Text Mining and Search Lab 1

Joseph Muddle

UniMiB

Outline

Introduction

Tools and Resources

Text Preprocessing overview
Normalization
Tokenization/Lemmatization/Stemming
Word Tagging

Document representation

Word Embeddings

Introduction

» Who am I?
» Who are you?
» What are these labs about?

Purpose of these labs

You're already familiar with some of the theory of text mining and
search. These labs focus on the practice. As such, we will be doing the
following in these three labs:

» Giving an overview of NLP tools

Purpose of these labs

You're already familiar with some of the theory of text mining and
search. These labs focus on the practice. As such, we will be doing the
following in these three labs:

» Giving an overview of NLP tools
» Working through code examples

Purpose of these labs

You're already familiar with some of the theory of text mining and
search. These labs focus on the practice. As such, we will be doing the
following in these three labs:

> Giving an overview of NLP tools
» Working through code examples

» Giving references to resources

Motivation: Text processing

Why do we need automated (i.e not done by a human) text processing?

)

Motivation: Text processing

Why do we need automated (i.e not done by a human) text processing?
» Faster analysis
» More reliable and repeatable performance

» Better downstream model performance

Tools and resources

Can you think of any tools in the Python ecosystem that make NLP
convenient and easy?

Tools and resources

Can you think of any tools in the Python ecosystem that make NLP
convenient and easy?

> NLTK

» SpaCy

> TextBlob

» Stanford NLP
>

Gensim

Tools and Resources

» Go to linktr.ee/joemuddle
» Select Tutorial 1
» Make a shortcut to your drive

» Open "Text Pre-Processing" with colab and save to your drive

LABI_TMS -~ =

Source

& Download

ownloa Owner Date modified

@ iooceitive. how 2024

&% Share >
& Organise » >
@ Folderinformation » Cuater 94
W Remove Delets ¢ Addtostarred CtrleAltes.

Folder colour

24
00000
. . 2
() (X J

[TMS-Labpiand Tp2.pdf 2

@ TMS-Labtpapdf

Text Preprocessing Overview

There are many tasks which fall under the heading of "text
pre-processing". Text pre-processing is mainly about getting the
formatting of the text to be relatively consistent, so that only the

"important" parts of the text are used in our downstream tasks. What
are the "unimportant" parts of text?

Text Preprocessing Overview

There are many tasks which fall under the heading of "text
pre-processing". Text pre-processing is mainly about getting the
formatting of the text to be relatively consistent, so that only the
"important" parts of the text are used in our downstream tasks. What
are the "unimportant" parts of text?

>

vvyyVvyVvVvyy

Excessive whitespace (tabs, spaces, newlines)

Upper/lower case distinction

Emojis

URLs

Spelling errors/Repeated letters (not always unimportant!)

"Stop words" ("a", "the", etc. Again, not always unimportant!)

Text Preprocessing Overview

There are many tasks which fall under the heading of "text
pre-processing". Text pre-processing is mainly about getting the
formatting of the text to be relatively consistent, so that only the
"important" parts of the text are used in our downstream tasks. What
are the "unimportant" parts of text?

> Excessive whitespace (tabs, spaces, newlines)
» Upper/lower case distinction

» Emojis

» URLs

» Spelling errors/Repeated letters
> "Stop words"

There is no "one size fits all'"' approach to text preprocessing!
Always remember the downstream task!

Regular Expressions

RegEx (regular expressions) are a powerful tool for text formatting, and
one that we'll be using a lot. We'll be using the re library in python, and
also python's powerful string methods.

This has excessive whitespace

Regular Expressions

RegEx (regular expressions) are a powerful tool for text formatting, and
one that we'll be using a lot. We'll be using the re library in python, and
also python's powerful string methods.

This has excessive whitespace

> We can use RegEx — re.sub("\s+","", text)
» We can use a string method — " ".join(text.split())

A great resource for learning RegEx is regexone.com

Case Folding

A lot of the time in text pre-processing we want to make everything
upper case or everything lower case. With python, it's really easy to just
do this with string methods.

text = "This is an Example"
text = text.lower()
text = text.upper()

Numbers and Punctuation

RegEx is best for removing numbers and punctuation!

Emojis

We use two (confusingly named) libraries for these
» demoji

» emoji

Repeated Characters and Spelling Mistakes

How do we get rid of repeated characters? RegEx

How do we get rid of spelling mistakes? TextBlob
from textblob import TextBlob
blob = TextBlob(text)
corrected_blob =blob.correct()

URLs and HTML texts

How could we detect URLs? RegEx
How do we parse HTML tags? BeautifulSoup

from bs4 import BeautifulSoup
soup = BeautifulSoup(text,"html.parser")
text = soup.get_text(separator=" ")

Text Preprocessing Overview

There are many tasks which fall under the heading of "text
pre-processing". Text pre-processing is mainly about getting the
formatting of the text to be relatively consistent, so that only the
"important" parts of the text are used in our downstream tasks. What
are the "important" parts of text?

» [ndividual words
» "Stem forms" of words
» What else?

There is no "one size fits all'' approach to text preprocessing!
Always remember the downstream task!

Tokenization

Tokenization is the process of getting individual words (or sequences of
words, called n-grams) from longer sequences of words. But, this is
sometimes a difficult problem.

» O'Neill
» Ph.D.
» New York

We will usually use NLTK, the Natural Language Tool Kit, for
tokenization. Below is an example for tokenizing tweets

from nltk.tokenize import TweetTokenizer
tknzr = TweetTokenizer ()
tokenized_tweet= tknzr.tokenize(tweet)

Stemming and Lemmatization

Stemming is the process of reducing a word to its stem of a word,
typically by removing the suffixes (and sometimes prefixes) based on
rules, rather than a complicated lookup procedure

» Porter stemming typically works by removing suffixes
» fish, fishes, fishing, fished — fish
» argue, argued, arguing — 7

Lemmatization, on the other hand, uses a dictionary to find the "root
form" of the word. It does this using a dictionary.

» thought, thinking, thinks — think
» WordNet lemmatizer

In some languages (agglutinative ones), stemming and
lemmatization can appear quite similar.

Part-of-Speech tagging

Different words have different grammatical functions in a sentence
» Noun Phrases
> Verbs
» Adjectives
> etc...

Stemming and lemmatization make identifying the grammatical function
of a word easier (why?) Tagging the word with its function is called
Part-of-Speech tagging

from textblob import TextBlob

blob = TextBlob(text)
tags_blob = blob.tags()

Entity Recognition

We might also want to identify words by their semantic functions, such as
the names of people, places, quantities, time, etc. Why might we do this?

Motivation: Document representation

Why might we want to represent a document as a vector?

DA

Motivation: Document representation

Why might we want to represent a document as a vector?

Vectors are easy to compare with one another, it allows us to
compare based on objective measures of the document

Document representation: methods

» Binary Representation
» Bag-Of-Words Representation (CountVectorizer, TF-IDF)

» Dense Vector Representation (more advanced, won't be covered
here)

Count Vectorizer and Binary Vectorizer

Count vectorizers show the frequency of each word in each document in a
matrix, where each column is a word and each row is a document. Each
cell is then the corresponding frequency of a given word in a given

document.
and bacon beans beautiful blue breakfast brown but dog eggs ... love over quick sausages sky the this toast today very
0 1 [0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0
2 0 0 0 0 0 0 1 0 1 0 0 1 1 0 0 2 0 0 0 0
3 1 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
4 1 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0
1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 2 0 0 0 0
6 1 0 0 1 1 0 0 0 0 0 0 0 0 0 2 2 0 0 1 2
7 0 0 0 0 0 0 1 1 1 0 . 0 0 1 0 0 2 0 0 0 0

A binary vectorizer is a simplified version, where each cell is either a 1 or
a 0 to indicate whether a word is present in the document (not the
count, just the presence or absence of the word)

TF-IDF

Term Frequency-Inverse Document Frequency. TF(w, d) is the number
of times word w appears in document d. IDF(w) is the rarity of the
word in the corpora (collection of documents), calculated as

IDF(w) = /ogﬁ

Where n is the number of documents and df (w) is the number of
documents containing w. We then calculate the TF-IDF weight, which
shows how important a word w is to a document d, as follows

TFIDF(w, d) = TF(w, d) x IDF(w)

Motivation: Word Embedding

The theory of word embedding will be discussed more in depth in your
lectures with Prof Viviani. But we will discuss some practical aspects to
it now. Word embedding is the process of representing words as vectors,
similar to document representation but for words. Why would we want
to do this?

Motivation: Word Embedding

The theory of word embedding will be discussed more in depth in your
lectures with Prof Viviani. But we will discuss some practical aspects to
it now. Word embedding is the process of representing words as vectors,
similar to document representation but for words. Why would we want
to do this?

» Comparing semantics
» Comparing grammatical function

» Representing words in a continuous space (allows for a richer
representation of documents)

Word2Vec

One common word embedding technique is Word2Vec proposed by
Mikolov et al in 2013. The technique uses one of either model:

» CBOW (continuous bag of words)
» Skip-gram

The intuition behind these two approaches is that we can learn a lot
about a word via training for the following two tasks:

» predicting a word based on the surrounding words
» predicting the surrounding words based on a word

We train for these objectives using shallow neural networks, which means
we learn the vector representation as a side-effect.

Word2Vec lllustrated

INPUT PROJECTION OUTPUT INPUT PROJECTION ~ OUTPUT
wi(t-2) wi(t-2)
w(t-1) wi(t-1)
SUM /
/ *b{ b "
w(tH) \\ wit+1)
w(t+2) wit+2)
CBOW

Skip-gram

Word2Vec in Python

from gensim.models import Word2Vec

#Train the model

model = Word2Vec(sentences = corpus, vector_size = 100,
window =5, min_count =1 , workers = 4)

#Save the model

model . save (path)

Vector_size is the dimension of the "word space" (i.e how many numbers
we are using to represent a word). Window is the context length.

GLoVe

GLoVe is a more global approach than word2vec, which only considers
local context. GLoVe instead considers global context, and creates
vectors by making a co-occurrence matrix of terms.

	Introduction
	Tools and Resources
	Text Preprocessing overview
	Normalization
	Tokenization/Lemmatization/Stemming
	Word Tagging
	Document representation
	Word Embeddings

