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Introduction

- Topic Modeling is an unsupervised machine learning

technique aimed at:
- Scanning a set of documents, detecting word and phrase patterns
within them:;
- Automatically clustering word groups and similar expressions that
best characterize a set of documents.
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Topic Modeling

- Topic Modeling provides collections of words that make
sense together, which are interpreted as topics.

Example: Five topics from a twenty-five topic model fit on Enron e-mails. Example
topics concern financial transactions, natural gas, the California utilities, federal
regulation, and planning meetings. We provide the five most probable words from
each topic (each topic is a distribution over all words).

trading financial trade product price
gas capacity deal pipeline contract
state california davis power utilities
14  ferc issue order party case

22 group meeting team process plan
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Text Clustering and Topic Modeling
What's the difference?

- In Text Clustering, the basic idea is to group documents
into different clusters based on a suitable similarity
measure (or distance).

- In Topic Modeling, the basic idea is to group words into
different clusters, where:

- Each word in the cluster is likely to occur “more” (have a
probability of occurrence) for the given topic;

- Different topics have their respective clusters of words along with
corresponding probabilities;

- Different topics may share some words and a document can have
more than one topic associated with it.




Text Clustering and Topic Modeling
What's the difference?
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An example of Topic Modeling

‘Manipulating facial expressions and body movements in videos has become so advanced that
most people struggle to tell the difference between fake and real. A fake video of Barack Obama
went viral last year where you see the former President addressing the camera. If you turm off
the sound, you will not even realize it's a fake videa!”

Topic 1

Topic 2

Topic 3

- There are three topics (or concepts) — Topic 1, Topic 2, and Topic 3.

- The most dominant topic in the above example is Topic 2, which
indicates that this piece of text is primarily about fake videos.



Another example of Topic Modeling
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Figure source: Blei, D. M. (2012). Probabilistic topic models. Communications of the ACM, 55(4), 77-84.




From Documents to Topics

Collection of documents
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Main techniques for Topic Modeling

- Latent Semantic Analysis (LSA)

e The core idea is to take the Document-Term matri;c and decompose it
into a separate Document-Topic matrix and a Topic-Term matrix.

- And its probabilistic version - pLSA.

- Latent Dirichlet Allocation (LDA)

and each word in a
document is considered randomly drawn from document's topics;

- The topics are considered hidden (latent) and must be uncovered via
analyzing joint distribution to compute the conditional distribution of
hidd}én variables (topics) given the observed variables, words in

documents.

- Disregarding the approach, the output of a topic modeling
algorithm is a list of topics with associated clusters of words
(and their probabilities).



LATENT SEMANTIC
ANALYSIS (LSA)




Latent Semantic Analysis (LSA)

- Latent Semantic Analysis
(LSA) is one of the
simplest Topic Modeling
methods.

- It is based on the
distributional hypothesis:

- The semantics of words can
be grasped by looking at the
contexts the words appear in;

- Under this hypothesis, the
semantics of two words will
be similar if they tend to
occur in similar contexts.

humanity

technology
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Latent Semantic Analysis (LSA)

- LSA computes how frequently words occur in the
documents — and the whole corpus — and assumes that
similar documents will contain approximately the same
distribution of word frequencies for certain words.

- In this case, syntactic information (e.g., word order) and
semantic information (e.g., the multiplicity of meanings of
a given word) are ignored, and each document is
represented as a Bag of Words vector - It must be
weighted! > Which weighting function?




L
Latent Semantic Analysis (LSA)

- The standard method for computing word frequencies in
LSA applied to topic modeling is TF-IDF.

- Once TF-IDF frequencies have been computed, we can
create a Document-Term matrix that contains the TF-IDF
values for each term in a given document.



Latent Semantic Analysis (LSA)

Document-

Term Matrix Lebron Senate Celtics Sprain Cancer
Document 1 0.4 0.01 0.2 0 0
Document 2 0 0.9 0 0 0.02
Document 3 0 0 0 0.2 0.3

Document 4 0 0 0 0.2 0.3




L
Latent Semantic Analysis (LSA)

- The Document-Term matrix can be decomposed into the
product of 3 matrices (USVT) by using Singular Value
Decomposition (SVD).

- The U matrix is known as the Document-Topic matrix and
the VT matrix is known as the Topic-Term matrix.

- Linear algebra guarantees that the S matrix will be
diagonal, and LSA will consider each singular value, i.e.,
each of the numbers in the main diagonal of matrix S, as a
potential topic found in the documents.
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Latent Semantic Analysis (LSA)

Document-Term matrix Document-Topic matrix Topic-Topic matrix Topic-Term matrix
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Latent Semantic Analysis (LSA)

|| Term1 | Term2 | Term3 | Terma_

Docl
Doc2
Doc3
Doc4

m X m matrix

Topic distribution across
documents

- Topic importance Word assignment to topics

— Doc2 Topicl Topicl
— ¢ or 9 Top
Doc3 Topic2 Topic2
Doc4
nxn nxm
m X n singular matrix diagonal singular

matrix matrix



Latent Semantic Analysis (LSA)

B CLCh Lebron

Term Matrix

Document 1 0.4 0.01 0.2 0 0
Document 2 0 0.9 0 0 0.02
Document 3 0 0 0 0.2 0.3
Document 4 0 0 0 0.2 0.3

Topic-

D t-

ToTo(i::nl\;jx?rix Tern_1 Lebron Senate Celtisc Sprain Cancer
Matrix

Document 1 0.8 0.2 0 0 T1 0.8 0 0.9 0.6 0

Document 2 0 0.7 0 0 T2 0.1 0.7 01 0 0

Document 3 0.1 0 0 0 T3 0.1 0.3 0 0.4 0.7

Document 4 0.6 0 0.2 0.2
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Implementation of LSA in Python

#IMPORTING DATA

import pandas as pd WARNING:

pd.set option("display.max colwidth", 200) NCTFK)PGLSGdfOF
~-TT T TS Projects !!!

7
from sklearn.datasets import fetchLZOnewsgroups)

~ -
\~—_——’

dataset = fetch 20newsgroups (shuffle = True,
random state=1, remove=('headers', 'footers', 'quotes'))

documents = dataset.data
#fprint (len (documents) )

#print (dataset.target names)



L
Implementation of LSA in Python

11,314

['alt.atheism', 'comp.graphics', 'comp.os.ms—

windows.misc', 'comp.sys.ibm.pc.hardware', 'comp.sys.mac.har
dware', 'comp.windows.x', 'misc.forsale', 'rec.autos', 'rec.mo
torcycles', 'rec.sport.baseball', 'rec.sport.hockey', '"sci.cr
ypt', 'sci.electronics', 'sci.med', 'sci.space', 'soc.religion
.christian', 'talk.politics.guns', '"talk.politics.mideast', '
talk.politics.misc', 'talk.religion.misc']



Implementation of LSA in Python

#BUILDING THE MATRIX

from sklearn.feature extraction.text import
TfidfVectorizer

vectorizer = TfidfVectorizer (stop words='english',
max features= 1000, # keep top 1000 terms

max df = 0.5,

smooth idf = True)

X = vectorizer.fit transform(news df['clean doc'])



L
Implementation of LSA in Python

#PERFORMING TOPIC MODELING

from sklearn.decomposition i1mport TruncatedSVD

# SVD represent documents and terms in vectors

svd model = TruncatedSVD(n components = 20, algorithm =
'randomized', n iter = 100, random state = 122)

svd model.fit (X)

#print (len(svd model.components ))



L
Implementation of LSA in Python

#PRINTING TOPICS
terms = vectorizer.get feature names ()

for 1, comp 1n enumerate (svd model.components ) :

terms comp = zlp (terms, comp)
sorted terms = sorted(terms comp, key= lambda x:x[1],
reverse=True) [:7]

print ("Topic "+str(i)+": ")
for t 1n sorted terms:
print (£t [0])
print (" ")
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Implementation of LSA in Python

Topic 0: like know people think good time thanks

Topic 1: thanks windows card drive mail file advance
Topic 2: game team year games season players good

Topic 3: drive scsi disk hard card drives problem

Topic 4: windows file window files program using problem
Topic 5: government chip mail space information encryption data
Topic 6: like bike know chip sounds looks look

Topic 7: card sale video offer monitor price jesus

Topic 8: know card chip video government people clipper
Topic 9: good know time bike jesus problem work

Topic 10: think chip good thanks clipper need encryption
Topic 11: thanks right problem good bike time window
Topic 12: good people windows know file sale files

Topic 13: space think know nasa problem year israel
Topic 14: space good card people time nasa thanks

Topic 15: people problem window time game want bike
Topic 16: time bike right windows file need really

Topic 17: time problem file think israel long mail

Topic 18: file need card files problem right good

Topic 19: problem file thanks used space chip sale



Some of LSA's Drawbacks

- Results that can be justified on the mathematical level,
may have no interpretable meaning in natural
language.

- LSA can only partially capture polysemy.

- This is not always a problem due to words having a predominant
sense throughout a corpus (i.e., not all meanings are equally likely).

- Limitations of the Bag of Words (BoW) model >
unordered collection of words. Possible solutions:

- Multi-gram dictionary can be used to find direct and indirect
association;

- Higher-order co-occurrences among terms - It analyzes indirect
associations between words.



PROBABILISTIC LSA (pLSA)




L
High-level Description of pLSA

- pLSA uses a probabilistic method instead of SVD to tackle
the problem.

- The core idea is to find a probabilistic model with latent
topics that can generate the data we observe in our
document-term matrix.

- In particular, we want a model P(D, W) such that for any
document d € D and word w € W, P(d,w) corresponds to
that entry in the Document-Term matrix.



L
High-level Description of pLSA

- pLSA considers that our data can be expressed in terms of
3 sets of variables:

- Documents: d € D = {d;, ..., dy} observed variables. Let N be their
number, defined by the size of our given corpus.

- Words: w € W = {wy, ..., wy,} observed variables. Let M be the
number of distinct words from the corpus.

- Topics: z € Z = {z4, ..., zx} latent (or hidden) variables. Their
number, K, has to be specified a priori.

- P(D,W) = T(gy P(d, W)

For more details:
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL COPIES/AV1011/oneata.pdf



http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/AV1011/oneata.pdf

High-level Description of pLSA

@ @




High-level Description of pLSA Probability

theory
- P(d,w) > Under conditional indeg%iﬁd using

the Bayesian rule:
> P(w,d) = 2;ez P(2)P(d|z)P(w]|2)
2> P(w,d) = P(d) Xzez P(z|d)P(w]|2)

E

Probability of observing
word w given topic z

P(z|d) P(w|z)
(O™
I Nd

P{I::I )

P(d) is often assumed uniform over all documents 2> P(d) = 1/N
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Probabilistic LSA (Some details) (1)

From

Pw,d) = z P(z)P(d|z)P(w|z)

ZEZ
to?

P(w,d) = P(d)z P(z|d)P(w|2)

ZEZ
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Probabilistic LSA (Some details) (2)

P(w,d) = P(Z)IP(d|Z);P(W|Z) =

L_—— 21
ZEZ

Y pPADP@D 1

zeZ [%Z)

— P(d)ZP(zld)P(w|z)

ZEZ

Bayes’ Theorem

P(B|A)P(A)

P(A|B) = P(B)




L
High-level Description of pLSA

Documents Late_nt Words
Topics




L
High-level Description of pLSA

- If we reason in terms of matrix decomposition:

Pw,d) = z P(z)P(d|z)P(w|z)

A = U,S, V!

- The distributions P(z|d) and P(w|z) are estimated in a
way that maximizes the likelihood of the observed
document-term matrix.



L
pLSA: Syntesis (1)

- Document-Term Matrix
- Imagine to have a large collection of documents.

- Each document can be represented as a Bag of Words vector - Must be
weigthed!

- We create a matrix where rows represent documents, columns represent
unique words, and the cells contain the term frequency of each word (TF) in the
corresponding document.

- pLSA, probabilistic aspect
- In pLSA, the idea is to introduce a probabilistic model to the latent structure.

- Instead of treating the relationships between terms and documents as fixed
values, pLSA introduces probabilities.

- It assumes that there are latent (hidden) variables governing the generation of
terms within a document.
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pLSA: Syntesis (2)

- Generative model

- pLSA assumes that documents are generated by a mixture of latent
topics, and each topic is associated with a probability distribution over
terms.

- The process of generating a document involves choosing a topic
according to a probability distribution and then selecting words from
the corresponding topic’s distribution.

- pLSA describes a process that “could have generated” the observed

ata.

- Estimating parameters
- The goal in pLSA is to estimate the parameters of the model, which
include the probability distributions over terms for each topic and the
probability of each document belonging to a particular topic.
- This is typically done using the Expectation-Maximization (EM)
algorithm.

- A statistical method used for finding maximum likelihood estimates of
parameters in models with latent variables.



Expectation-Maximization

- The Expectation—Maximization (EM) algorithm is a
general iterative optimization technique used to estimate
parameters of probabilistic models — especially when
there are latent (hidden) variables that we can not directly
observe.

- E-Step (Expectation Step)

- Based on a guess of the model’s parameters, the algorithm
calculates the expected value of the hidden variables.

- M-Step (Maximization Step):

- Using the estimates from the E-step, the algorithm updates the
parameters to maximize the likelihood of the observed data.

- Mean, variance, etc.
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Implementation of pLSA in Python

- Exercise.

- It can be part of your projects.



L
Probabilistic LSA (References)

- Hofmann, T. (1999, August). Probabilistic Latent
Semantic Indexing. In Proceedings of the 22nd annual
international ACM SIGIR conference on Research and
development in information retrieval (pp. 50-57).

- Hofmann, T. (2013). Probabilistic latent semantic
analysis. arXiv preprint arXiv:1301.6705.

- http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL CO
PIES/AVio011/oneata.pdf



http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/AV1011/oneata.pdf
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/AV1011/oneata.pdf
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/AV1011/oneata.pdf

LATENT DIRICHLET
ALLOCATION (LDA)
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High-level Description of LDA

- Latent Dirichlet Allocation (LDA) is a Bayesian version of
pLSA.
- LDA treats documents as Bags of Words - Which weight?
- It is designed to discover topics based on term frequencies (TF).
- LDA assumes documents are produced from a mixture of topics;
- LDA categorizes documents by topic via a generative
probabilistic model;

- Distribution of topics in a document and the distribution of words
in topics are Dirichlet distributions.




L
High-level Description of LDA

- The idea is that:

- Words are generated from topics;

- Each document has a particular probability of using particular
topics to generate a given word,;

- We seek to find which topics given documents are likely to use to
generate words.
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High-level Description of LDA

- INPUT: We start with a corpus of M documents and
choose how many k topics we want to discover out of this
corpus.

- OUTPUT: the topic model, and the M documents
expressed as a combination of the k topics.

- OPERATION: the algorithm finds the weight of
connections between documents and topics and between
topics and words.



High-level Description of LDA

doc1 doc2

N A

Topics

Z4aN

freekick nba liverpool




High-level Description of LDA

- For k = 2, an LDA model could look like this:

doc1 doc2 doc3 doc4

freekick dunk rebound foul shoot nba liverpool
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High-level Description of LDA

- The algorithm created an intermediate layer with topics
and figured out the weights between documents and
topics and between topics and words.

- Documents are no longer connected to words but to
topics.

- In the previous example, each topic was named for clarity,
but in real life, we would not know exactly what they
represent.

- We would have topics 1, 2, ..., up to k, that’s all.
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High-level Description of LDA

- When LDA models a new document, it works in the
following way:

topic#1 topic#2 topic#2 Take this collection of documents and word word word word word
word word word word word

P *word P *word P * word learn a model that describes it best...
word word word word word

P “word P*word P*word ( word word word word word
P*word P *word P * word word word word word word
P*word P *word P * word word word word word word
P *word P *word P *word . word word word word word
P*word P *word P *word given these model parameters word word word word word
P*word P*word P*word ¢ ¢ word word word word word
P*word P*word P *word how many how are those word word word word word
P*word P*word P*word topics? topics

assignedto a word appearing in the same context
document? (document are elated)
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Why Dirichlet Distributions?

- Dirichlet distributions encode the intuition that
documents are related to a few topics.

- In practical terms, this results in better disambiguation of
words and a more precise assignment of documents to

topics.
- Let us suppose to have four topics: *  Science
* Sporis
. Arts

. ECoOnNomics
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Why Dirichlet Distributions?

- In a random distribution, documents would be evenly
distributed across the four topics:

Science Economics

Sports Arts



L
Why Dirichlet Distributions?

- In real life, however, we know they are more sparsely

distributed, like this:
Science Economics

0 + 0

& o
0

0
0
0 o

Sports Arts



L
What are Dirichlet Distributions?

- This also happens between topics and words:

ball dollar

soccer
Science

Sports
Arts

Economics

recession

laser computer
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What are Dirichlet Distributions?

- A Dirichlet distribution Dir(p) is a way to model a
probability function (PF) which gives probabilities for
discrete random variables.

- Example: rolling a die

- It is a discrete random variable: The result is unpredictable, and
the values can be 1, 2, 3, 4, 5, or 6.

- For a fair die, a PF would give these probabilities: [0.16, 0.16, 0.16,
0.16, 0.16, 0.16].

- For a biased die, a PF could return these probabilities: [0.25, 0.15,

0.15, 0.15, 0.15, 0.15], where obtaining a one is higher than the
other sides.
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What are Dirichlet Distributions?

- In the example with documents, topics, and words, we
have two PFs:
- 04: the probability of topic k occurring in document d;
- @y the probability of word w occurring in topic k.

- The p parameter in Dir(p) is named concentration
parameter, and rules the trend of the distribution to be:
- uniform (p = 1)

- concentrated (p > 1)
- sparse (p < 1)




L
What are Dirichlet Distributions?

- When we consider document and topics, we denote p = «a.

distribution with aa = 1 distribution with a > 1 distribution with o < 1
Science Economics Science Economics  Science Economics
0 o O
o 0 o)
o
o o
(&} ) L]
o
. a
: & 0 o ©

Sports Arts Sports Arts Sports Arts
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What are Dirichlet Distributions?

- When we consider topics and words, we denote p = S.

- By using concentration parameters «, § < 1, these
probabilities will be closer to the real world.

- In other words, they follow Dirichlet distributions:

0, = Dir(a)
@i ~ Dir(f)

where a and f rule each distribution, and both have
values < 1.



What are Dirichlet Distributions?

- IMPORTANT. Using the same concentration parameter, e.g.,
a, we obtain many different distributions of documents over

topics

Science Economics Science Economics Science Economics

Sports Arts Sports Arts Sports Arts
Distribution: [0.3, 0.05, 0.4, 0.25] Distribution: [0.15, 0.2, 0.4, 0.25] Distribution: [0.2, 0.2, 0.25, 0.35]

- They get adjusted during the training process to make the
model better.



High-level Description of LDA
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Parameters of LDA (1)

- Alpha and Beta Hyperparameters

- Alpha represents document-topic density.

- Higher the value of alpha, documents are composed of more topics and
lower the value of alpha, documents contain fewer topics.

- Beta represents topic-word density.

- Higher the beta, topics are composed of a large number of words in the
corpus, and with the lower value of beta, they are composed of few
words.

- Number of Topics
- Selected randomly.
- By using the Kullback-Leibler (KL) Divergence Score.
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Parameters of LDA (2)

- Number of Topic Terms

- Generally decided according to the requirement.

- If the problem statement talks about extracting themes or concepts, it is
recommended to choose a higher number;

- If problem statement talks about extracting features or terms, a low
number is recommended.

- Number of Iterations

- Maximum number of iterations allowed to LDA algorithm for
convergence.



L
Implementation of LDA in Python

#IMPORTING DATA - AS IN THE LSA EXAMPLE
#PREPROCESSING - LDA requires some basic pre-processing of text data

def tokenize lemma stopwords (text):

tokens = nltk.tokenize.word tokenize (text.lower())

# split string into words (tokens)

tokens = [t for t in tokens if t.isalpha()]

# keep strings with only alphabets

tokens = [wordnet lemmatizer.lemmatize(t) for t in tokens]
# put words into base form

tokens = [stemmer.stem(t) for t in tokens]

tokens = [t for t in tokens if len(t) > 2]

# remove short words, they're probably not useful

tokens = [t for t in tokens if t not in stopwords]

# remove stopwords
return tokens
def dataCleaning(data) :

data["content"] = data["content"].apply(tokenize lemma stopwords)
return data



L
Implementation of LDA in Python

#Convert pre-processed tokens into a dictionary with word index
and it’s count in the corpus

#We can use gensim package to create this dictionary then to
create bag-of-words

dictionary = gensim.corpora.Dictionary (X)

dictionary.filter extremes (no below=5, no above=0.5,
keep n=100000)

# filter words that occurs in less than 5 documents and words
that occurs in more than 50% of total documents

# keep top 100000 frequent words

bow corpus = [dictionary.docZbow(doc) for doc in X]

# create bag-of-words ==> list (index, count) for words in
doctionary



L
Implementation of LDA in Python

# Create lda model with gensim library

# Manually pick number of topic

lda model = gensim.models.LdaModel (bow corpus,
id2word=dictionary,
num topics=5,
offset=2,
random state=100,
update every=1,
passes=10,
alpha='auto',
beta="auto",
per word topics=True)



L
Implementation of LDA in Python

from pprint import pprint
pprint (lda model.print topics())

[ (0, # Seems to be Computer and Technology
'0.014*"key" + 0.007*"chip" + 0.006*"encryption" + 0.006*"system" + '
'0.005*"clipper" + 0.005*"article™ + 0.004*"university" + '
'0.004*"information" + 0.004*"government”" + 0.004*"time"'),

(1, # Seems to be Science and Technology
'0.008*"drive"™ + 0.007*"university" + 0.007*"window" + 0.007*"system" + '
'0.006*"doe" + 0.005*"card" + 0.005*"thanks" + 0.005*"space" + '
'0.004*"article" + 0.004*"computer"'),

(2, # Seems to be politics
'0.010*"people™ + 0.006*"gun" + 0.006*"armenian"” + 0.005*"time" + '
'0.005*"article" + 0.005*"then”" + 0.005*"israel"” + 0.004*"war" + '
'0.004*"government”" + 0.004*"israeli""'),

(3, # Seems to be sports
'0.013*"game" + 0.011*"team”" + 0.008*"article" + 0.007*"university" + '
'0.006*"player™ + 0.006*"time" + 0.005*"play" + 0.005*"season" + '
'0.004*"hockey" + 0.004*"win""),

(4, # Seems to be religion
'0.018*"god™ + 0.011*"people" + 0.008*"doe" + 0.008*"christian™ + '
'0.007*"jesus" + 0.006*"believe" + 0.006*"then" + 0.006*"article" + '
'0.005*"1ife" + 0.005*"time"") ]



R - :
RECAP: TF-IDF or just TF?

- The use of TF-IDF (Term Frequency-Inverse Document
Frequency) in Latent Semantic Analysis (LSA) versus TF (Term
Frequency) in Probabilistic Latent Semantic Analysis (PLSA) and
Latent Dirichlet Allocation (LDA) stems from the underlying
methodologies and objectives of these models.



R - :
RECAP: TF-IDF in LSA

- LSA is a linear algebra-based technique that applies Singular
Value Decomposition (SVD) to a term-document matrix.

- The goal of LSA is to reduce dimensionality and uncover latent semantic
structures by finding patterns of co-occurrence in the matrix.

- TF-IDF is used in LSA to enhance the term-document matrix
before applying SVD:

- TF-IDF weighting helps balance term importance:

- Terms frequent in a document (high term frequency, TF) are given more
weight.

- Terms that are too common across all documents (low inverse document
frequency, IDF) are downweighted.

- By emphasizing terms that are both relevant (high TF) and distinctive
(high IDF), TF-IDF helps LSA focus on meaningful semantic patterns.



R - :
RECAP: TF in pLSA and LDA

- PLSA and LDA are probabilistic models that treat documents as
mixtures of latent topics and aim to infer these topic distributions.
They use the bag-of-words representation (TF-based counts) as
input.

- Generative model framework: These methods model the generative
process of text:

For a given topic, words are sampled based on their probability
distributions.

Incorporating TF-IDF would interfere with the probabilistic interpretation
of word frequencies since TF-IDF normalizes and scales raw counts.

- Statistical foundation: LDA relies on word counts to estimate
Dirichlet distributions over topics and words. Modifying these counts
with TF-IDF would disrupt this statistical foundation.



L
NOWADAYS: Embedding-based approaches

- BERTopic
- Grootendorst, M. (2022). BERTopic: Neural topic modeling with a
class-based TF-IDF procedure. arXiv preprint arXiv:2203.05794.

- Uses BERT embeddings + HDBSCAN clustering + TF-IDF for topic
representation.

- Excellent for capturing semantic similarity.
- Handles short texts and multilingual corpora.

- Top2Vec

- Angelov, D. (2020). Top2vec: Distributed representations of
topics. arXiv preprint arXiv:2008.09470.

- Learns joint embeddings of documents and words.
- Finds dense clusters of semantically similar documents.

- Produces topics automatically without specifying the topic count
upfront.



EVALUATING TOPIC MODELING




Evaluation Approaches

- Eye Balling Models

- Top-n words
- Topics/Documents

Internal coherence of

| |
I . . I
: - Capturing model semantics : topic models
| |

- Topics interpretability

- Human Judgements
- Quantitative methods for evaluating human judgement

- Extrinsic Evaluation Metrics/Evaluation at task

- Is the model good at performing predefined tasks, such as
classification?



Intrinsic Evaluation Metrics

- Intrinsic Evaluation metrics that best describe the
performance of a topic model:
- Perplexity
- Coherence
- Diversity



Measure Details

- Perplexity is a measure of uncertainty, meaning lower the
perplexity better the model.

- Coherence is the measure of semantic similarity between
top words in our topic. Higher the coherence better the
model performance.

- Diversity evaluates whether topics are diverse and not
redundant.




L
Perplexity

- Perplexity is a statistical measure of how well a probability
model predicts a sample.

- It aims to capture how “surprised” a model is of new data it has
not seen before.

- This metric is measuring “how probable” some new unseen
data is given the model that was learned earlier.

#COMPUTING PERPLEXITY

print ('Perplexity: ',
lda model.log perplexity (bow corpus))



Coherence

- Topic Coherence measures score a single topic by measurin
the degree of semantic similarity between high scoring words in
the topic.

- These measurements help distinguish between topics that are
semantically interpretable topics and topics that are artifacts of
statistical inference.

#COMPUTING COHERENCE

coherence model lda =
models.CoherenceModel (model=1da model, texts=X,
dictionary=dictionary, coherence='c v')

coherence lda = coherence model lda.get coherence()
print ('Coherence Score: ', coherence lda)



Distinct Coherence measures

°C VvV
- based on a sliding window, one-set segmentation of the top words

and an indirect confirmation measure that uses normalized
pointwise mutual information (NPMI) and the cosine similarity.

) c—P
- based on a sliding window, one-preceding segmentation of the top
words and the confirmation measure of Fitelson’s coherence.

°Cc uci
- based on a sliding window and the pointwise mutual information
(PMI) of all word pairs of the given top words.



Distinct Coherence measures

°©C_umass

- based on document cooccurrence counts, a one-preceding

segmentation and a logarithmic conditional probability as
confirmation measure.

° C_npmi

- enhanced version of the ¢ uci coherence using the normalized
pointwise mutual information (NPMI).

*C_a

- baseed on a context window, a pairwise comparison of the top
words and an indirect confirmation measure that uses normalized
pointwise mutual information (NPMI) and the cosine similarity.



Diversity

- Metrics for diversity could include measuring the cosine similarity
between topic vectors or quantifying the spread of topics across
documents.

- Redundant topics might occur when the model identifies similar topics
with slight variations.

#COMPUTING DIVERSITY

doc topic matrix =
lda model.get document topics (corpus)

doc topic array = np.array([np.array(doc topic) [:, 1]
for doc topic 1n doc topic matrix])

cosine sim matrix = cosine simllarity(doc topic array)
topic diversity = 1 - np.mean(np.max(cosine sim matrix,
axis=1))

print ("Topic Diversity: {topic diversity}")



A (VERY) BRIEF INTRODUCTION
TO TOPIC CLASSIFICATION
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Topic Modeling VS Topic Classification

- Topic Modeling is an unsupervised machine learning
technique (i.e., it does not require training).

- If there is not the possibility to priorly analyze texts (to label it), or
if the aim is not looking for a fine-grained analysis, topic modeling
algorithms are indicated.

- Topic Classification is a supervised machine learning
technique, i.e., it needs training before being able to
automatically analyze texts.

- If there is a list of predefined topics for a set of texts, and the aim is
to gain accurate insights, topic classification is more suitable.



Topic Classification Approaches

- Rule-based systems
- Human-based

- Machine learning systems
- Automatic supervised approaches

- Hybrid systems

- A mix of the previous two



Rule-Based Systems

- They works by directly programming a set of hand-made rules,
based on the content of the documents that a human expert has
read.

- Each one of these rules is made up of a pattern and a
prediction. Since we are focusing on topic analysis, the
prediction will be the topic.

- Downsides:
- Too complex for someone without expert knowledge;

- Require constant analysis and testing to ensure they are functioning in
the correct way;

- When adding new rules, existing rules are altered;
- In short, these systems are high-maintenance and unscalable.



Machine Learning Systems

- A topic classification machine learning model needs to be

fed examples of text and a list of predefined tags, known
as training data.

- Once the text is transformed into vectors and the training
data is tagged with the expected tags, this information is
fed to an algorithm to create the classification model.



Machine Learning Systems

(a) Training
TOPIC > :
machine
learning
feature algorithm
extractor
features ¢
text
classifier

model



Machine Learning Systems

(b) Prediction

feature classifier

extractor model

features

text l

TOPIC




Machine Learning Systems

- Naive Bayes

- Family of that deliver good results even when dealing with small
amounts of data, say between 1,000 and 10,000 texts;

- It works by correlating the probability of words appearing in a text
with the probability of that text being about a certain topic.

- Support Vector Machines (SVM)

- Slightly more complex than Naive Bayes;

- They often deliver better results than NB for topic classification;

- Downside: they require complex programming and require more
computing resources.

- It is possible to speed up the training process of an SVM by optimizing
the algorithm by feature selection, in addition to running an optimized
linear kernel such as scikit-learn's Linear SVC.



Machine Learning Systems

- Deep Learning
- Topic Classification benefit from Deep Learning;

- It employs two main deep learning architectures:
- Convolutional Neural Networks (CNN);
- Recurrent Neural Networks (RNN).

- Downside: They require much more training data than traditional
machine learning algorithms.

- Instead of, for example, 1,000 training samples, it is necessary to have
millions of samples.



L
Hybrid Systems

- These are simply combinations of machine learning
classifiers and rule-based systems, which improve results
as you fine-tune rules.

- You can use these to rules to tweak topics that have been
incorrectly modeled by the machine learning classifier.



Metrics and Evaluation

- As in many other classification tasks, in Topic Classification it
is necessary to test the actual label (topic) for a specific text and
compare it to the predicted label (topic).

- With the results, it is possible to compute the following (well-
known) evaluation metrics:
- Accuracy: the percentage of texts that were assigned the correct topic;

- Precision: the percentage of texts the classifier tagged correctly out of
the total number of texts it predicted for each topic;

- Recall: the percentage of texts the model predicted for each topic out of
the total number of texts it should have predicted for that topic;

- F1 Score: the average of both Precision and Recall.
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