i.e., that none of the k clusters is empty.
- The objective function is often defined in terms of **similarity** or **distance** between documents.
- For (textual) documents, the type of similarity we want is usually **topic similarity** or **high values on the same dimensions** in the Vector Space Model.
 - E.g., documents about China have high values on dimensions like **Chinese**, **Beijing**, and **Mao**, whereas documents about the UK tend to have high values for **London**, **Britain**, and **King**.

k-means

- *k*-means is the most important flat clustering algorithm.
- Assumption: documents are represented as length-normalized vectors in a real-valued space in the familiar way.
- Its objective is to minimize the average squared Euclidean distance of documents from their cluster centers.

Euclidean distance

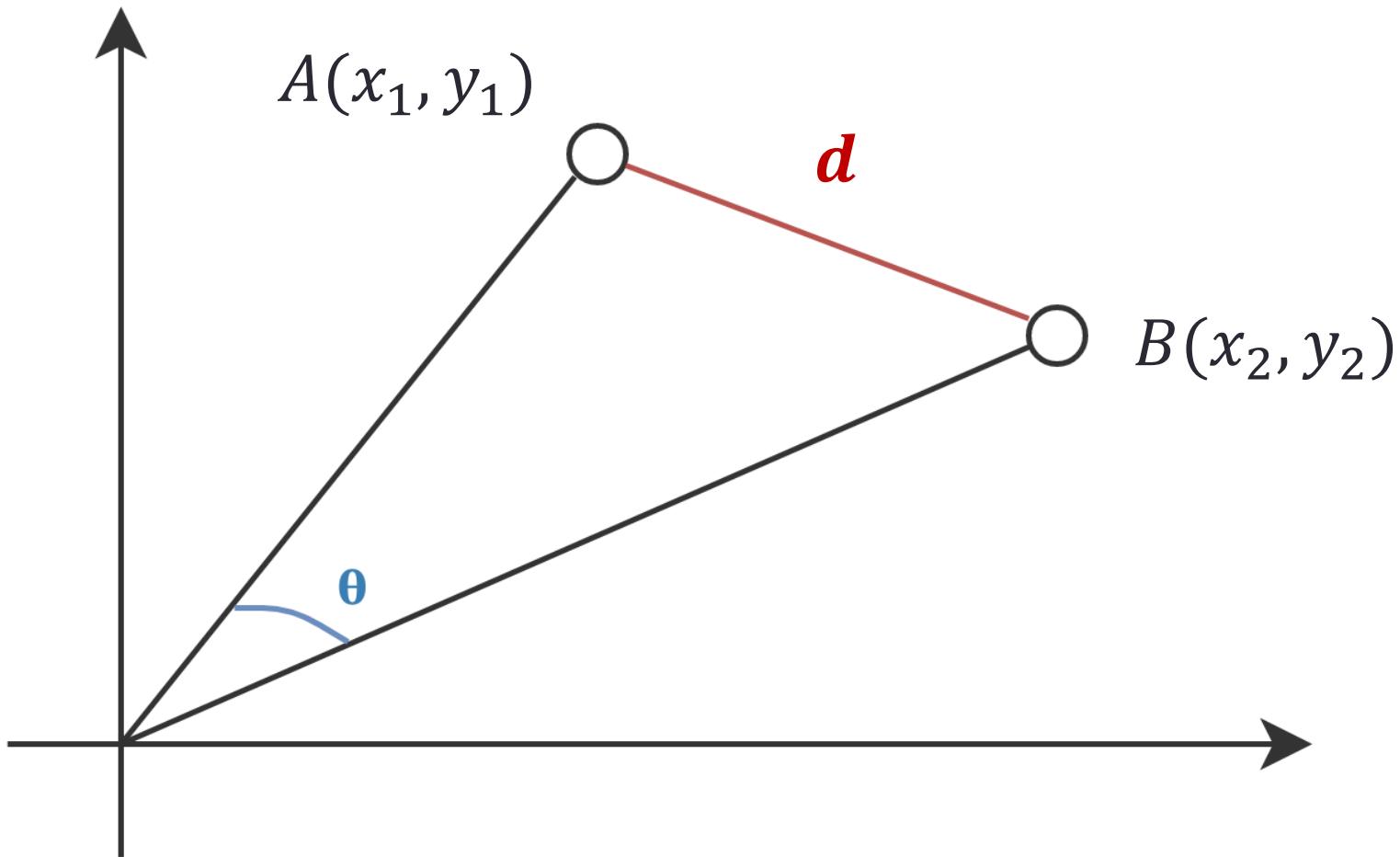
- The **Euclidean distance** between two vectors \vec{u} and \vec{v} is defined as:

$$d(\vec{u}, \vec{v}) = \|\vec{u} - \vec{v}\|$$

$$= \sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2 + \cdots + (u_n - v_n)^2}$$

$$= \sqrt{\sum_{i=1}^n (u_i - v_i)^2}$$

Distance and Similarity



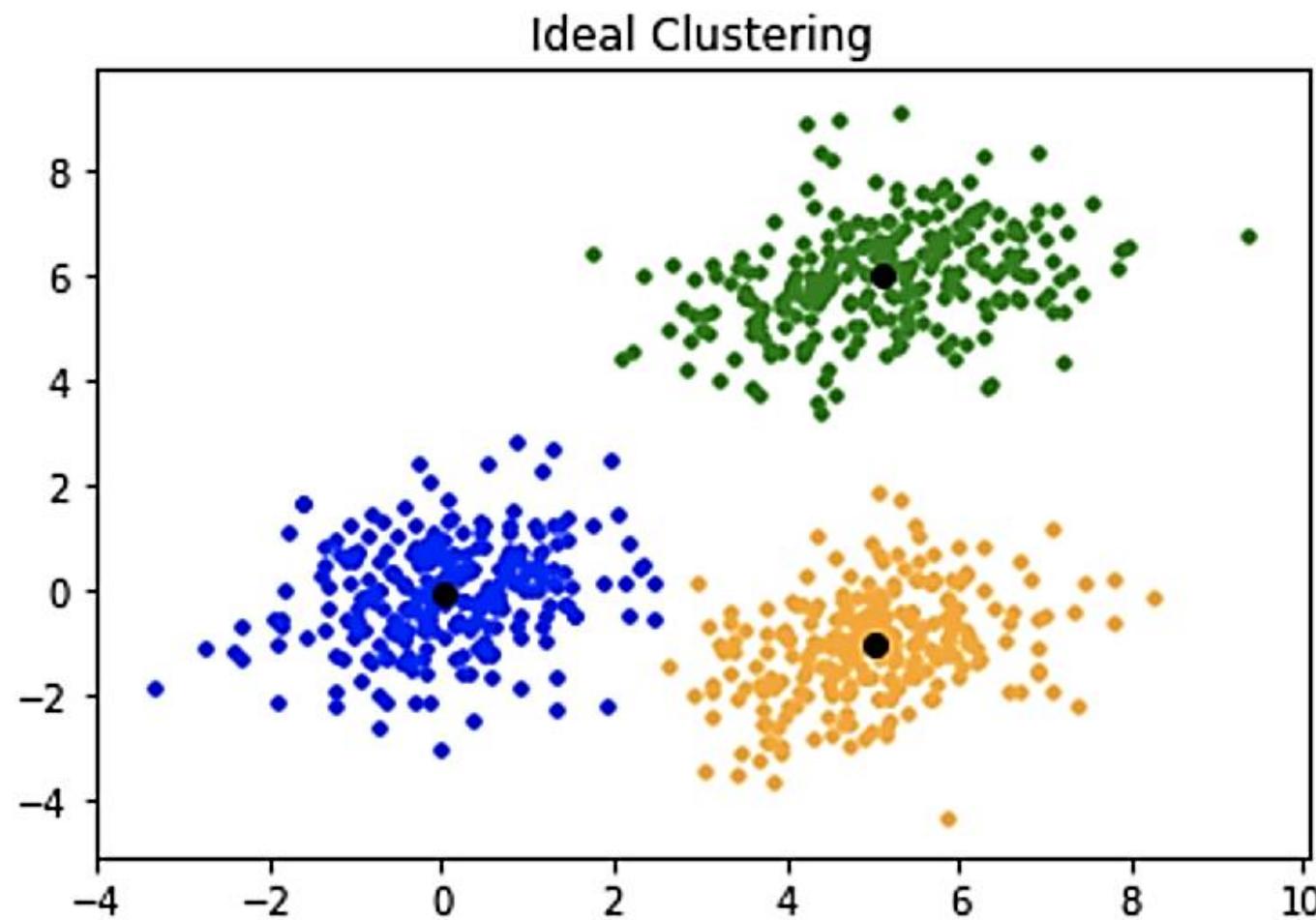
k-means – Centroid

- A cluster center is defined as the **centroid** (or **mean**, or **center of gravity**) $\vec{\mu}$ of the documents in a cluster ω :

$$\vec{\mu}(\omega) = \frac{1}{|\omega|} \sum_{\vec{x} \in \omega} \vec{x}$$

- Reassignment of instances to clusters is based on distance to the current cluster centroids.
 - (Or one can equivalently phrase it in terms of **similarities**).

Ideal clustering



k -means algorithm (1)

- The first step of k -means is to select as **initial cluster centers**, k randomly selected documents, i.e., the **seeds**: $\{s_1, s_2, \dots, s_k\}$.
- For each cluster ω_j , $s_j = \vec{\mu}(\omega_j)$.
- For each doc d_i :
 - Assign d_i to the cluster ω_j such that $dist(d_i, s_j)$ is minimal.

k-means algorithm (2)

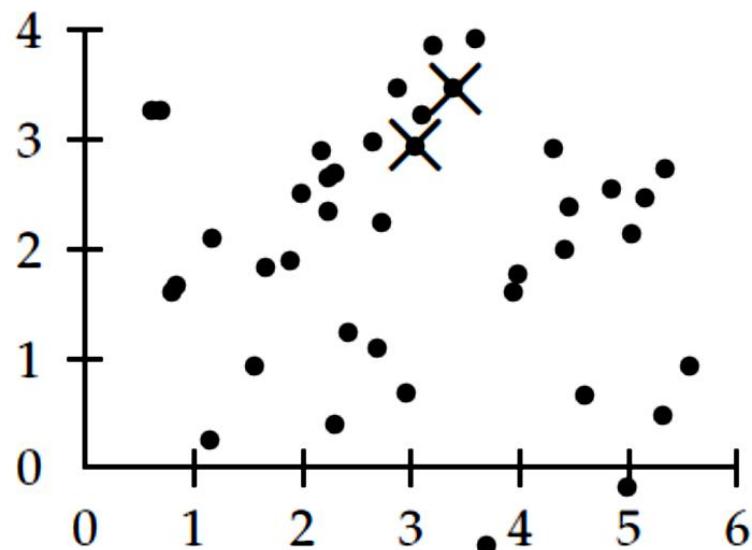
- The algorithm then **moves the cluster centers** around in space in order to minimize distance.
- This is done iteratively by repeating two steps until a **stopping criterion** is met:
 1. Reassigning documents to the cluster with the closest centroid.
 2. Recomputing each centroid based on the current members of its cluster.

k -means algorithm (3)

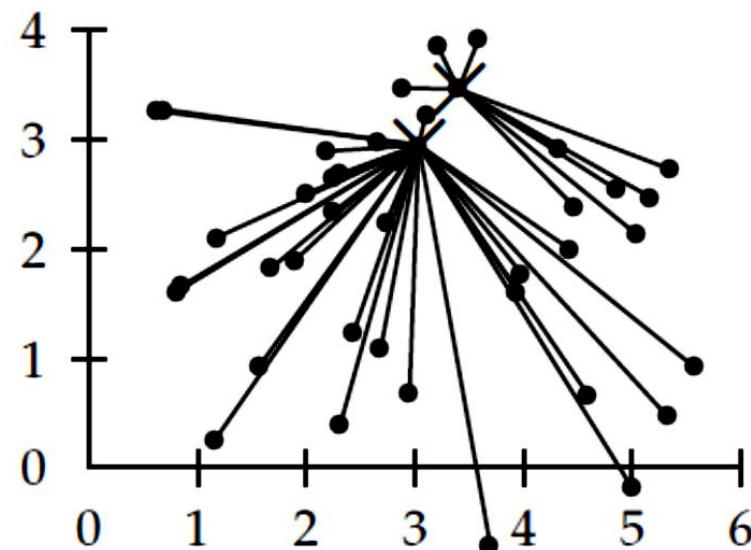
K-MEANS($\{\vec{x}_1, \dots, \vec{x}_N\}, K$)

- 1 $(\vec{s}_1, \vec{s}_2, \dots, \vec{s}_K) \leftarrow \text{SELECTRANDOMSEEDS}(\{\vec{x}_1, \dots, \vec{x}_N\}, K)$
- 2 **for** $k \leftarrow 1$ **to** K
- 3 **do** $\vec{\mu}_k \leftarrow \vec{s}_k$
- 4 **while** stopping criterion has not been met
- 5 **do for** $k \leftarrow 1$ **to** K
- 6 **do** $\omega_k \leftarrow \{\}$
- 7 **for** $n \leftarrow 1$ **to** N
- 8 **do** $j \leftarrow \arg \min_{j'} \|\vec{\mu}_{j'} - \vec{x}_n\|$
- 9 $\omega_j \leftarrow \omega_j \cup \{\vec{x}_n\}$ (*reassignment of vectors*)
- 10 **for** $k \leftarrow 1$ **to** K
- 11 **do** $\vec{\mu}_k \leftarrow \frac{1}{|\omega_k|} \sum_{\vec{x} \in \omega_k} \vec{x}$ (*recomputation of centroids*)
- 12 **return** $\{\vec{\mu}_1, \dots, \vec{\mu}_K\}$

k -means example (1)

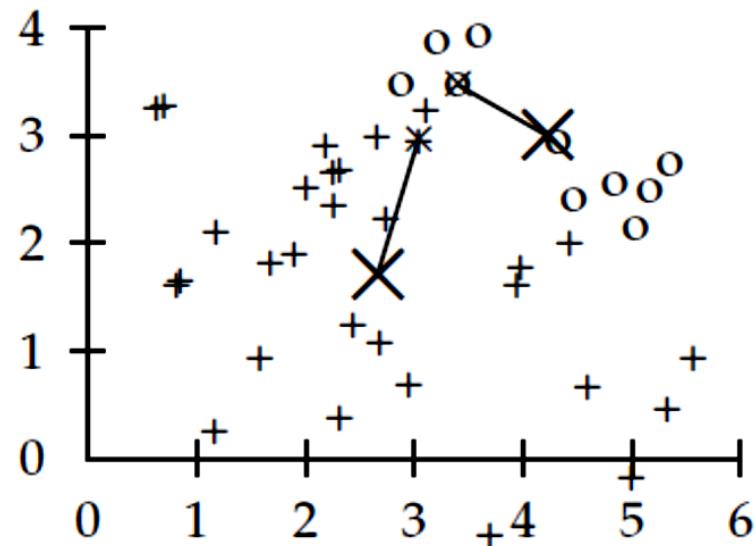


selection of seeds

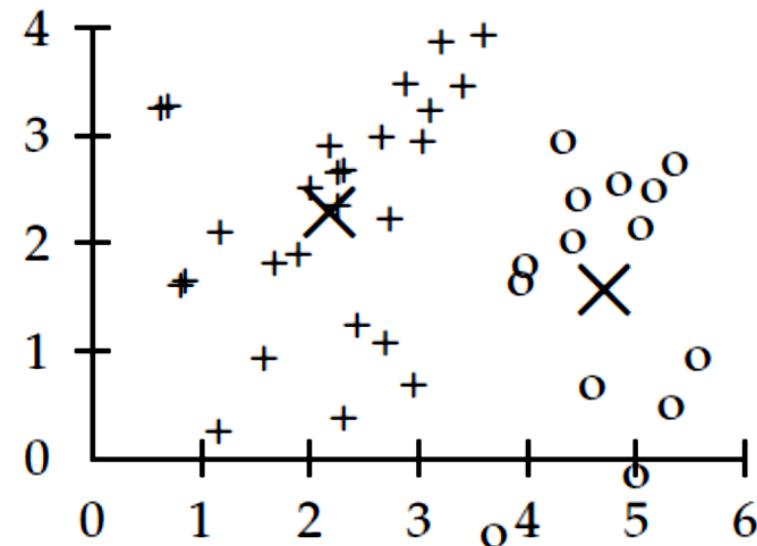


assignment of documents (iter. 1)

k -means example (2)

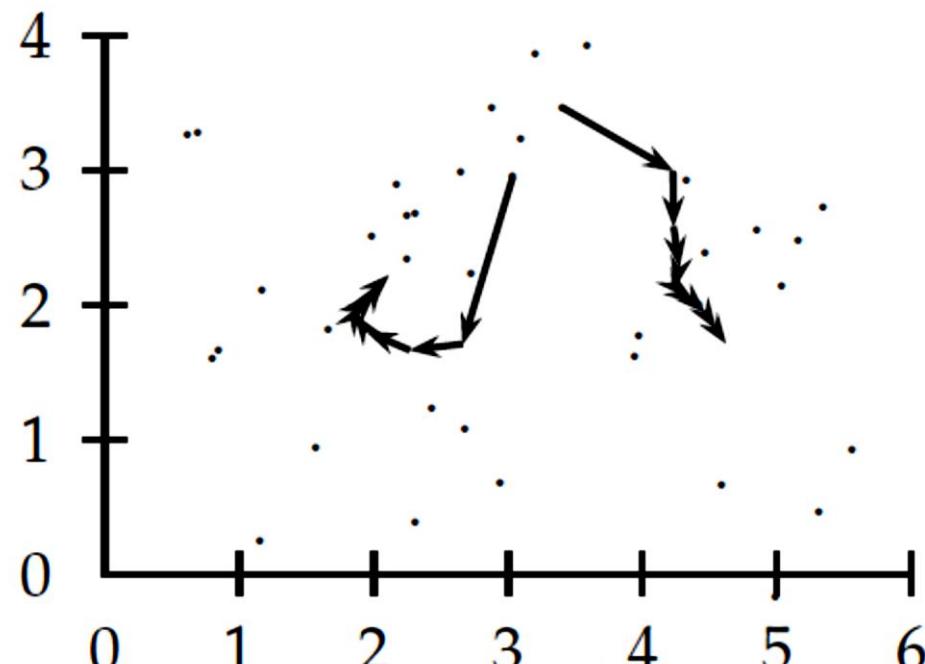


recomputation/ movement of $\vec{\mu}$'s (iter. 1)



$\vec{\mu}$'s after convergence (iter. 9)

k -means example (3)



movement of $\vec{\mu}$'s in 9 iterations

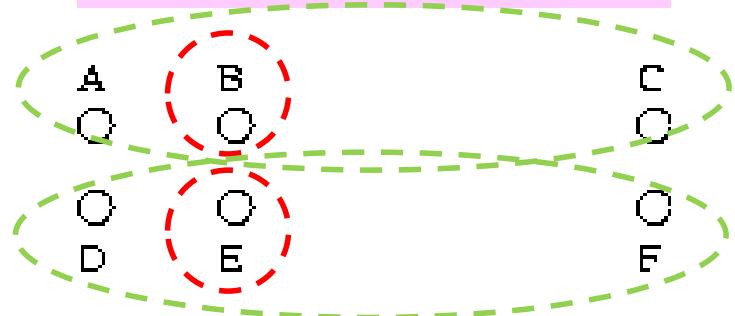
Termination conditions

- **Several possibilities**, e.g.,
 - A fixed number of iterations → insufficient number of iteration (poor quality).
 - Doc partition unchanged → good clustering, runtime could be too long.
 - Centroid positions do not change.
 - The distance between documents and centroids falls below a certain threshold.

Seed Choice

- Results can vary based on random seed selection.
- Some seeds can result in poor convergence rate, or convergence to **sub-optimal clusterings**.
 - Select good seeds using a **heuristic** (e.g., doc least similar to any existing mean).
 - Try out **multiple starting points**.
 - Initialize with the **results of another method**.

Example showing sensitivity to seeds

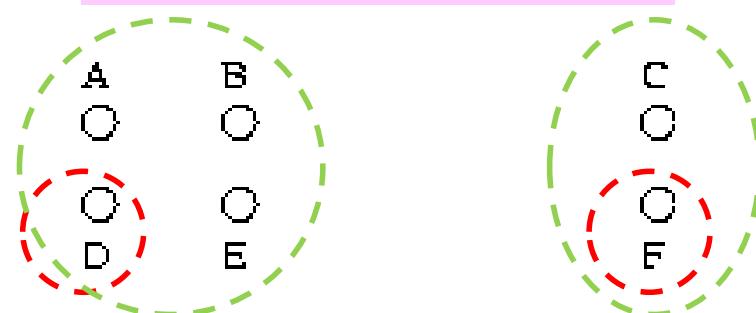


- In the above, if we start with B and E as centroids we converge to $\{A,B,C\}$ and $\{D,E,F\}$

Seed Choice

- Results can vary based on random seed selection.
- Some seeds can result in poor convergence rate, or convergence to **sub-optimal clusterings**.
 - Select good seeds using a heuristic (e.g., doc least similar to any existing mean).
 - Try out multiple starting points.
 - Initialize with the results of another method.

Example showing sensitivity to seeds



- If we start with D and F you converge to $\{A, B, D, E\} \{C, F\}$

How many clusters?

- Number of clusters k is given.
 - Partition n docs into predetermined number of clusters.
- k not specified in advance.
 - Finding the “right” number of clusters is part of the problem.
 - Given docs, partition into an “appropriate” number of subsets.
 - Trade-off between having more clusters (better focus within each cluster) and having too many clusters.
 - E.g., for query results - ideal value of k not known up front - though UI may impose limits.

k-means and Python: A simple example

1. Fetch some **textual documents**;
2. Represent each textual document as a **vector**;
3. Perform ***k*-means** clustering;
4. Evaluate **qualitatively** the result of the clustering.

Phase 1: Fetch some textual documents

- The simplest solution:

```
documents = ["This little kitty came to play when I was  
eating at a restaurant.", "Merley has the  
best squooshy kitten belly.", "Google  
Translate app is incredible.", "If you  
open 100 tab in google you get a smiley  
face.", "Best cat photo I've ever  
taken.", "Climbing ninja cat.",  
"Impressed with google map feedback.",  
"Key promoter extension for Google  
Chrome."]
```

Phase 2: Represent each doc as a vector

```
from sklearn.feature_extraction.text import  
TfidfVectorizer  
  
vectorizer = TfidfVectorizer(stop_words={'english'})  
  
X = vectorizer.fit_transform(documents)
```

Phase 3: Perform k -means clustering

```
from sklearn.cluster import Kmeans

k = 4 #or any other number

Labels = model.labels_

model = KMeans(n_clusters = k, init = 'k-means++',
                max_iter = 100, n_init = 1)

model.fit(X)
```

Phase 4: Qualitative analysis

```
import pandas as pd

clusters = pd.DataFrame(list(zip(documents,labels)),
columns = ['document','cluster'])

print(documents.sort_values(by = ['cluster']))
```

	document	cluster
0	This little kitty came to play when I was eati...	0
3	If you open 100 tab in google you get a smiley...	0
4	Best cat photo I've ever taken.	1
5	Climbing ninja cat.	1
2	Google Translate app is incredible.	2
6	Impressed with google map feedback.	2
7	Key promoter extension for Google Chrome.	2
1	Merley has the best squooshy kitten belly.	3

Flat clustering with embeddings?

- Flat clustering does not care where the vectors come from → It just needs **numeric representations** of your data points in some **embedding space**.

Task	Typical Embedding	Description
Word clustering	Word2Vec, GloVe, fastText	Each word → 1 vector (static)
Document/sentence clustering	BERT, Sentence-BERT, etc.	Each document, sentence, (or paragraph) → 1 vector (contextualized)

- Flat clustering with semantic vectors is not only possible, but also often **better** than clustering TF-IDF vectors, because:
 - Semantic embeddings capture **meaning** and **synonymy**;
 - They are **dense** and **continuous**, unlike sparse TF-IDF vectors;
 - They enable **context-aware** grouping.

HIERARCHICAL CLUSTERING

Hierarchical Clustering (HC)

- Hierarchical outputs a **hierarchy**, a structure that is more informative than the unstructured set of clusters returned by flat clustering.
- Hierarchical clustering **does not require** to prespecify the number of clusters.
- Advantages of hierarchical clustering come at the cost of **lower efficiency**.
 - The most common hierarchical clustering algorithms have a complexity that is at least quadratic in the number of documents compared to the linear complexity of k -means.

Bottom-up and top-down HC

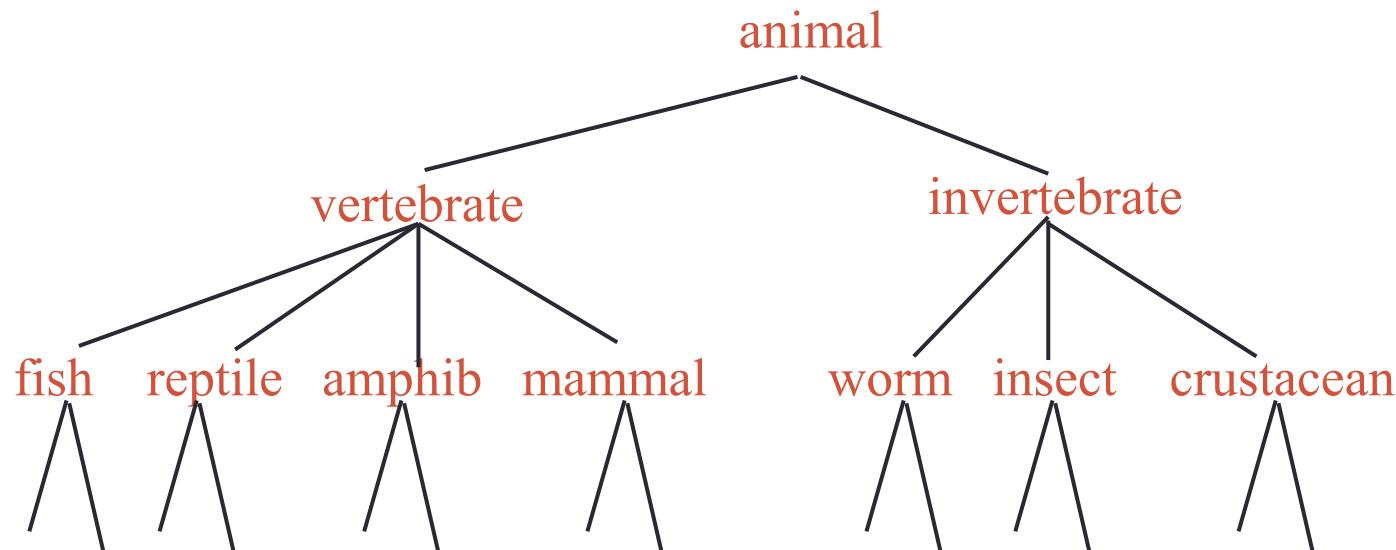
- Hierarchical clustering algorithms are either **bottom-up** or **top-down**.
- **Bottom-up clustering** treat each document as a **singleton cluster** at the outset and then successively merge (or agglomerate) pairs of clusters until all clusters have been merged into a single cluster that contains all documents.
 - It is therefore called **Hierarchical Agglomerative Clustering** or HAC.
- **Top-down clustering** requires a method for splitting a cluster. It proceeds by splitting clusters recursively until individual documents are reached.
 - It is therefore called **Hierarchical Divisive Clustering** or HDC.

Hierarchical Agglomerative Clustering (HAC)

- Starts with **each doc in a separate cluster**.
 - Then repeatedly joins the closest pair of clusters, until there is only one cluster.
 - Hierarchical clustering employs a measure of **distance/similarity** to create new clusters.
- The **history of merging** forms a binary tree or hierarchy.

Dendrogram (1)

- An HAC clustering is typically visualized as a **dendrogram**.
 - It builds a **tree-based hierarchical taxonomy** (dendrogram) from a set of documents.

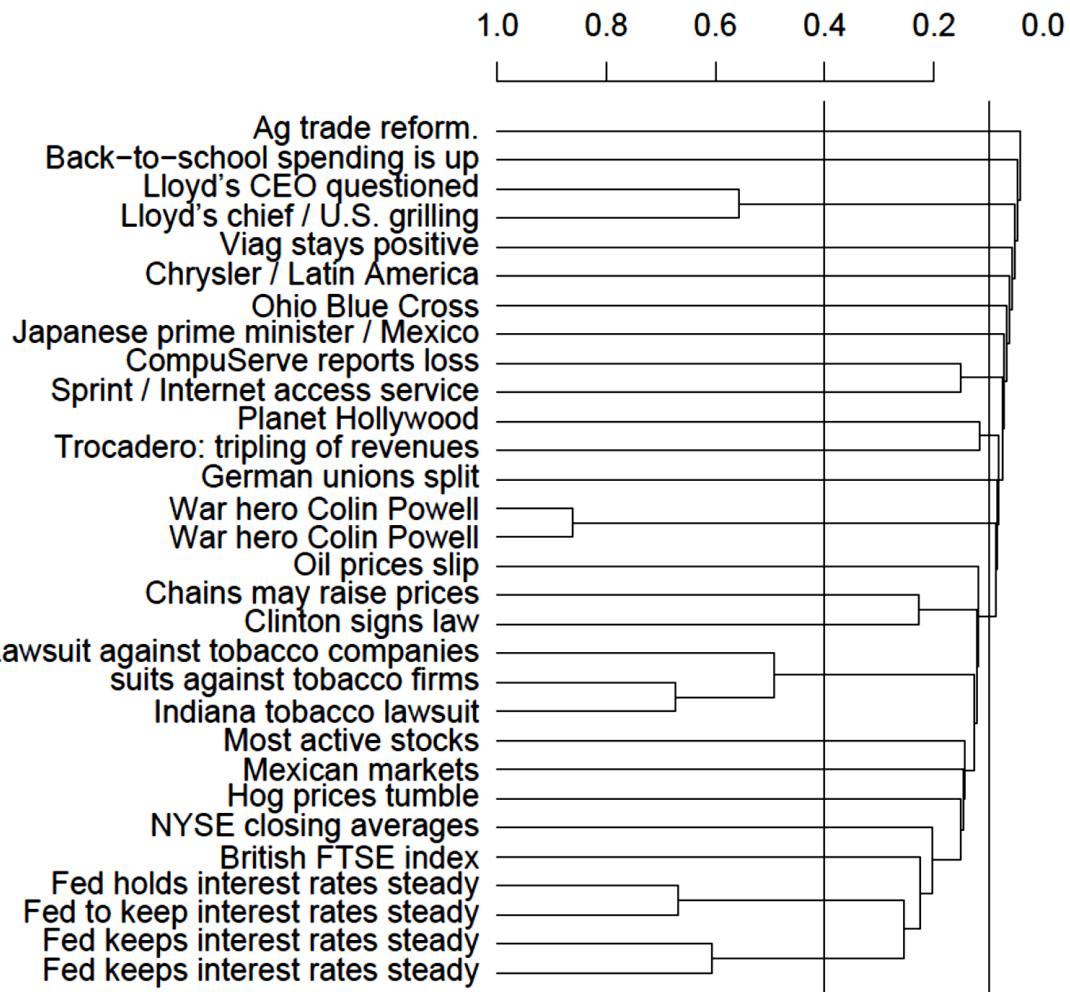


Dendrogram (2)

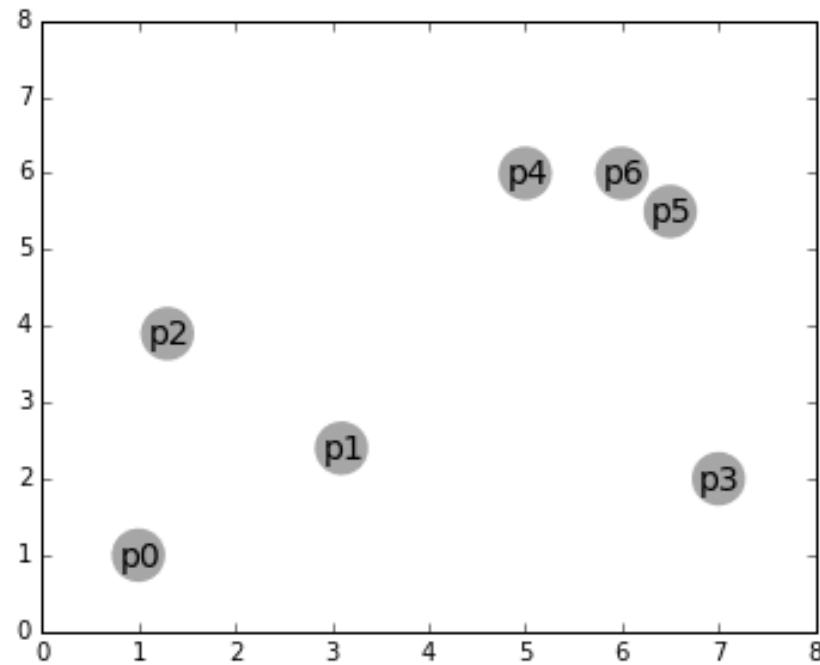
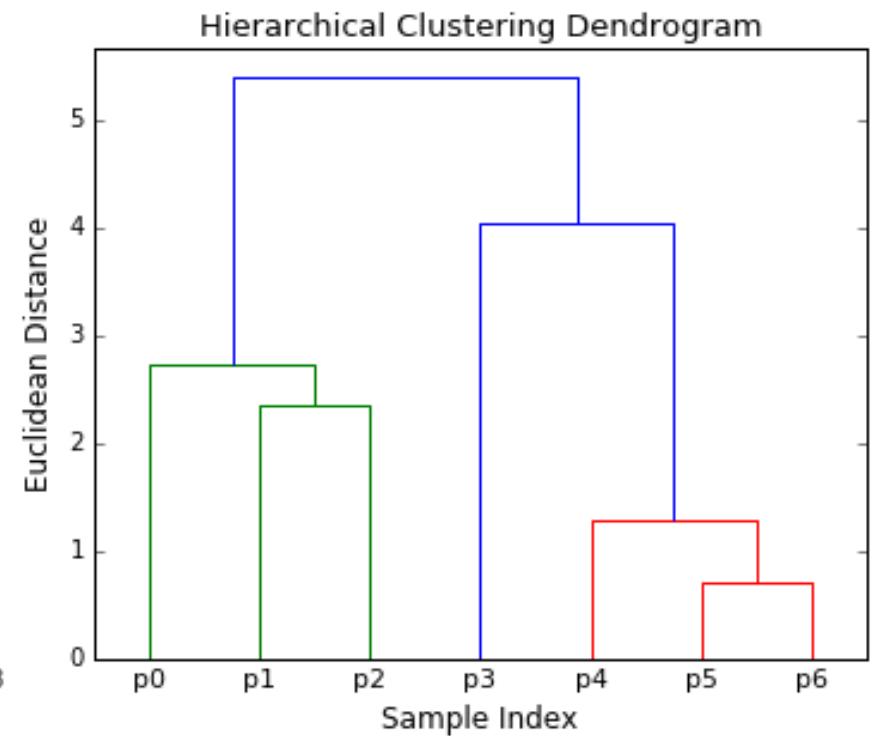
Clustering obtained by cutting the dendrogram **at a desired level**: each connected component forms a cluster.

Two possible cuts of the dendrogram are shown:

- at 0.4 into 24 clusters,
- at 0.1 into 12 clusters.



Dendrogram (3)



Source: <https://www.kdnuggets.com/2018/06/5-clustering-algorithms-data-scientists-need-know.html>

HAC (typical) steps

- Step 1:
 - Each data point is **assigned** to a cluster.
- Step 2:
 - Compute the **proximity matrix** using a particular **distance (or similarity)** metric.
- Step 3:
 - **Merge** the clusters based on a metric for the **distance (or similarity)** between clusters.
- Step 4:
 - **Update** the distance matrix.
- Step 5:
 - **Repeat** Step 3 and Step 4 until only a single cluster remains.

Steps 1, 2: Proximity matrix (data points)

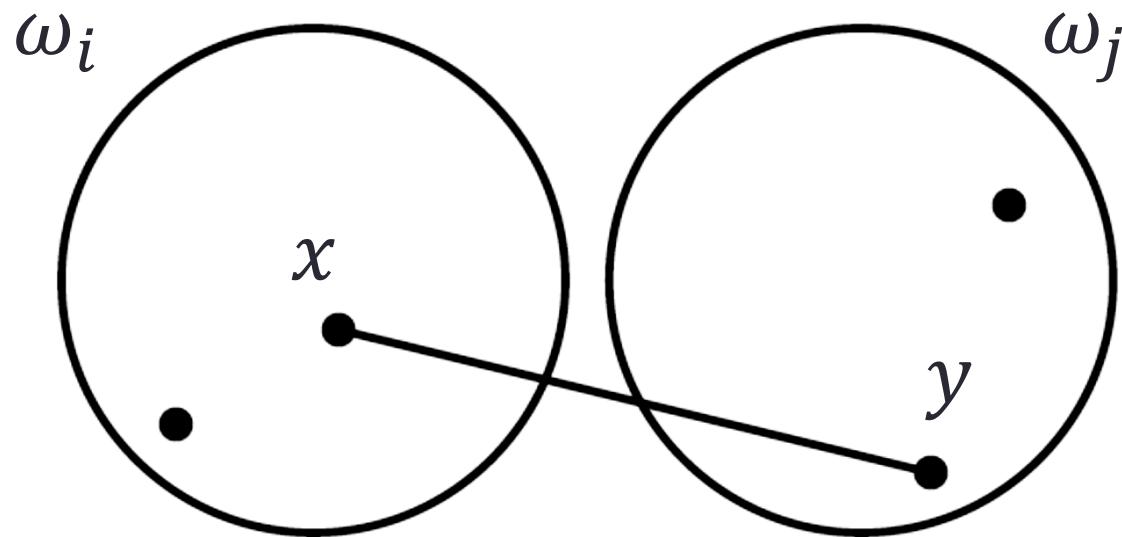
	p_1	p_2	p_3	...	p_n
p_1	$d(p_1, p_1)$	$d(p_1, p_2)$	$d(p_1, p_3)$...	$d(p_1, p_n)$
p_2	$d(p_2, p_1)$	$d(p_2, p_2)$	$d(p_2, p_3)$...	$d(p_2, p_n)$
p_3	$d(p_3, p_1)$	$d(p_3, p_2)$	$d(p_3, p_3)$...	$d(p_3, p_n)$
...
p_n	$d(p_n, p_1)$	$d(p_n, p_2)$	$d(p_n, p_3)$...	$d(p_n, p_n)$

- At this stage, clustering can be, for example, performed by using k -means.

Steps 3, 4, 5: Closest pair of clusters

- The main question in hierarchical clustering is **how to calculate the distance/similarity between clusters** and update the proximity matrix.
 - Many variants to defining closest pair of clusters (**merging criteria**).
- **Single-link**
 - Distance of the **least distant**.
 - Similarity of the **most cosine-similar**.
- **Complete-link**
 - Distance of the **furthest points**.
 - The **least cosine-similar**.
- **Group-average**
 - **Average distance/cosine similarity** between pairs of elements.
- **Centroid**
 - Clusters whose **centroids** (centers of gravity) are the **least distant/most similar**.

Single-link: Example



(a) Single-link: Minimum distance (or maximum similarity)

Single-link HAC

- In **single-link clustering**, the **distance** (similarity) of two clusters is the **distance of their least distant** (similarity of their most similar) **members** (the merge criterion is **local**).
- Use **minimum distance** (maximum similarity) of pairs:

$$d(\omega_i, \omega_j) = \min_{x \in \omega_i, y \in \omega_j} d(x, y)$$

- After merging ω_i and ω_j , the similarity of the resulting cluster to another cluster, ω_k , is:

$$d((\omega_i \cup \omega_j), \omega_k) = \min(d(\omega_i, \omega_k), d(\omega_j, \omega_k))$$

Single-link: Example with distance (1)

- $d(\omega_i, \omega_j) = \min_{x \in \omega_i, y \in \omega_j} d(x, y)$
- $d((\omega_i \cup \omega_j), \omega_k) = \min(d(\omega_i, \omega_k), d(\omega_j, \omega_k))$

	ω_1	ω_2	ω_3	ω_4	ω_5
ω_1	0	17	21	31	23
ω_2	17	0	30	34	21
ω_3	21	30	0	28	39
ω_4	31	34	28	0	43
ω_5	23	21	39	43	0

Single-link: Example with distance (2)

- $d(\omega_i, \omega_j) = \min_{x \in \omega_i, y \in \omega_j} d(x, y)$

	ω_1	ω_2	ω_3	ω_4	ω_5
ω_1	0	17	21	31	23
ω_2	17	0	30	34	21
ω_3	21	30	0	28	39
ω_4	31	34	28	0	43
ω_5	23	21	39	43	0

Single-link: Example with distance (3)

- $d((\omega_i \cup \omega_j), \omega_k) = \min(d(\omega_i, \omega_k), d(\omega_j, \omega_k))$

	ω_1	ω_2	ω_3	ω_4	ω_5
ω_1	0	17	21	31	23
ω_2	17	0	30	34	21
ω_3	21	30	0	28	39
ω_4	31	34	28	0	43
ω_5	23	21	39	43	0

- $d((\omega_1 \cup \omega_2), \omega_3) = \min(d(\omega_1, \omega_3), d(\omega_2, \omega_3)) = \min(21, 30) = 21$
- $d((\omega_1 \cup \omega_2), \omega_4) = \min(d(\omega_1, \omega_4), d(\omega_2, \omega_4)) = \min(31, 34) = 31$
- $d((\omega_1 \cup \omega_2), \omega_5) = \min(d(\omega_1, \omega_5), d(\omega_2, \omega_5)) = \min(23, 21) = 21$

Single-link: Example with distance (4)

	$\omega_1 \cup \omega_2$	ω_3	ω_4	ω_5
$\omega_1 \cup \omega_2$	0	21	31	21
ω_3	21	0	28	39
ω_4	31	28	0	43
ω_5	21	39	43	0

- Since $d((\omega_1 \cup \omega_2), \omega_3) = d((\omega_1 \cup \omega_2), \omega_5) = 21$, we can join cluster $(\omega_1 \cup \omega_2)$ with ω_3 and ω_5
- Hence, this means that later, we have to compute $d((\omega_1 \cup \omega_2) \cup \omega_3, \omega_5), \omega_4)$

Single-link: Example with distance (5)

- $d((\omega_1 \cup \omega_2) \cup \omega_3, \omega_5), \omega_4) =$
 $= \min(d((\omega_1 \cup \omega_2), \omega_4), d(\omega_3, \omega_4), d(\omega_5, \omega_4)) = 28$

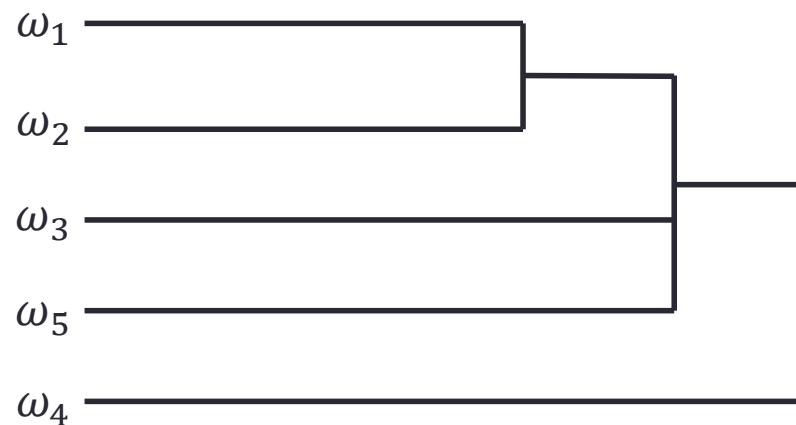
	$\omega_1 \cup \omega_2$	ω_3	ω_4	ω_5
$\omega_1 \cup \omega_2$	0	21	31	21
ω_3	21	0	28	39
ω_4	31	28	0	43
ω_5	21	39	43	0

- $d((\omega_1 \cup \omega_2), \omega_4) = 31$
- $d(\omega_3, \omega_4) = 28$
- $d(\omega_5, \omega_4) = 43$

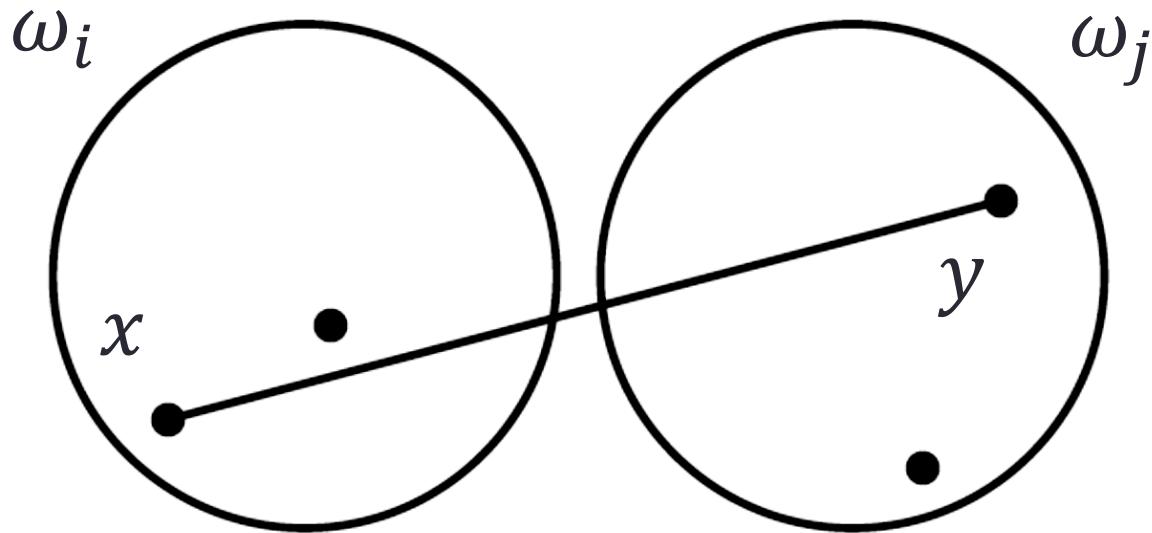
$\min(31, 28, 43) = 28$

Single-link: Example with distance (6)

	$(\omega_1 \cup \omega_2) \cup \omega_3, \omega_5$	ω_4
$(\omega_1 \cup \omega_2) \cup \omega_3, \omega_5$	0	28
ω_4	28	0



Complete-link: Example



(b) Complete-link: Maximum distance (or minimum similarity)

Complete-link HAC

- In **complete-link clustering** or complete-linkage clustering, the **distance** (similarity) of two clusters is **the distance of their furthest** (similarity of their most dissimilar) **members** (the merge criterion is **non-local**).
- Use **maximum distance** (minimum similarity) of pairs:

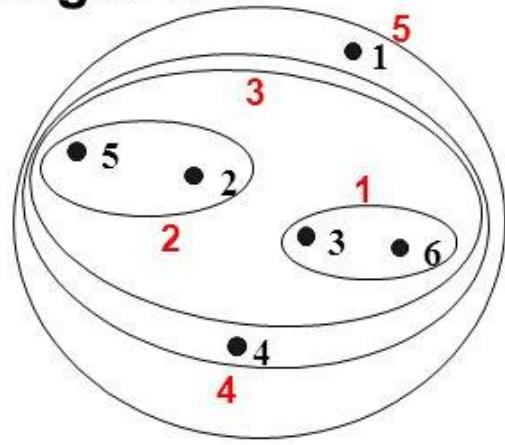
$$d(\omega_i, \omega_j) = \max_{x \in \omega_i, y \in \omega_j} d(x, y)$$

- After merging ω_i and ω_j , the similarity of the resulting cluster to another cluster, ω_k , is:

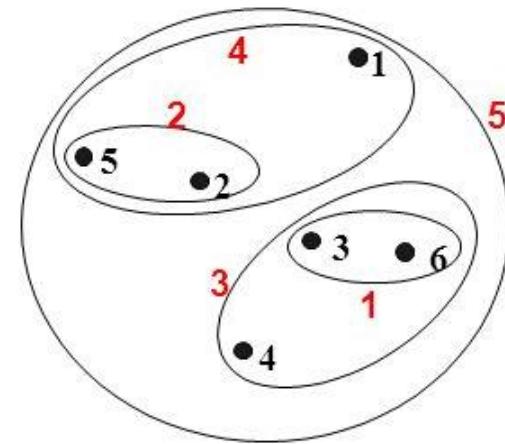
$$d((\omega_i \cup \omega_j), \omega_k) = \max(d(\omega_i, \omega_k), d(\omega_j, \omega_k))$$

HAC: Comparison

Single-link



Complete-link



- **SL: sensitive to noise and outliers** → One stray point can link two otherwise separate clusters.
- **CL: slightly slower** than SL.

Hierarchical Divisive Clustering (HDC) (1)

- We start at the top with **all documents in one cluster**.
- The cluster is split **using a flat clustering algorithm**.
- This procedure is applied **recursively** until each document is in its own singleton cluster.

Hierarchical Divisive Clustering (HDC) (2)

- Divisive hierarchical clustering with *k-means* is one of the efficient clustering methods among all the clustering methods.
- In this method, a cluster is split into *k-smaller clusters* under *continuous iteration* using *k*-means clustering until every element has its own cluster.
- It has the advantage of being *more efficient than HAC* if we do not generate a complete hierarchy all the way down to individual document leaves.

EVALUATION

What is a good clustering?

- When evaluating clustering results, we can use both **internal evaluation** and **external evaluation criteria**.
- **Internal evaluation**
 - Measures the quality of clustering based on the data and the clustering results, **without using any external information** or ground truth.
 - The evaluation is performed using metrics that assess the structure and characteristics of the clusters formed by the algorithm.
- **External evaluation**
 - Involves comparing the clustering results to some external, independent criterion or ground truth.
 - In this case, we have access to information about the true cluster assignments of the data.

Internal evaluation criteria

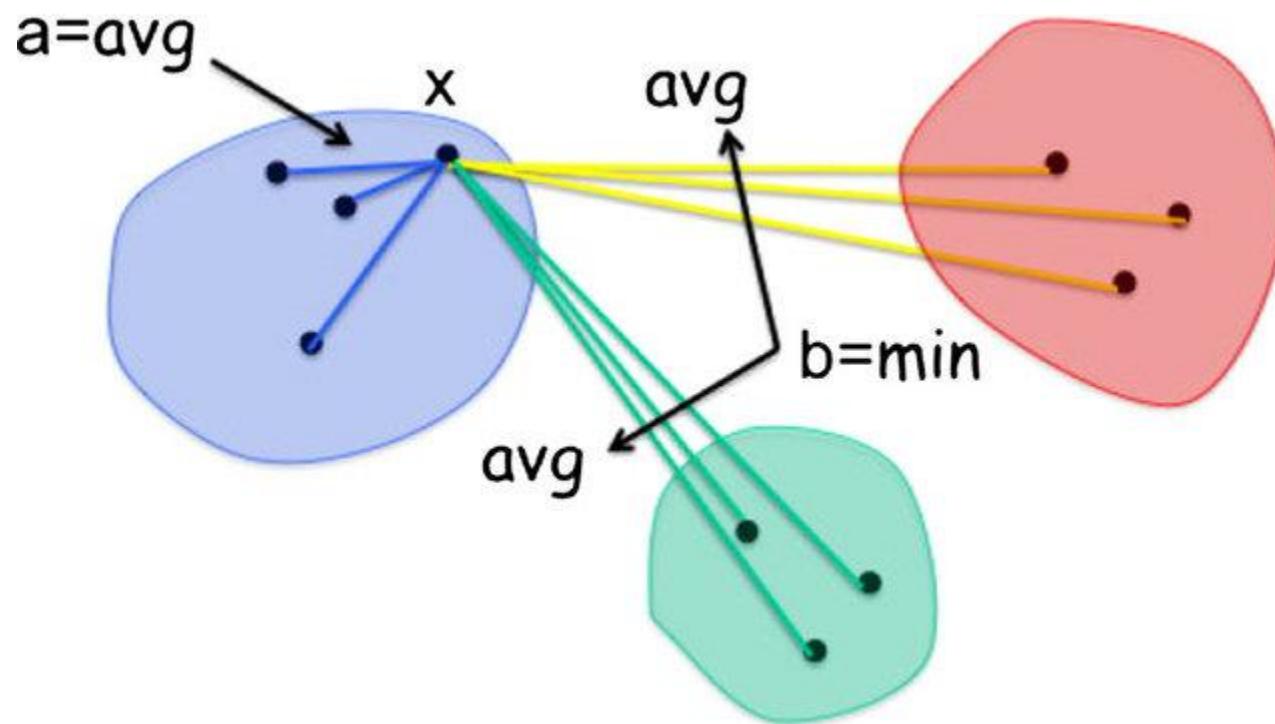
- A good clustering will produce high quality clusters in which:
 - The **intra-class** (that is, intra-cluster) **similarity is high**.
 - The **inter-class similarity is low**.
- The measured quality of a clustering depends on both the **document representation** and the **similarity measure** used.
 - The representation does not capture relevant information in the text.
 - The algorithm may struggle to find meaningful patterns, and clusters may not reflect the actual structure of the data.
 - The similarity measure does not align with the nature of the data.
 - The algorithm may group documents incorrectly, leading to suboptimal clustering results.

Internal evaluation: Silhouette (1)

- The **Silhouette analysis** measures how well an observation is clustered and it estimates the average distance between clusters.
- The **Silhouette plot** displays a measure of how close each point in one cluster is to points in the neighboring clusters.
- The **Silhouette Coefficient (S)** is calculated using the mean intra-cluster distance $a(i)$ and the mean nearest-cluster distance $b(i)$ for each sample i .

$$S(i) = \frac{b(i) - a(i)}{\max(a(i), b(i))}$$

Internal evaluation: Silhouette (2)



Internal evaluation: Silhouette (3)

- $S(i)$ will lies between $[-1,1]$.
- If the Silhouette value is **close to 1**, sample is **well-clustered** and already assigned to a very appropriate cluster.
- If the Silhouette value is **about to 0**, sample **could be assigned to another cluster** closest to it and the sample lies equally far away from both the clusters. That means it indicates overlapping clusters.
- If the Silhouette value is **close to -1** , sample is **misclassified** and is merely placed somewhere in between the clusters.

External evaluation criteria

- Quality measured by its ability to discover some or all of the hidden patterns or latent classes in **gold standard** data.
- Assesses a clustering with respect to ground truth... **requires labeled data.**
- Assume documents with C gold standard classes, while our clustering algorithms produce k clusters, $\omega_1, \omega_2, \dots, \omega_k$ with n_i members.

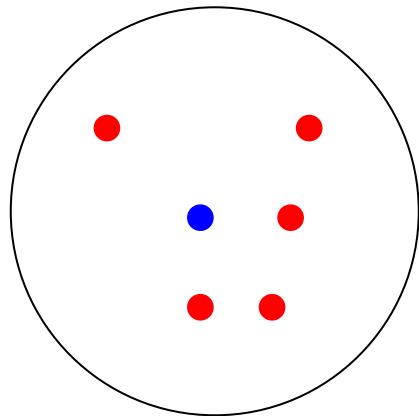
External evaluation: Purity (1)

- Simple measure: **purity**, the ratio between the dominant class in the cluster ω_i and the size of cluster ω_i .

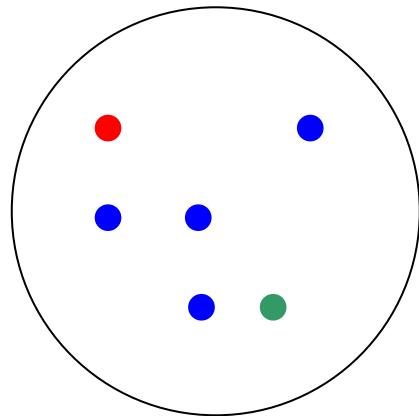
$$Purity(\omega_i) = \frac{1}{n_i} \max_j (n_{ij}) \quad j \in C$$

- **Bad clustering** have purity values close to **0**, a **perfect clustering** has a purity of **1**.

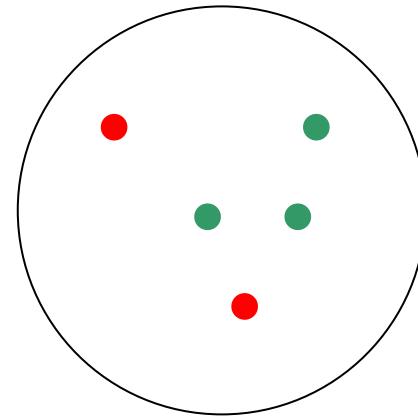
External evaluation: Purity (2)



Cluster I



Cluster II



Cluster III

- Cluster I: $Purity(I) = 1/6(\max(5,1,0)) = 5/6$
- Cluster II: $Purity(II) = 1/6(\max(1,4,1)) = 4/6$
- Cluster III: $Purity(III) = 1/5(\max(2,0,3)) = 3/5$

External evaluation: The Rand Index (1)

- It measures the **percentage of decisions that are correct**.
 - A **true positive** (TP) decision assigns two similar documents to the same cluster.
 - A **true negative** (TN) decision assigns two dissimilar documents to different clusters.
 - A **false positive** (FP) decision assigns two dissimilar documents to the same cluster.
 - A **false negative** (FN) decision assigns two similar documents to different clusters.

$$RI = \frac{TP + TN}{TP + FP + FN + TN}$$

External evaluation: The Rand Index (2)

Number of points	Same Cluster in clustering	Different Clusters in clustering
Same class in ground truth	20	24
Different classes in ground truth	20	72

$$RI = \frac{20 + 72}{20 + 20 + 24 + 72} \approx 0.68$$

Precision, Recall and F -measure

- The Rand Index gives **equal weight** to false positives and false negatives.
- **Separating similar documents is sometimes worse** than putting pairs of dissimilar documents in the same cluster.
- We can use the F -measure to penalize false negatives more strongly than false positives by selecting a value $\beta > 1$, thus giving more weight to recall.

$$P = \frac{TP}{TP+FP} \quad R = \frac{TP}{TP+FN} \quad F_\beta = \frac{(\beta^2+1)PR}{\beta^2P+R}$$

Example

- $P = \frac{TP}{TP+FP} = \frac{20}{20+20} = 0.5$
- $R = \frac{TP}{TP+FN} = \frac{20}{20+24} \approx 0.455$
- $RI = \frac{TP+TN}{TP+FP+FN+TN} \approx 0.68$
- $F_\beta = \frac{(\beta^2+1)PR}{\beta^2P+R}$ $F_1 \approx 0.48$ $F_5 \approx 0.456$

Clustering in R and Python

- Introduction to text clustering in R:
 - <https://recast.ai/blog/text-clustering-with-r-an-introduction-for-data-scientists/>
- Introduction to text clustering in Python:
 - <http://brandonrose.org/clustering>
 - https://scikit-learn.org/stable/auto_examples/text/plot_document_clustering.html