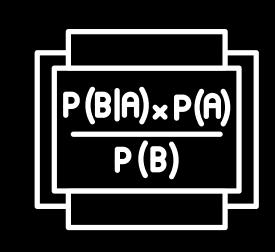


Learning DBNs & Non-Homogeneous DBNs from Incomplete data in Intensive Care

Federico Pirola, Fabio Stella, Marco Grzegorczyk, Anna Lavizzari



Sections

PRELIMINARIES

- Dynamic Bayesian Networks: definition and application domains
- Bayesian Statistics and Montecarlo methods

LEARNING DBNs FROM INCOMPLETE DATA

- Issues in Observational Settings
- LUME-DBN: A full Bayesian method for learning DBNs from Incomplete Data
- Applications in Intensive Care
 - Physionet Case Study
 - Bronchopulmonary Dysplasia Case Study

NON STATIONARY TEMPORAL MODELS

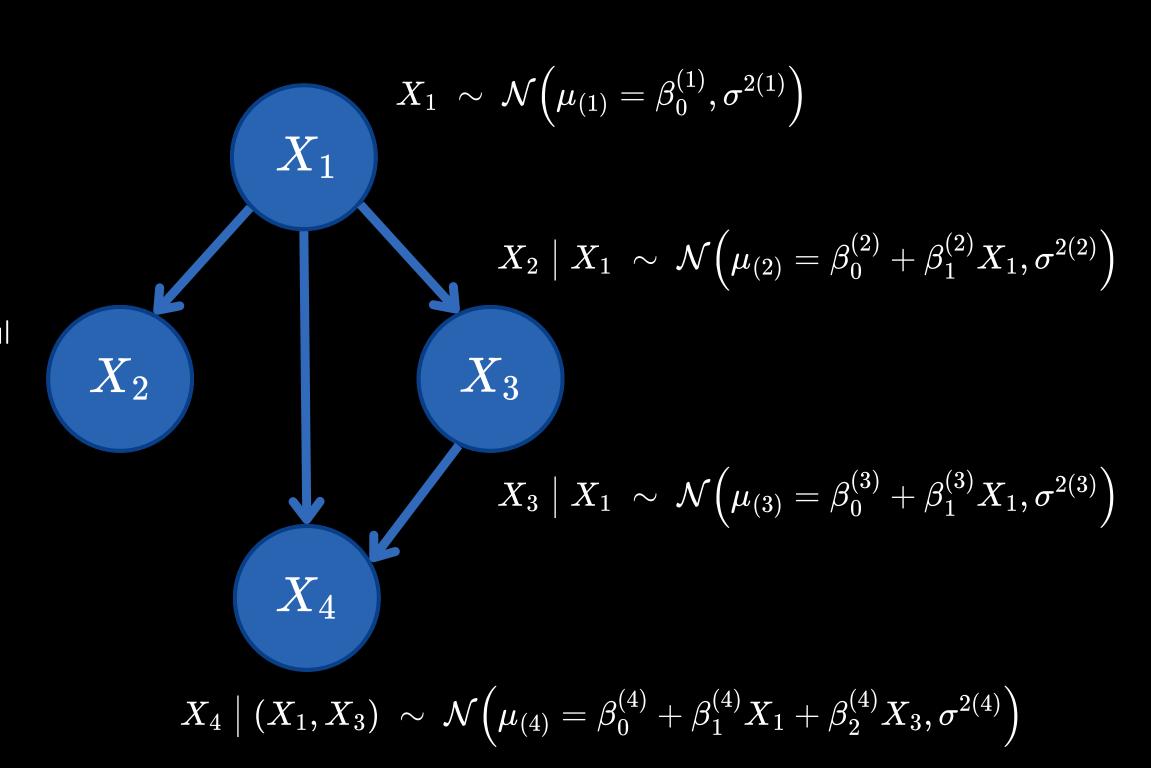
- Non-stationary and Non-Homogeneous DBNs
- LUME-NH: A full Bayesian method for learning NH-DBNs from Incomplete Data

Dynamic Bayesian Networks

Probabilistic Graphical Models

Highly interpretable Machine Learning models widely employed in biomedical domains

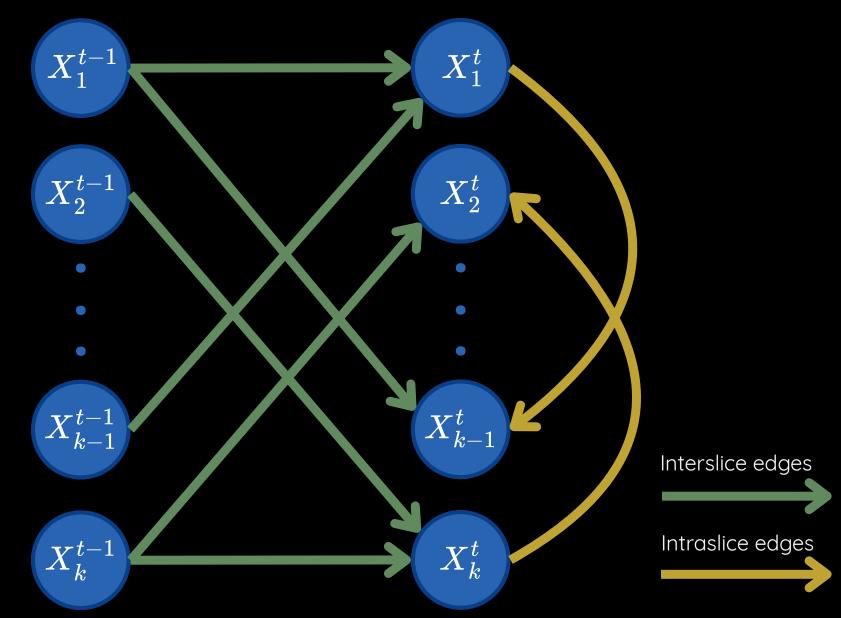
- MODELS: modeling the dependencies between multiple random variables
- GRAPHICAL: characterised by a graphical representation encoding conditional dependencies and independencies
- **PROBABILISTIC:** described by a set of conditional probability distributions



Dynamic Bayesian Networks

• Dynamic Bayesian networks (DBNs) model the temporal evolution of multivariate continuous time series factorizing the joint distribution of all variables across time into a product of conditional distributions for each node

- **Dynamic Bayesian networks** (DBNs) are described as a set of:
 - A structure, represented by a Transition Network encoding the relationship between the nodes at time t-1 and the nodes at time t
 - A set of parameters encoding the linear
 relationships between a variable and its parent set



Application domains and the context of Intensive Care Data

- DBNs are effective across various domains including biology, healthcare domain and environmental data. They have been used to learn gene regulatory networks, predict disease progression, and spatio-temporal environmental modeling.
- In the context of Intensive Care Units (ICUs) they show their value in integrating heterogeneous ICU time-series data and delivering interpretable decision support in the setting of severe patients care.

Bayesian Statistics & Markov Chain Monte Carlo

Frequentist Statistics vs Bayesian Statistics

Frequentist statistics treats parameters as fixed but unknown constants. It evaluates the likelihood of observed data looking for the value of the unknown parameters which maximize the likelihood.

$$\hat{ heta} = \max_{ heta} p(X| heta)$$

<u>Frequentist</u>: "What parameter value best explains the observed data?"

Frequentist Statistics vs Bayesian Statistics

Frequentist statistics treats parameters as fixed but unknown constants. It evaluates the likelihood of observed data looking for the value of the unknown parameters which maximize the likelihood.

Bayesian statistics views parameters as random variables
with probability distributions. Prior beliefs about these
parameters are updated with observed data to produce
posterior distributions. It directly model uncertainty over
the parameters through their distributions.

$$\hat{\theta} = \max_{\theta} p(X|\theta)$$

<u>Frequentist</u>: "What parameter value best explains the observed data?"

$$p(heta|X) = rac{p(heta) \cdot p(X| heta)}{p(X)}$$

<u>Bayesian</u>: "Given the data, what is our updated belief over the parameters probability distribution?"

Markov Chain Monte Carlo (MCMC) Simulations in Bayesian Statistics

Standard MCMC Setting

Conditional to the **known model** (structure) the **unknown parameters** are iteratively sampled



Bayesian inference strongly relies on MCMC simulations to approximate posterior expectations when the required integrals cannot be evaluated in closed form.

Markov Chain Monte Carlo (MCMC) Simulations in Bayesian Statistics

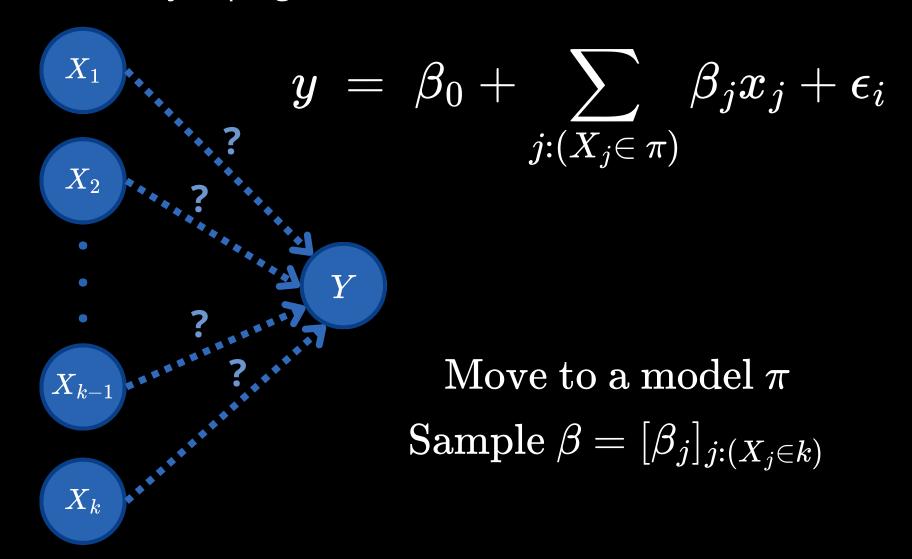
Standard MCMC Setting

Conditional to the **known model** (structure) the **unknown parameters** are iteratively sampled

$$y = eta_0 + \sum_{j:1:k} eta_j x_j + \epsilon_i$$
 X_{k-1}
 X_{k-1}
 X_{k-1}
 X_{k-1}
 X_{k-1}
 X_{k-1}
 X_{k-1}
 X_{k-1}
 X_{k-1}

RJMCMC Setting

The **unknown parameters** are sampled jumping between different **unknown models**



Bayesian inference strongly relies on MCMC simulations to approximate posterior expectations when the required inclosed form.

Metropolis-Hastings & Gibbs Sampling

Metropolis-Hastings (MH) is an MCMC algorithm that constructs a Markov chain by **proposing candidate values**, sampled from a proposal distribution (PD).

- 1. Initialization of the chain: $\, heta_0$
- 2.Proposal of a new value sampled from the PD: $\, heta_{\star} \sim q(heta_{\star}| heta_{t-1})\,$
- 3. Compute the Acceptance probability: $lpha = \min\left(1, rac{p(heta_{\star} \mid \cdot) q(heta_{t-1} \mid heta^*)}{p(heta_{t-1} \mid \cdot) q(heta_{\star} \mid heta_{t-1})}
 ight)$
- 4.Accept the proposed value with $~lpha>p\sim U(0,1)~$ otherwise keep the previous value $heta_{t-1}$

Metropolis-Hastings & Gibbs Sampling

Metropolis-Hastings (MH) is an MCMC algorithm that constructs a Markov chain by **proposing candidate values**, sampled from a proposal distribution (PD).

- 1.Initialization of the chain: $\, heta_0$
- 2.Proposal of a new value sampled from the PD: $\, heta_{\star} \sim q(heta_{\star}| heta_{t-1})$
- 3. Compute the Acceptance probability: $lpha = \min\left(1, rac{p(heta_\star \mid \cdot) \, q(heta_{t-1} \mid heta^*)}{p(heta_{t-1} \mid \cdot) \, q(heta_\star \mid heta_{t-1})}
 ight)$
- 4.Accept the proposed value with $~lpha>p\sim U(0,1)~$ otherwise keep the previous value $heta_{t-1}$

Gibbs sampling (GS) is a special case of Metropolis-Hastings where the PD is the full conditional distribution (FCD), namely the distribution of the parameter given the current model and data.

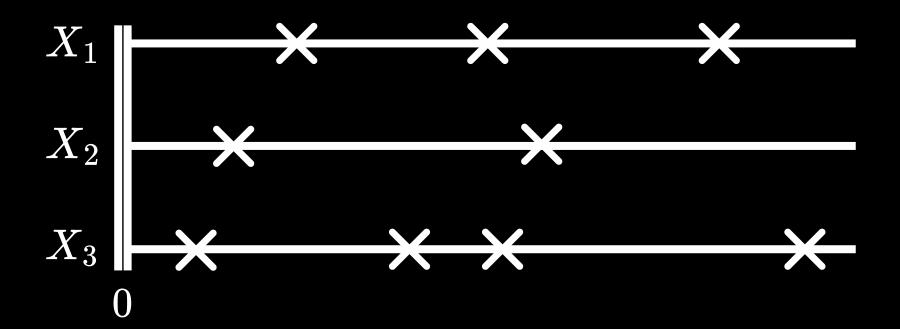
In GS the acceptance probability
$$\alpha = \min\left(1, \frac{p(\theta_\star \mid \cdot) \, q(\theta_{t-1} \mid \theta^*)}{p(\theta_{t-1} \mid \cdot) \, q(\theta_\star \mid \theta_{t-1})} = \frac{p(\theta_\star \mid \cdot) \, p(\theta_{t-1} \mid \cdot)}{p(\theta_{t-1} \mid \cdot) \, p(\theta_\star \mid \cdot)}\right) = 1$$

However sampling exactly from the FCD is generally intractable except for conjugate priors frameworks.

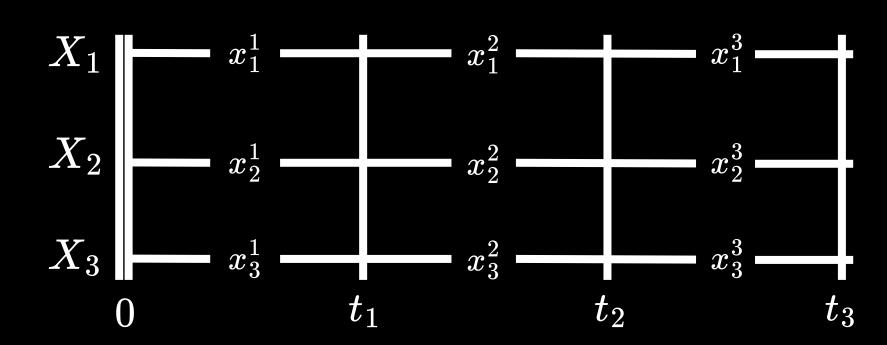
Issues in Observational Settings

DBNs in Observational Settings

OBSERVATIONAL DATA SCENARIO

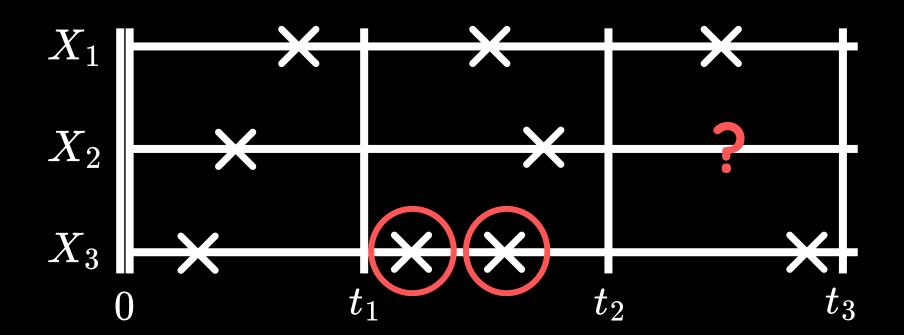


INPUT DATA REQUIRED IN DBNs



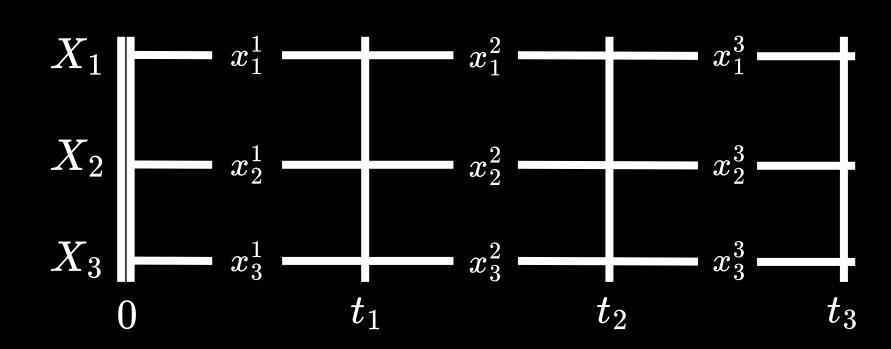
DBNs in Observational Settings

OBSERVATIONAL DATA SCENARIO

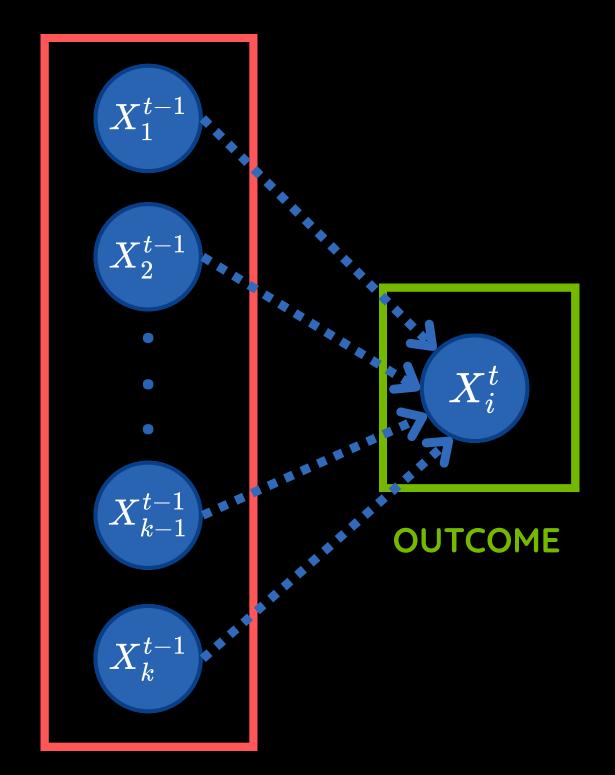


<< How can we manage observations over continuous time in DBN learning? >>

INPUT DATA REQUIRED IN DBNs



Dynamic Bayesian Networks as a set of Linear Regressions



$$egin{array}{lll} x_i^t &=& eta_0^{(i)} + \sum_{j:(X_j^{t-1} \in \, \pi_{(i)})} eta_j^{(i)} x_j^{t-1} + \epsilon_i^t \ & \ & (t=1, \, \dots, \, T) \end{array}$$

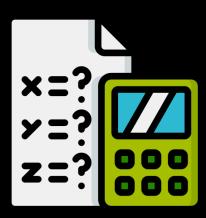
NO ACYCLICITY CONSTRAINT IS NEEDED AS IN STATIC BNS!

Managing Missing Values in DBNs

ICU data are characterized by irregular sampling frequencies and incorrect detection, leading to Incomplete Data

STANDARD IMPUTATION

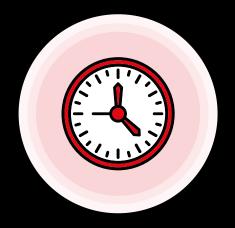
i.e. MICE Imputation



- + REALLY FAST
- MODEL AGNOSTIC
- POINT ESTIMATES

FREQUENTIST APPROACHES

i.e. Structural EM



- **(+)** ITERATIVE UPDATES
- MODEL-DEPENDENT
- LOCAL MINIMA RISK
- NOT DBN-SPECIFIC

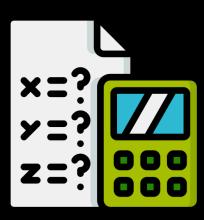
STATE OF THE ART

Managing Missing Values in DBNs

ICU data are characterized by irregular sampling frequencies and incorrect detection, leading to Incomplete Data

STANDARD IMPUTATION

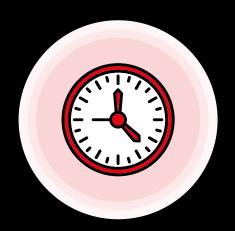
i.e. MICE Imputation



- + REALLY FAST
- MODEL AGNOSTIC
- POINT ESTIMATES

FREQUENTIST APPROACHES

i.e. Structural EM



- **+** ITERATIVE UPDATES
- MODEL-DEPENDENT
- LOCAL MINIMA RISK
- NOT DBN-SPECIFIC

FULL BAYESIAN METHOD LUME-DBN

- **H** MODEL UNCERTAINTY
- + AVOID LOCAL MINIMA
- + DBN-SPECIFIC
- ? CONVERGENCE TO THE RIGHT SOLUTION

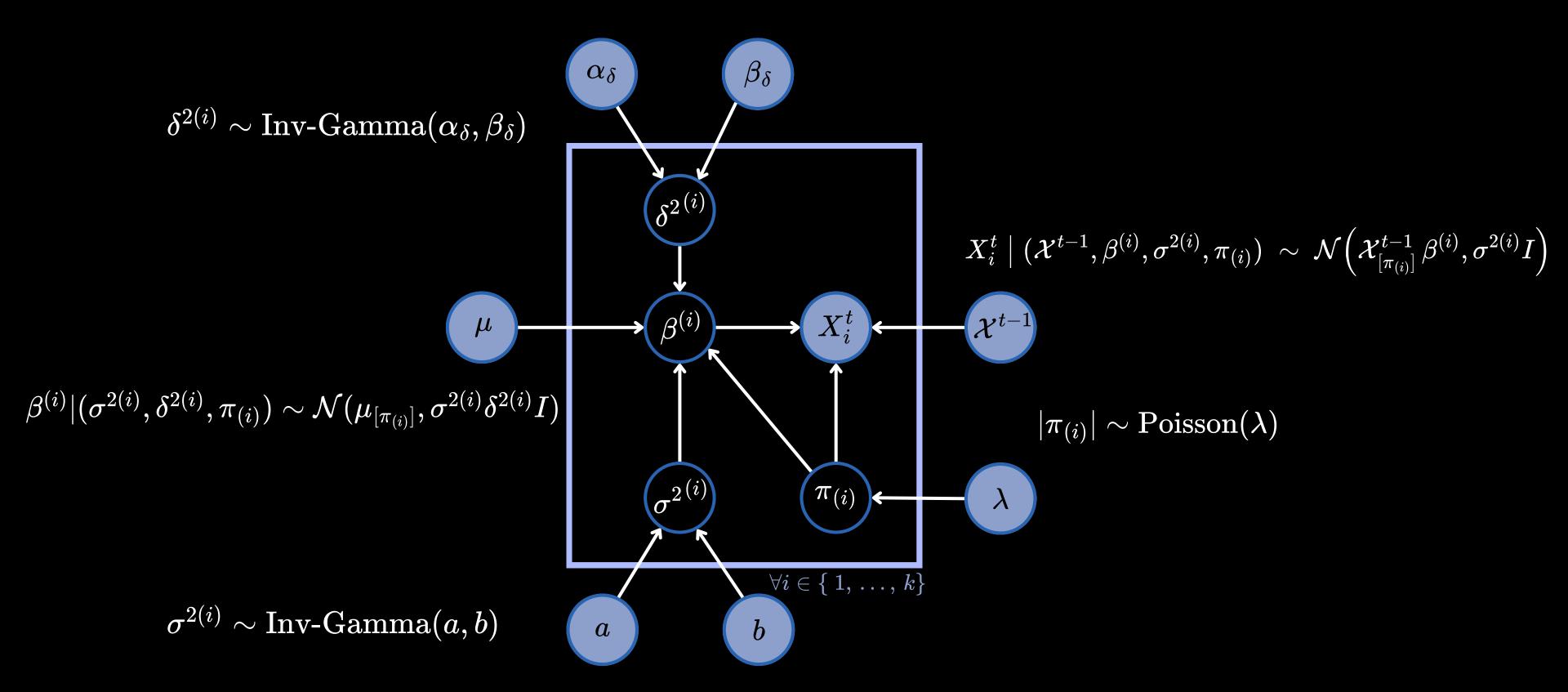
OUR PROPOSAL

STATE OF THE ART

Learning DBNs from Incomplete Data

A Bayesian Formulation of Dynamic Bayesian Networks

Since intra-slice edges are ruled out, the task of learning a DBN could be segmented in k distinct BLR learning tasks



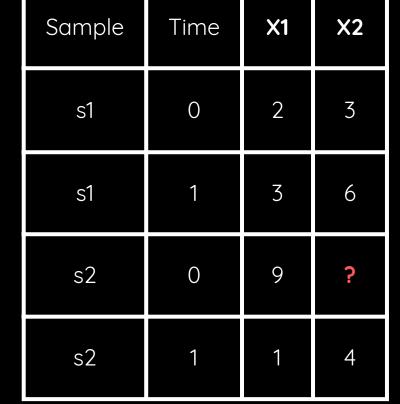
Learning DBNs from Incomplete Data

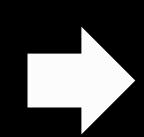
Learning the DBN is then the task of **learning** the **structure** and the set of **parameters** that describe the **relationships** between temporal nodes in the Transition Network. To **learn** a DBN from data, we consider a group of N samples partially observed at T+1 equally spaced time points, where each sample is described by a set of k variables.

INITIAL DATASET

Sample	Time	X1	X2
s1	0.3	?	3
s1	1.2		5
s1	1.8	4	7
s2	0.9	9	?
s2	1.5	4	1

TEMPORALLY DISCRETIZED DATA





LAGGED DATA

Sample	Time	X1 (t-1)	X1 (t)	X2 (t-1)	X2 (t)
s1	1	2	3	3	6
s2	1	9	1	?	4

LUME-DBN Algorithm

Latent Uncertainty Modeling via MCMC Estimation in DBNs (LUME-DBN) is the first full bayesian method for learning DBNs from Incomplete data. Employing our Gibbs sampling imputation step, LUME-DBN is characterized by an iterative procedure following three main steps:



MISSING VALUES IMPUTATION: GIBBS SAMPLING STEP

For each sample and time frame

Structure and Parameter Updates

Sampling $\sigma^2, \beta, \delta^2$ from their Full Conditional Distributions (FCDs)

Conditional on the current structure and missing values

$$egin{aligned} \sigma^2 &\sim ext{Inv-GAM}\Big(lpha_{\sigma} + rac{NT}{2}, \; eta_{\sigma} + rac{1}{2}(Y - X_{[\pi]}\mu_{[\pi]})^{ op}(I + \sigma^2 X_{[\pi]}X_{[\pi]}^{ op})^{-1}(Y - X_{[\pi]}\mu_{[\pi]})\Big) \ eta_{\sigma} &\sim \mathcal{N}\Big((\sigma^{-2}I + X_{[\pi]}^{ op}X_{[\pi]})^{-1}(\sigma^{-2}\mu_{[\pi]} + X_{[\pi]}^{ op}Y), \; \sigma^2(\sigma^{-2}I + X_{[\pi]}^{ op}X_{[\pi]})^{-1}\Big), \ \delta^2 &\sim ext{Inv-GAM}\Big(a + rac{|\pi| + 1}{2}, \; b + rac{1}{2}\sigma^{-2}(eta - \mu_{[\pi]})^{ op}(eta - \mu_{[\pi]})\Big) \end{aligned}$$

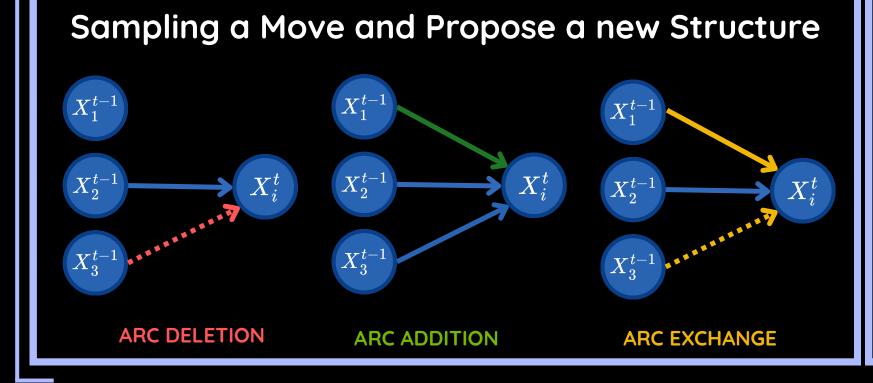
Structure and Parameter Updates

Sampling $\sigma^2, \beta, \delta^2$ from their Full Conditional Distributions (FCDs)

Conditional on the current structure and missing values

$$egin{aligned} \sigma^2 &\sim ext{Inv-GAM}\Big(lpha_{\sigma} + rac{NT}{2}, \; eta_{\sigma} + rac{1}{2}(Y - X_{[\pi]}\mu_{[\pi]})^{ op}(I + \sigma^2 X_{[\pi]}X_{[\pi]}^{ op})^{-1}(Y - X_{[\pi]}\mu_{[\pi]})\Big) \ eta_{\sigma} &\sim \mathcal{N}\Big((\sigma^{-2}I + X_{[\pi]}^{ op}X_{[\pi]})^{-1}(\sigma^{-2}\mu_{[\pi]} + X_{[\pi]}^{ op}Y), \; \sigma^2(\sigma^{-2}I + X_{[\pi]}^{ op}X_{[\pi]})^{-1}\Big), \ \delta^2 &\sim ext{Inv-GAM}\Big(a + rac{|\pi| + 1}{2}, \; b + rac{1}{2}\sigma^{-2}(eta - \mu_{[\pi]})^{ op}(eta - \mu_{[\pi]})\Big) \end{aligned}$$

Conditional on the imputed missing values



Structural Update Probability of Acceptance

$$A(\pi
ightarrow \pi_{\star}) = \min \left\{ 1, \; rac{p(Y \mid \pi_{\star}, \delta^2)}{p(Y \mid \pi, \delta^2)} \cdot rac{p(\pi_{\star})}{p(\pi)} \cdot HR
ight\}$$

Acceptance for $\overline{A>p\sim U(0,1)}$

Missing Values Update - Gibbs Sampling Step

Compute Missing Values Posterior Parameters

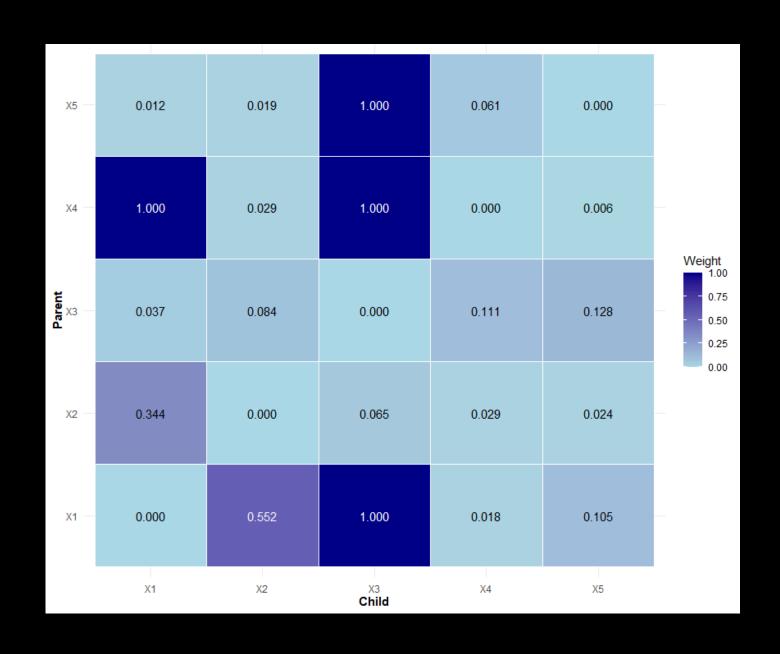
$$egin{cases} \mu^* = \sigma^{2^*} \cdot \left(rac{\mu_i}{\sigma^{2^{(i)}}} + \sum_{j:(X_i^t \in \pi_{(j)})} eta_i^{(j)} \cdot rac{x_j^{t+1} - \mu_{\{-i\}}^{(j)}}{\sigma^{2^{(j)}}}
ight) \ \sigma^{2^*} = \left(rac{1}{\sigma^{2^{(i)}}} + \sum_{j:(X_i^t \in \pi_{(j)})} rac{(eta_i^{(j)})^2}{\sigma^{2^{(j)}}}
ight)^{-1} \end{cases}$$

Conditional on the current structure and parameters

Sampling Missing Values iteratively from their FCD

$$x_{i[MIS]} \sim \mathcal{N}(\mu^*, \sigma^{2^*})$$

Posterior Distributions



 X_{2}^{t-1} X_{2}^{t-1} X_{3}^{t} X_{4}^{t-1} X_{4}^{t-1} X_{5}^{t} X_{5}^{t}

Edge Indicators Posteriors

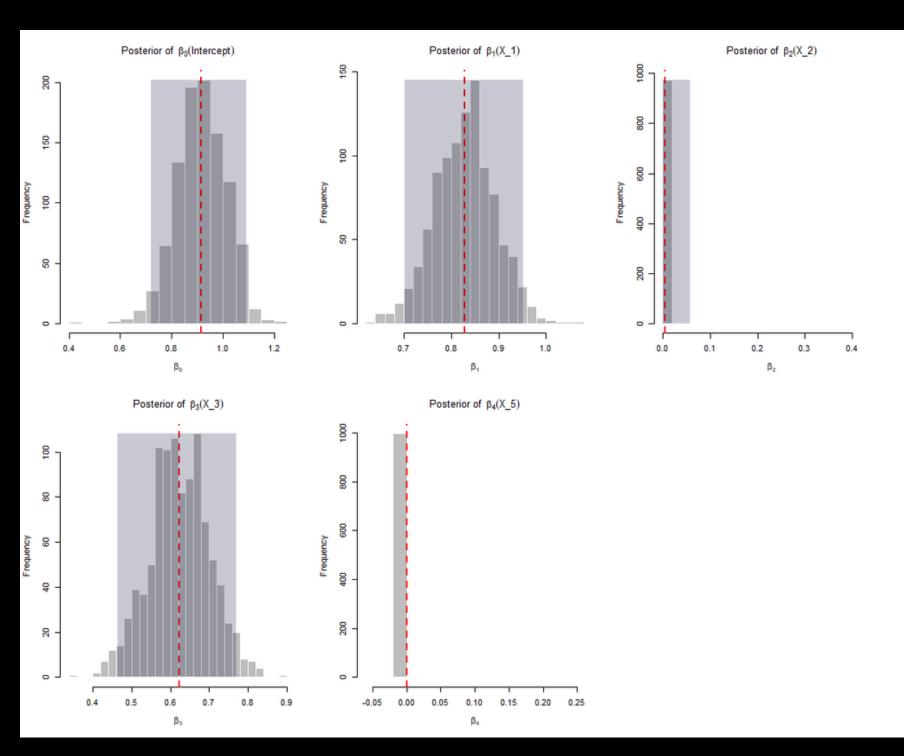
DBN Structure

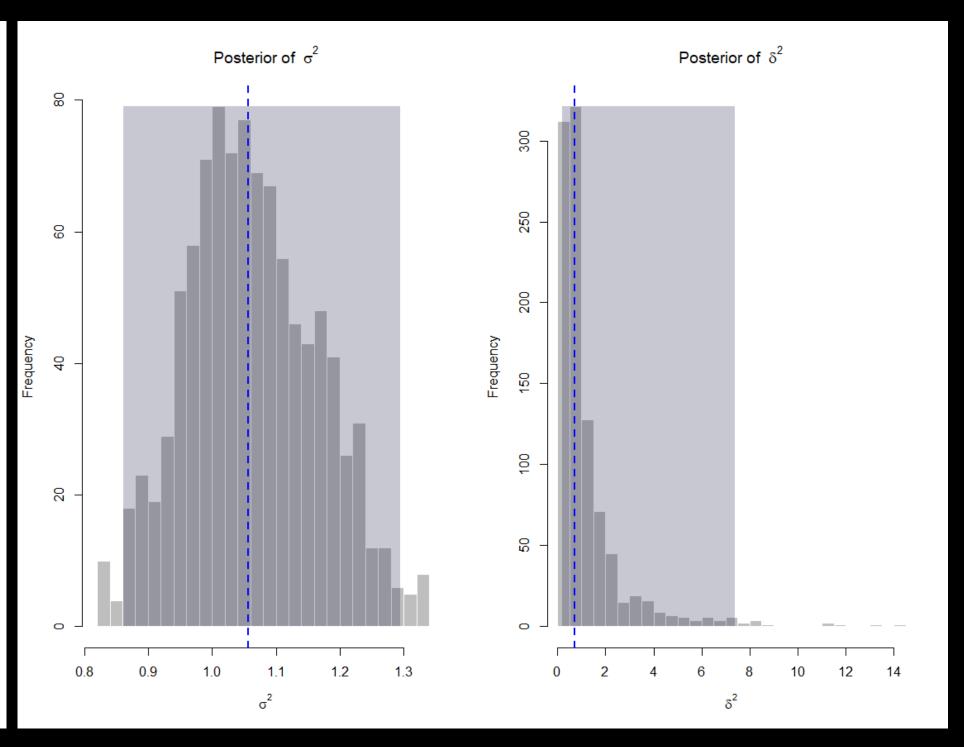
FUN IN RESTRICTION → KEEP ONLY THE LAST M SAMPLES (AFTER CONVERGENCE)

THIN OUT STEP ightarrow keep only one sample every $oldsymbol{v}$ to reduce autocorrelation

Posterior Distributions

For each Bayesian Linear Regression:





Linear Coefficients Posteriors

Noise and Uncertainty Parameters Posteriors

Applications in Intensive Care

LUME-DBN Validation

SIMULATION STUDIES

ICU CHALLENGE DATA

PREMATURITY CLINICAL DATA

LUME-DBN Validation

ICU CHALLENGE DATA

PREMATURITY CLINICAL DATA

- + DBN REFERENCE STRUCTURE AVAILABLE
- + DIFFERENT EXPERIMENTAL SCENARIOS
- DATA IS UNREALISTIC

Simulated Experiments - Experimental Setting

To assess the validity of LUME-DBN both in terms of convergence and network reconstruction accuracy multiple incomplete datasets are generated from 10 distinct DBNs

DBN GENERATION

- 10 DBNs with 10 nodes and a maximum of 5 parents per node
- Random Topological Order to avoid
- ullet Parameters: $eta \in U(0.2,0.5) \sigma^2 = 1$

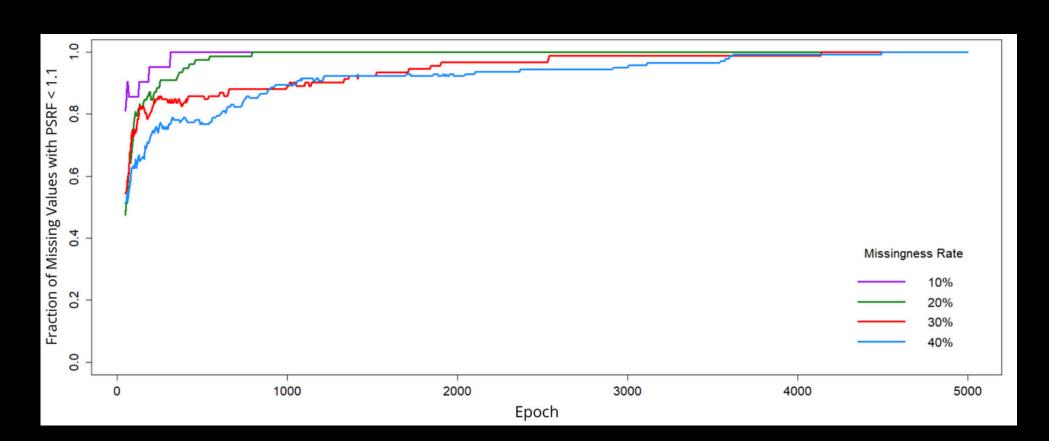
DATA GENERATION

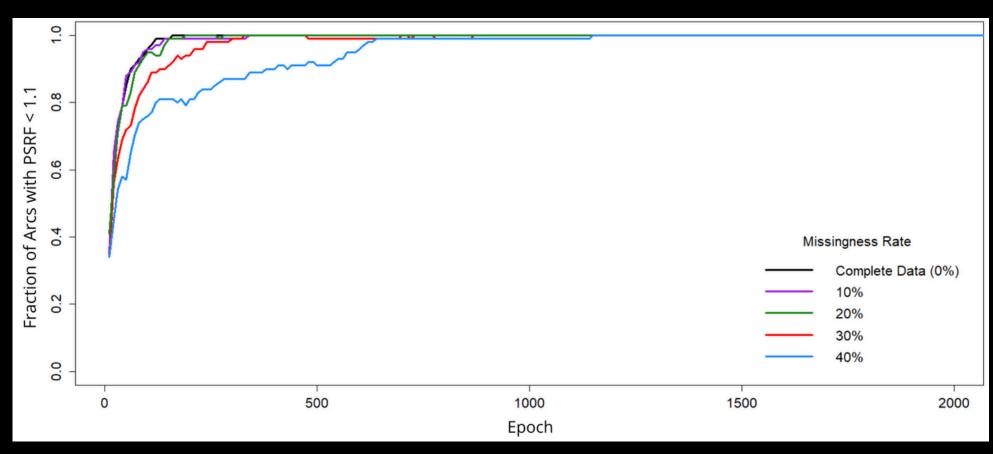
- ullet For each DBN a set of random time series is generated with 3 sample sizes: $\,T=\{50,100,200\}$
- ullet For each complete Dataset 4 incomplete dataset are generated at 4 sample sizes: $\{0.1, 0.2, 0.3, 0.4\}$

Simulation Results - Convergence Diagnostics

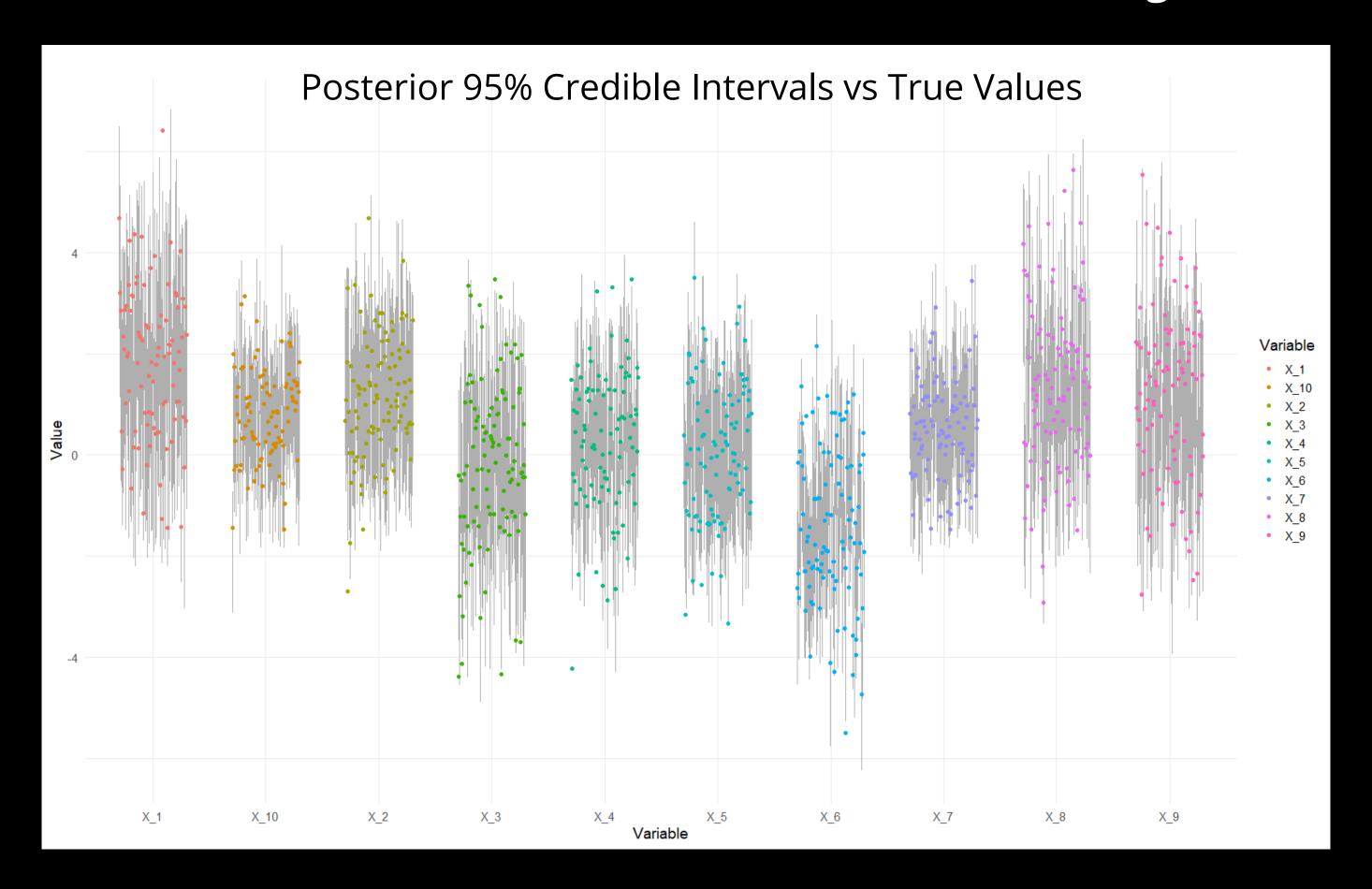
The convergence of the **DBN structure** and the **missing values is evaluated in terms of potential scale reduction factors** along parallel simulations

Convergence is reached when the proportion of posterior samples with PSRF < 1.1 consistently reaches 1

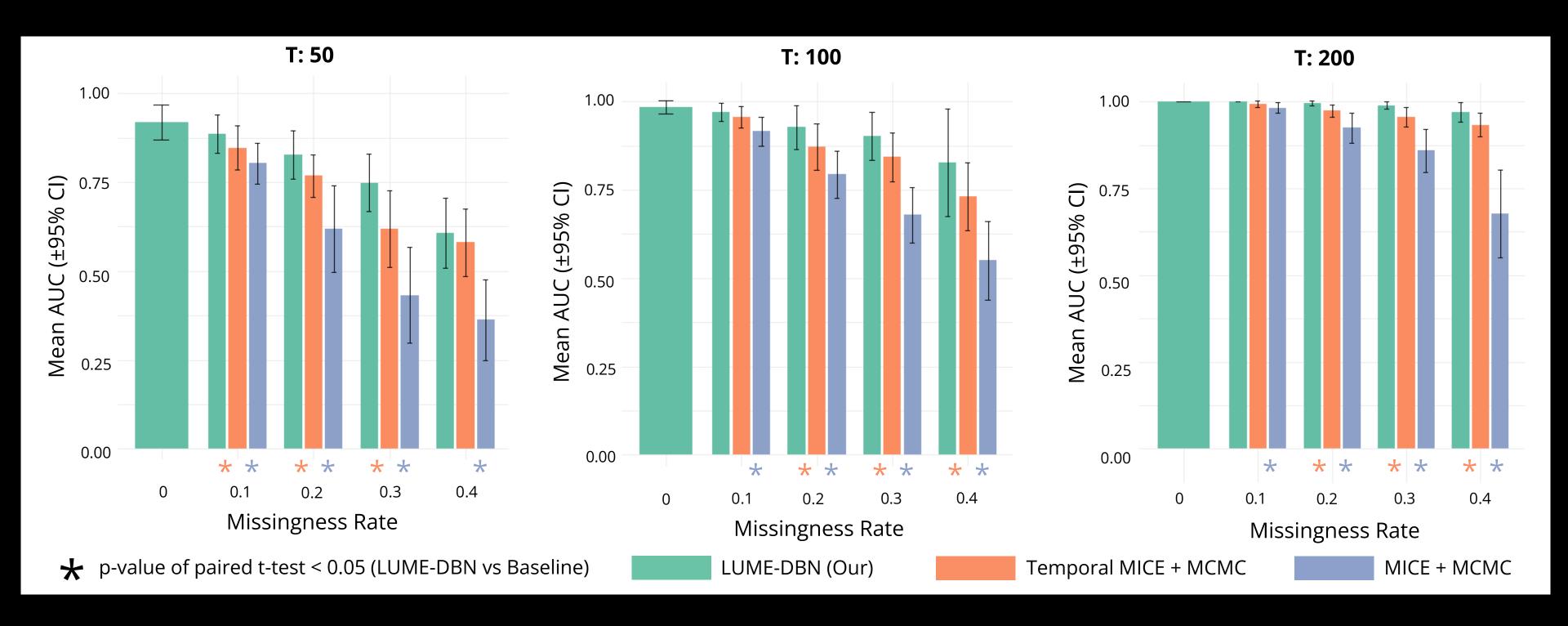




Simulation Results - 95% Credible Intervals for Missing Values



Simulation Results - Network Reconstruction Accuracy



LUME-DBN Validation

SIMULATION STUDIES

ICU CHALLENGE DATA

PREMATURITY CLINICAL DATA

- + REAL-WORLD RETROSPECTIVE DATA
- + DATA FROM MULTIPLE FACILITIES
- UNKNOWN DATA COLLECTION PROCEDURE
- NO REFERENCE STRUCTURE

A case study in Critical Care - The Physionet 2012 Dataset

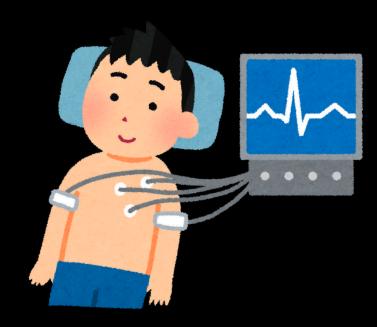
PHYSIONET DATABASE

- Records from 20k patients admitted to the ICU
- Data acquired in the first 48 hours of ICU stay

SAMPLE SELECTION

- Including severe patients only (SOFA score > 12)
- Stratification based on ICU types

MEDICAL ICU (MICU)
34 patients



CORONARY CARE (CCU)
114 patients

SURGICAL ICU (SICU)
104 patients

CARDIAC SURGERY (CSRU)
62 patients

A case study in Critical Care - Different Standardization Techniques

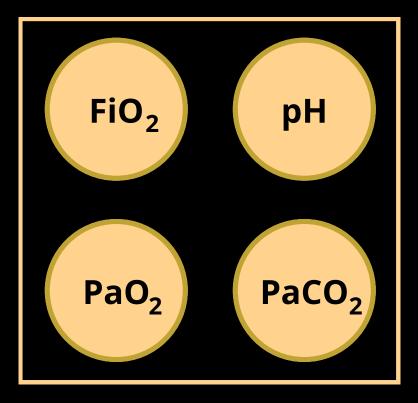
TEMPORAL DISCRETIZATION

- Discretization into 6-hour intervals (T = 9)
- Keeping the variables with missingness rates
 < 40% compatible with the experimental results

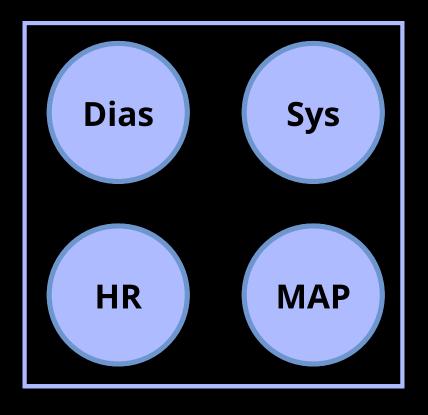
STANDARDIZATION

- Local Standardization: applied for each ICU group
- Global Standardization: on the whole dataset

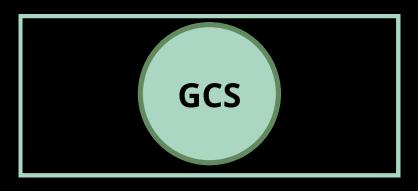
RESPIRATORY



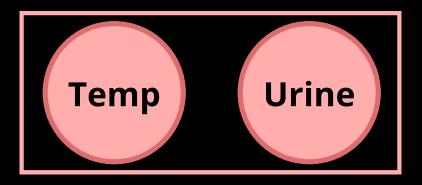
VITAL PARAMETERS



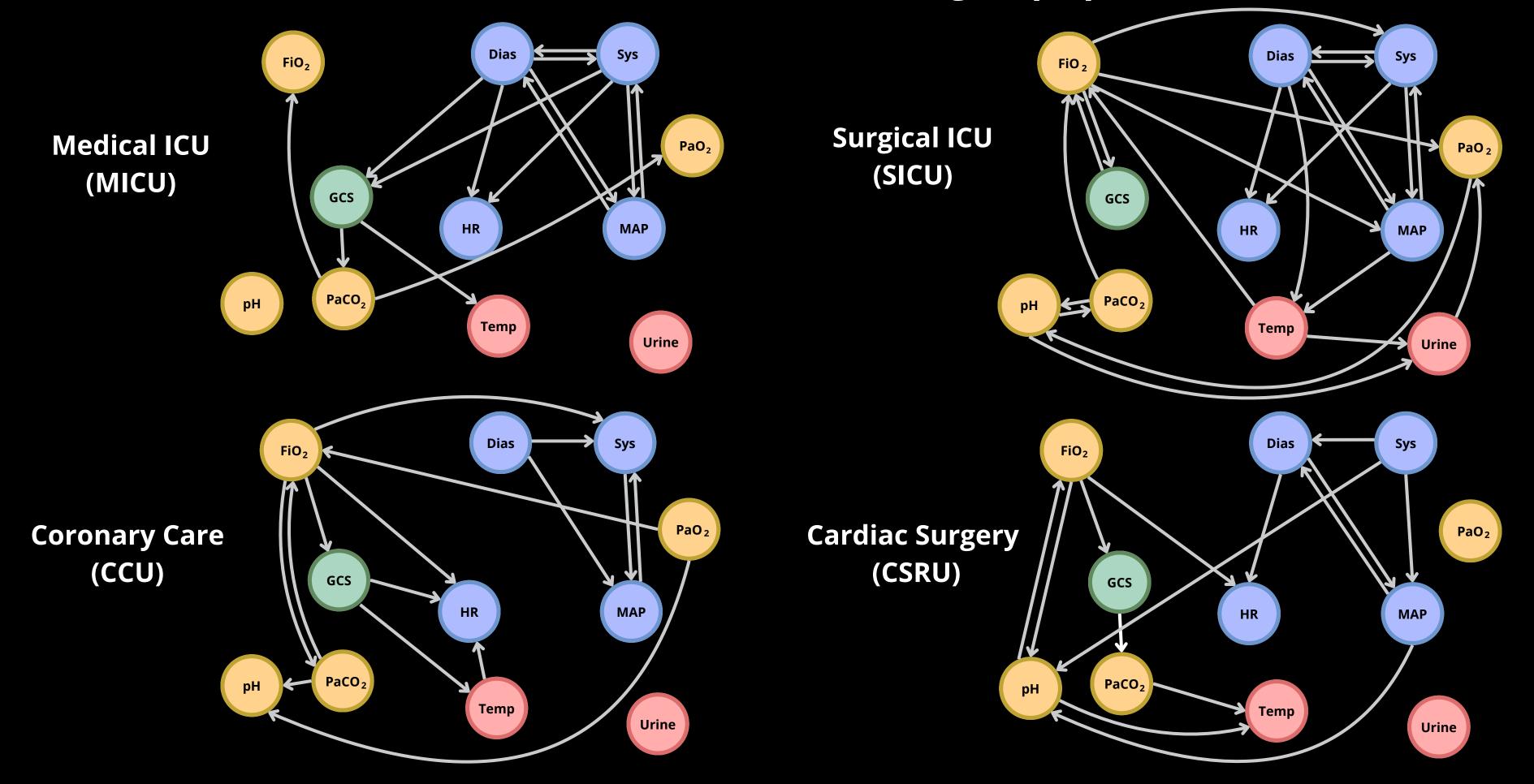
NEUROLOGICAL



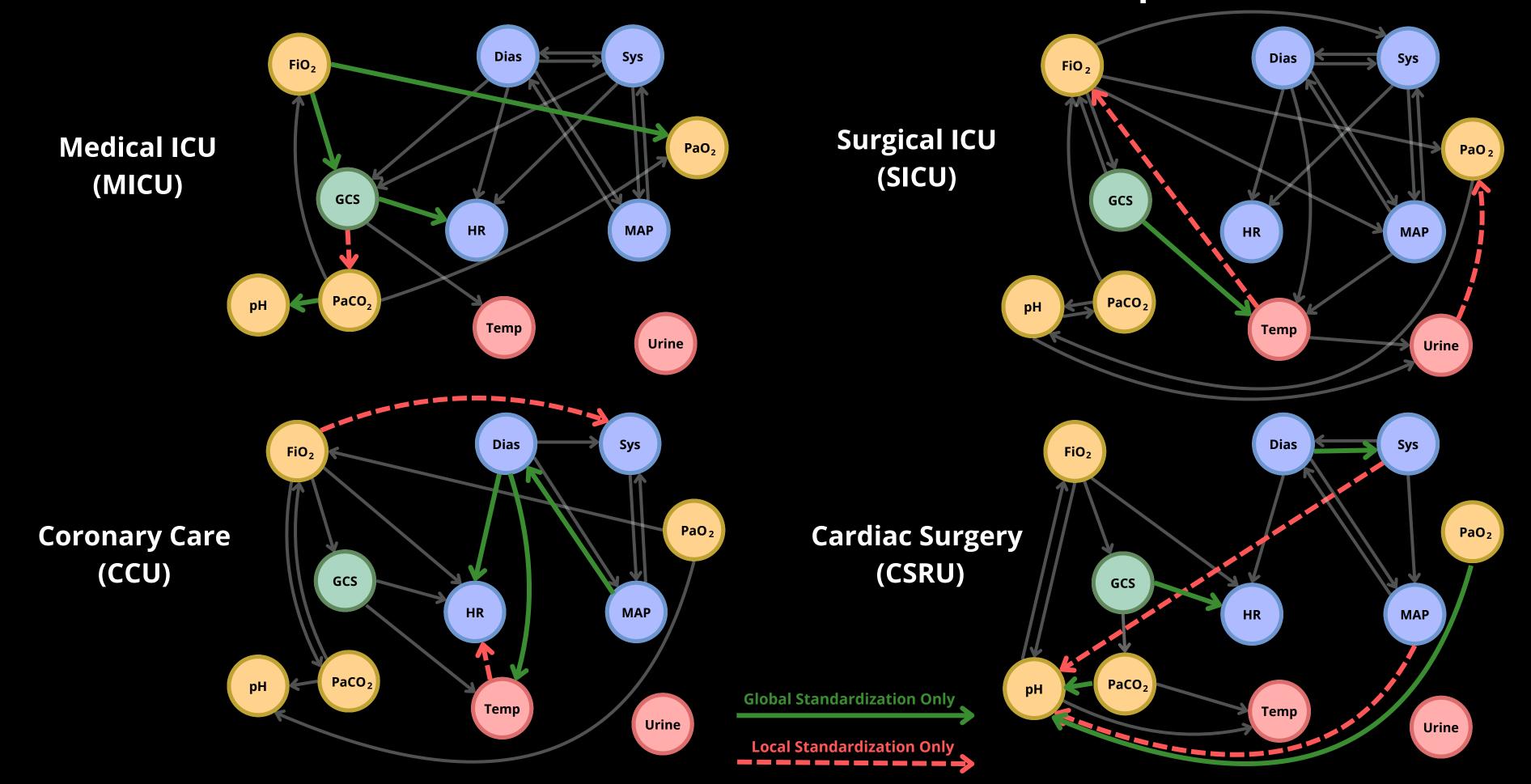
PHYSIOLOGICAL



Commonalities and Differences between group-specific DBNs



Results with different Standardization Techniques



LUME-DBN Validation

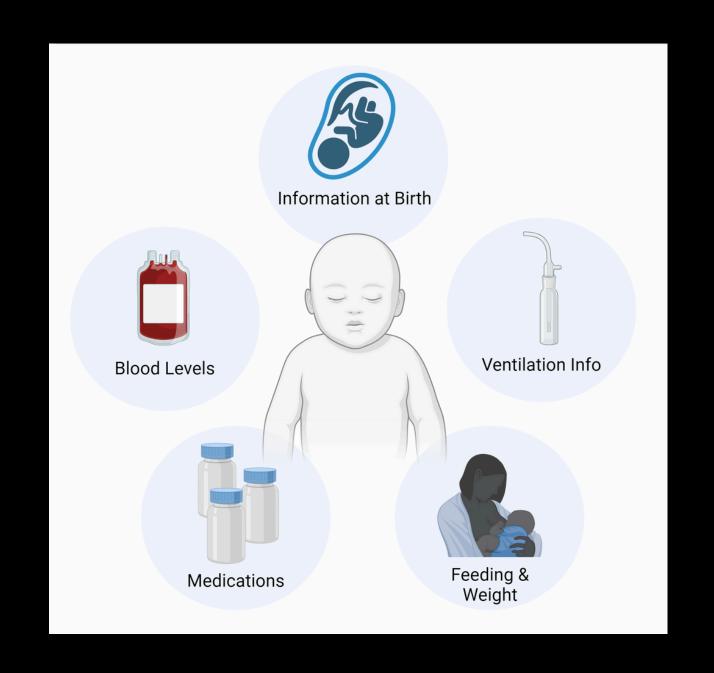
SIMULATION STUDIES

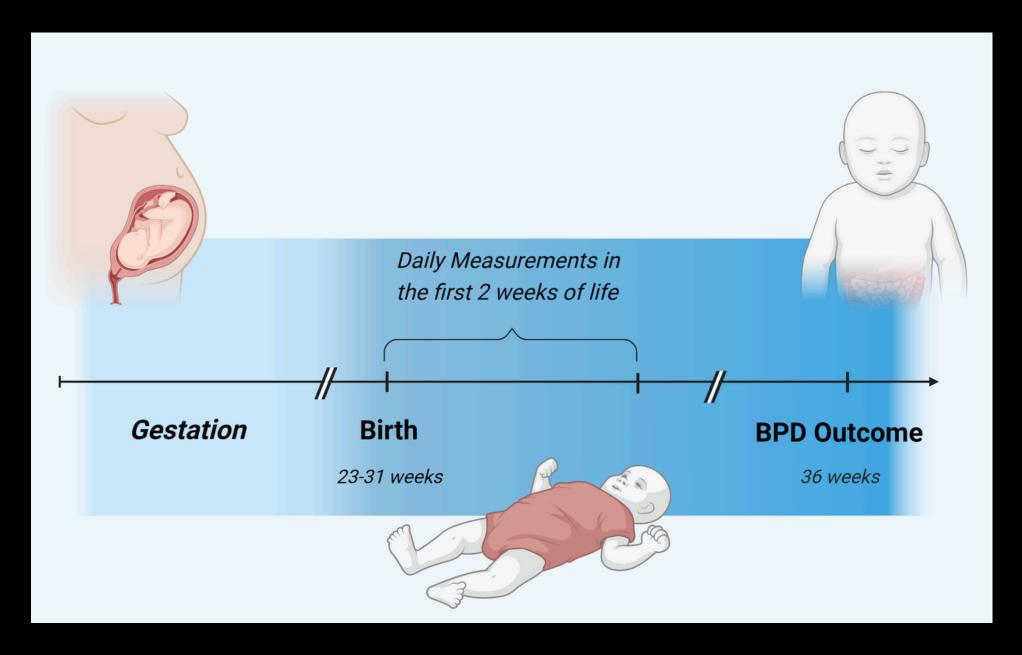
ICU CHALLENGE DATA

PREMATURITY CLINICAL DATA

- + REAL-WORLD RETROSPECTIVE DATA
- + KNOWN DATA COLLECTION PROCEDURE
- + CLINICAL DOMAIN KNOWLEDGE
- NO REFERENCE STRUCTURE

A case study on Bronchopulmonary Dysplasia



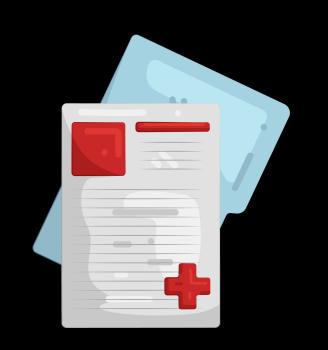


A multisciplinary project in collaboration with the neonatologist of the TIN Mangiagalli with the aim of early detecting BPD and understanding respiratory dynamics in extremely and very preterm newborns

Data Preprocessing

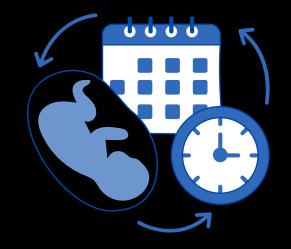
DATA COLLECTION

- Patients born from 2017 to 2022 with gestational age (GA) < 32 weeks and birth weight <1500 g
- Data extraction from the Electronic Medical Records (EMR)



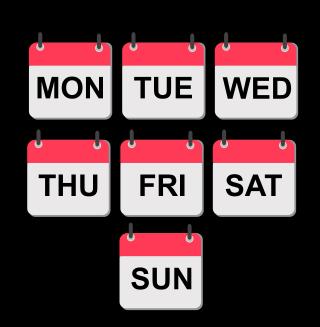
SAMPLE SELECTION

- Excluding patients with congenital malformations and outborns
- Ruling out patients not disposing of BPD outcomes at 36 weeks



DISCRETIZATION

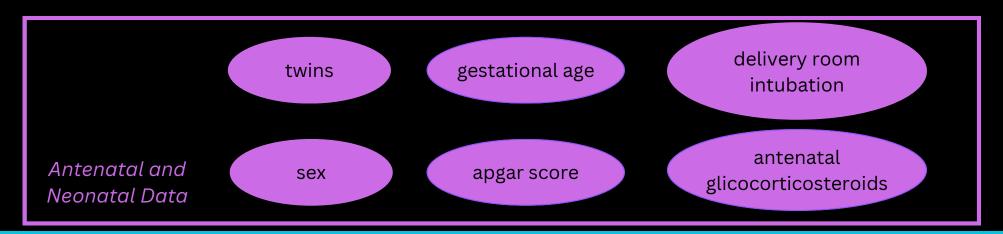
 Time discretization aggregating dynamic data on a daily basis (cumulative dosages, median ventilation and blood parameters)

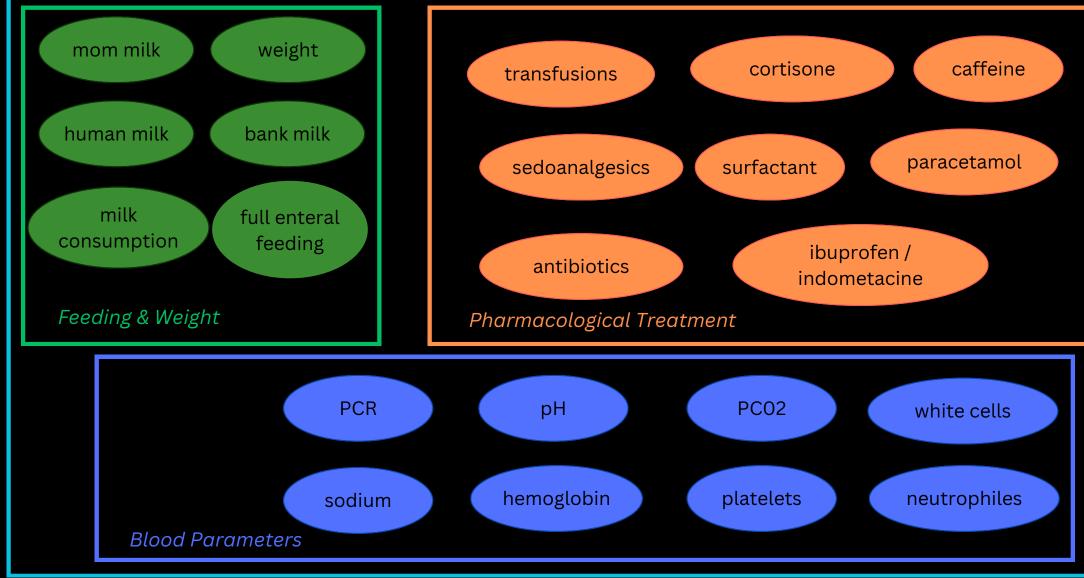


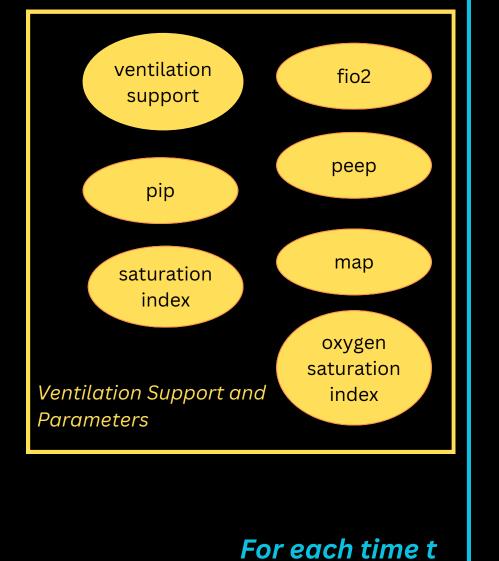
DATA CLEANING

- Validation of the features ranges based on laboratory thresholds
- The resulting dataset is comprised of mixed static and temporal data from 461 babies (287 healthy and 174 BPD)

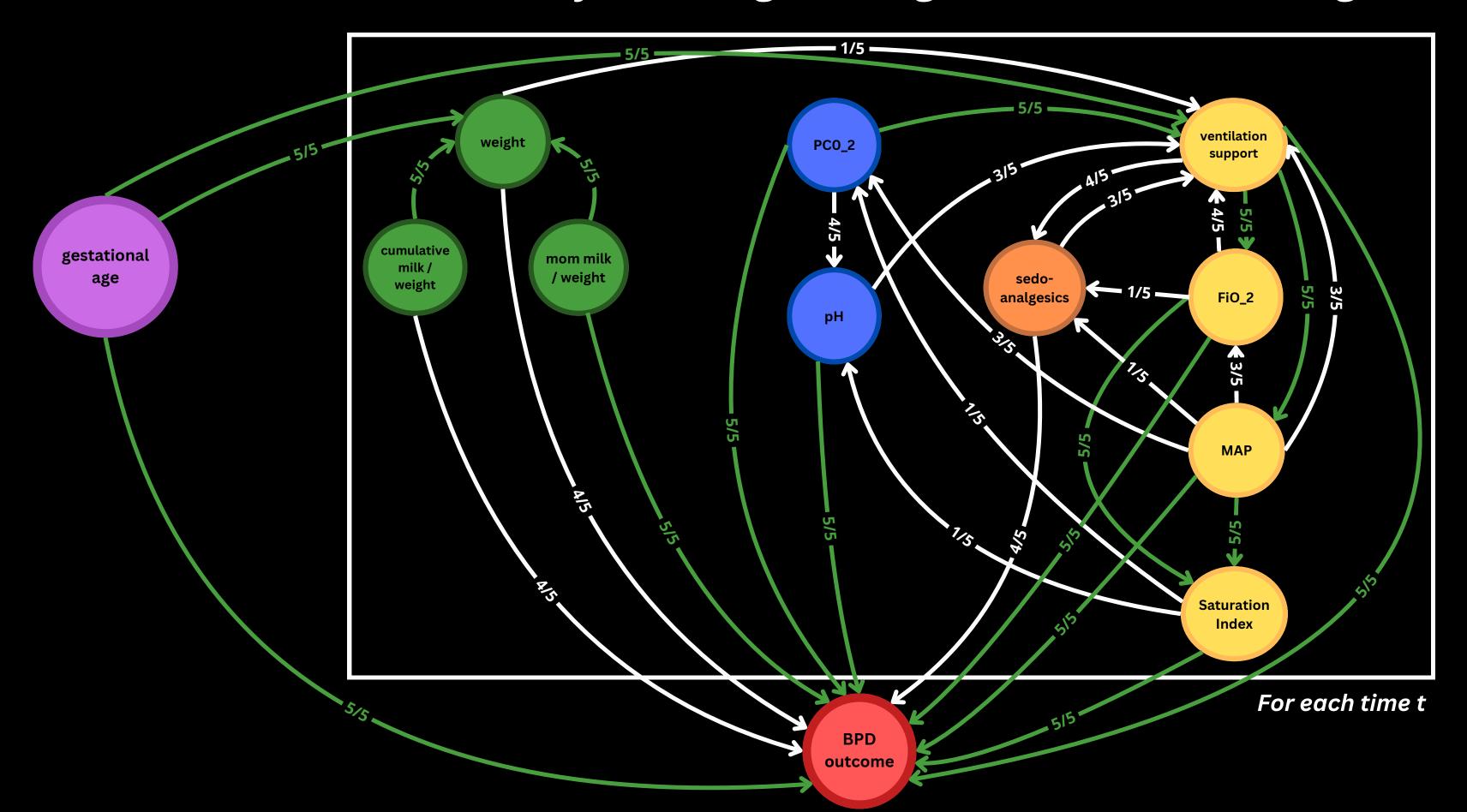
Incorporating prior structural knowledge



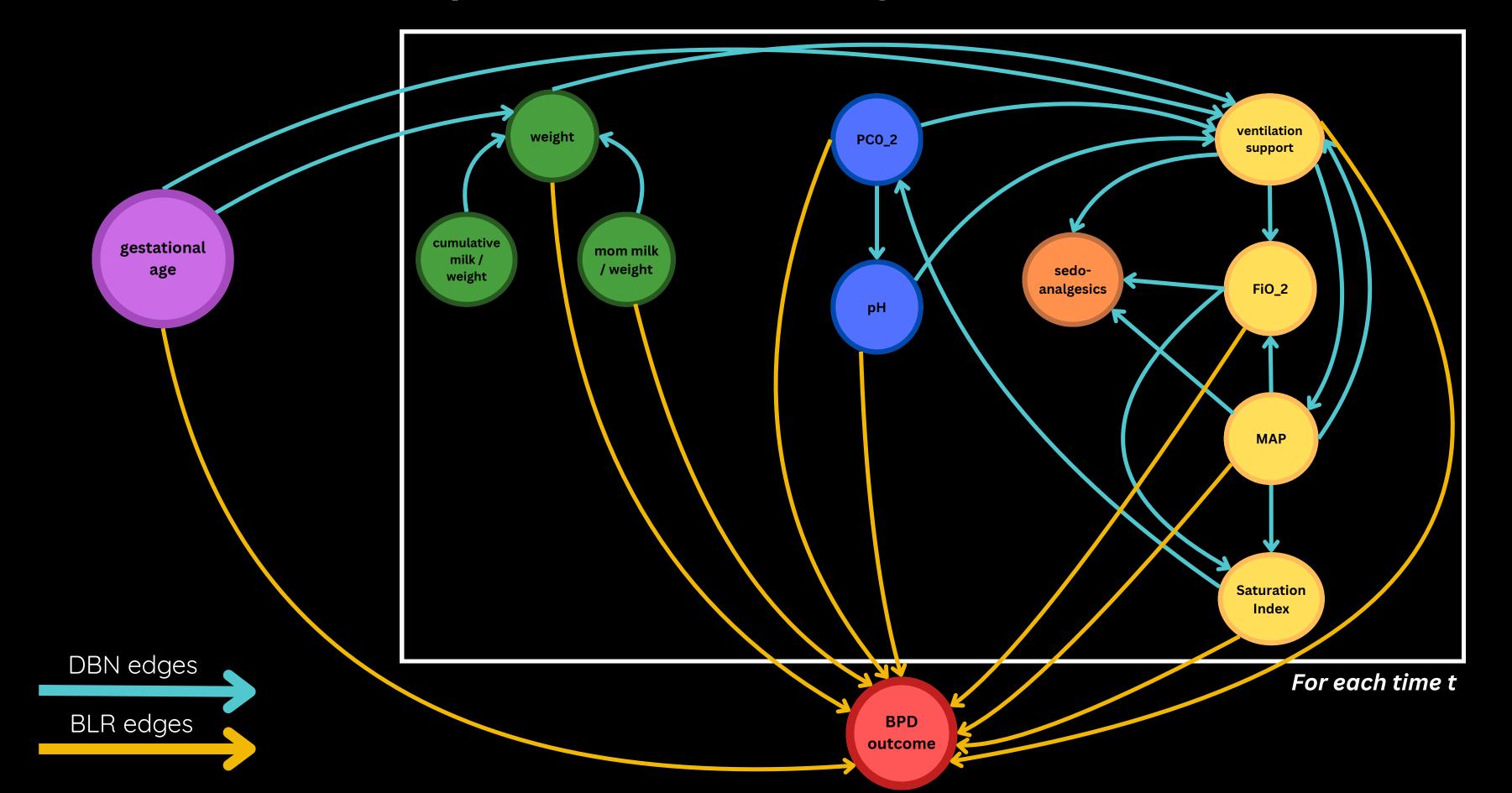




Prior informed DBN + Bayesian Logistic Regression (BLR) learning



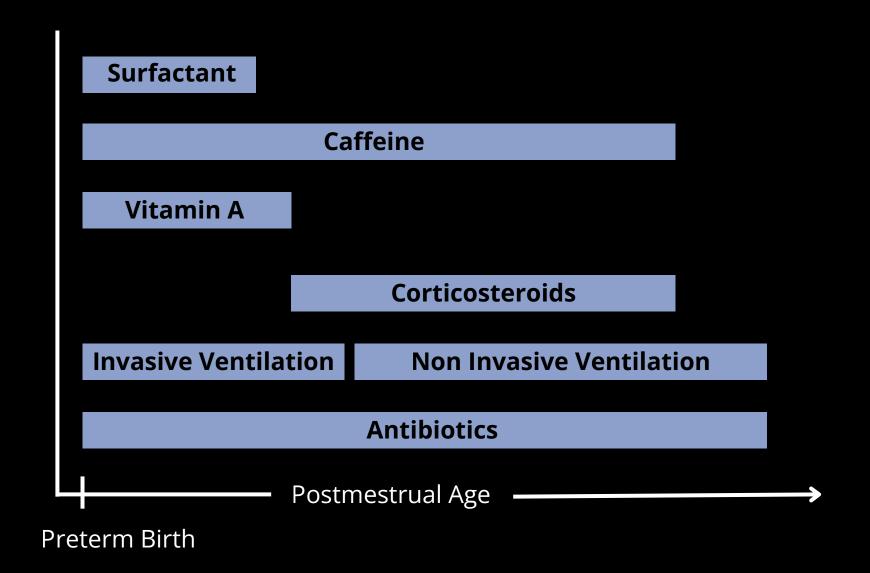
Expert-informed Learning of DBN + BLR



Why Standard (Homogeneous) DBNs could be suboptimal?

Temporal Shifts in System Dynamics

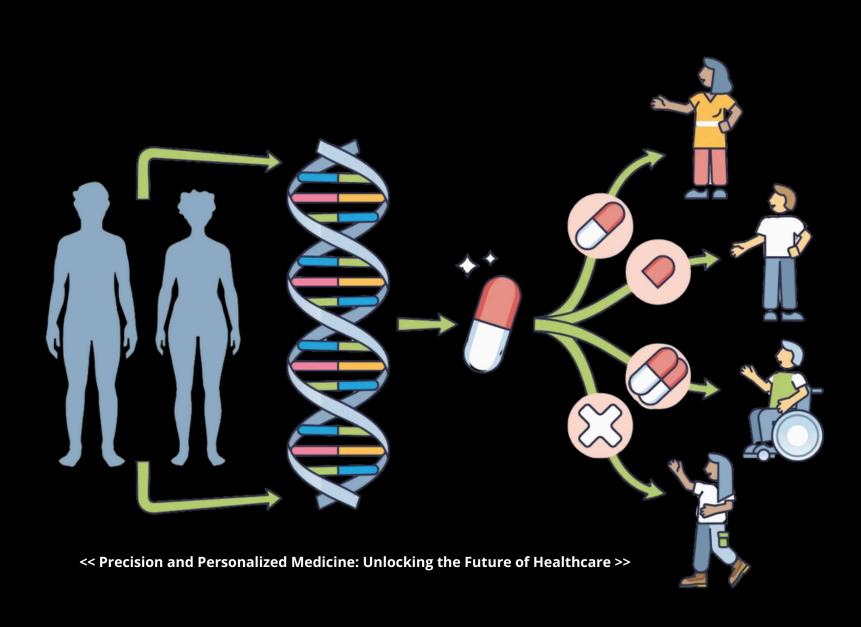
Unstable patients condition in the first few weeks of life

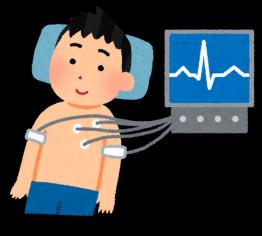


European standards for treatment adoption in premature newborns

Evolving temporal mechanism identification towards a better patient care over time

Deviation in treatment effects across patients groups





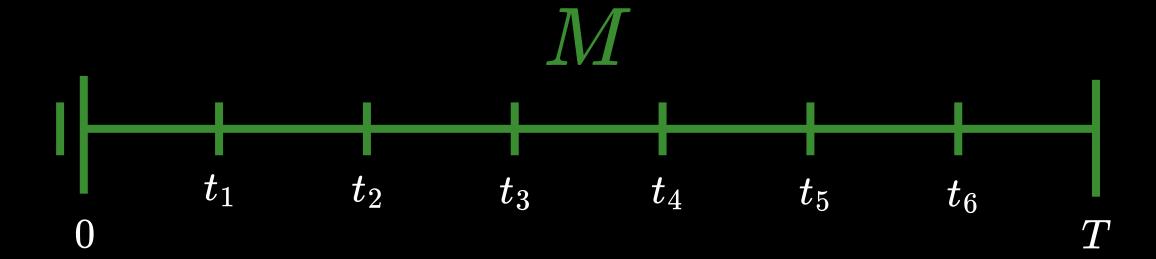
CORONARY CARE (CCU) CARDIAC SURGERY (CSRU)

Treatment Effects changing from patient to patient

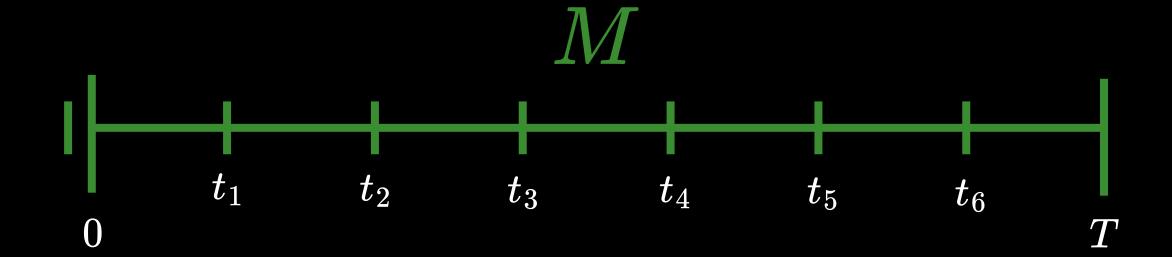
Distinct Groups of Patients with diverse conditions

Varying dynamics identification across different groups towards personalize patient care

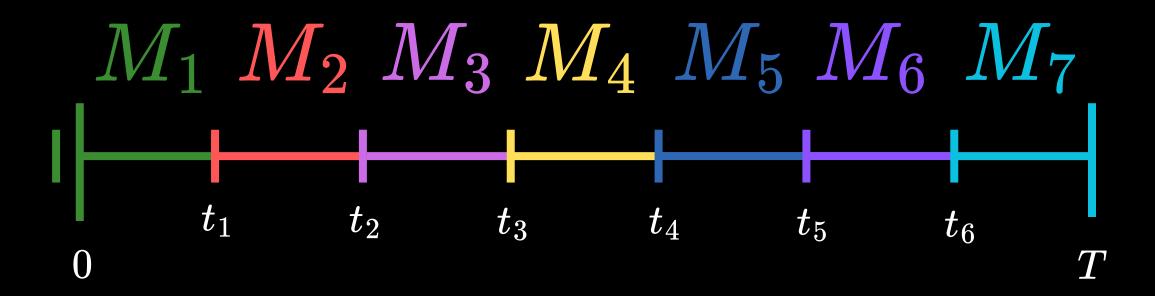
STATIONARY MODEL ACROSS
THE WHOLE PERIOD



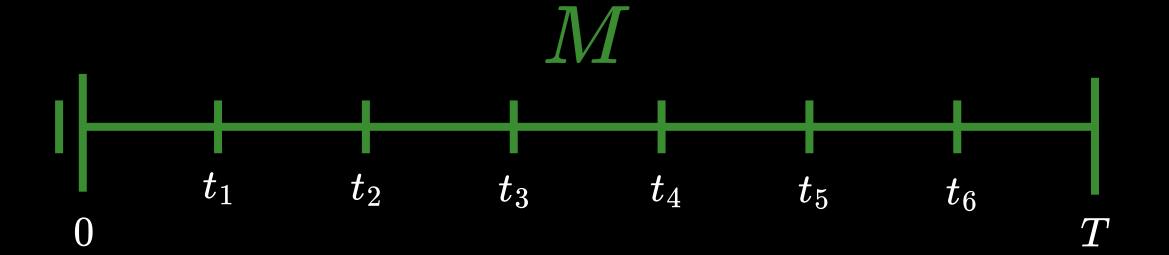
STATIONARY MODEL ACROSS
THE WHOLE PERIOD



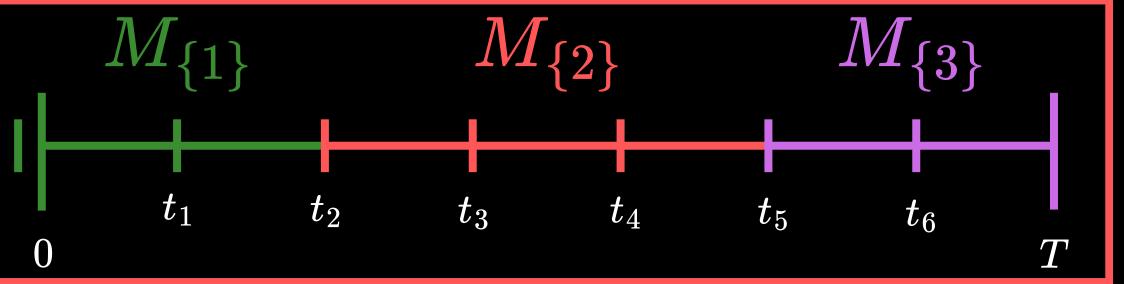
INDEDENDENT MODELS FOR EACH TIME FRAME



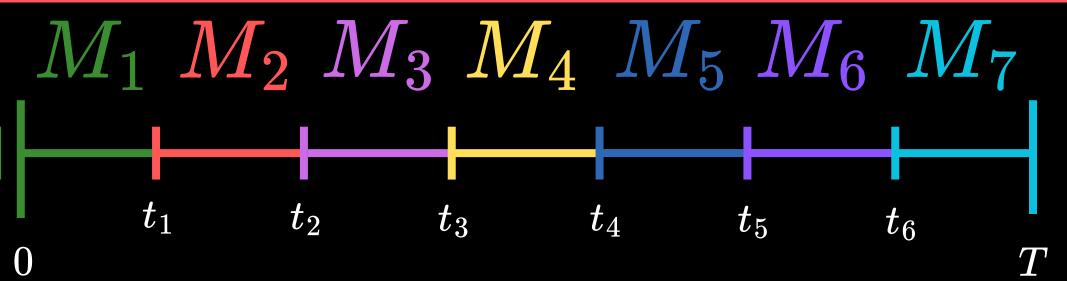
STATIONARY MODEL ACROSS
THE WHOLE PERIOD



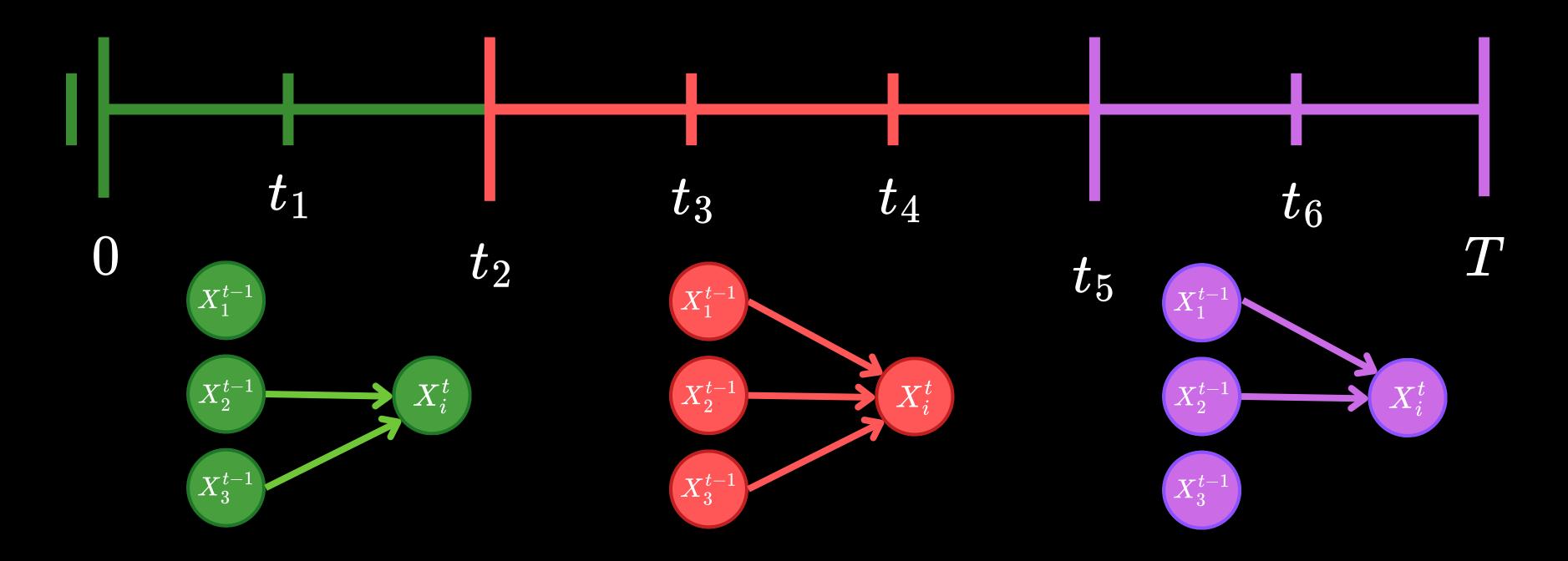
NON-STATIONARY MODEL
with a CHANGEPOINT PROCESS



INDEDENDENT MODELS FOR EACH TIME FRAME



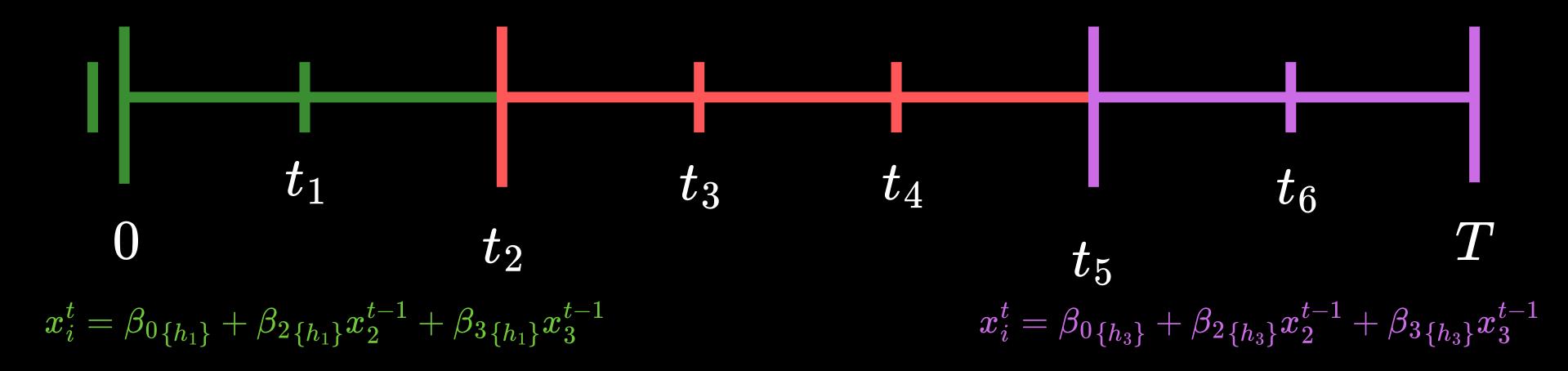
Non-stationary and Non-homogeneous DBNs



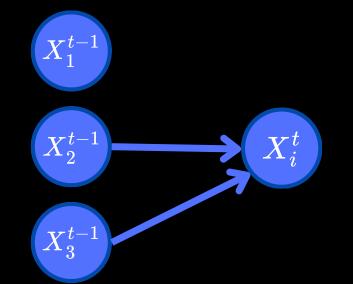
<u>NON-STATIONARY DBNs</u>

Structure Changes Over Time

Non-stationary and Non-homogeneous DBNs



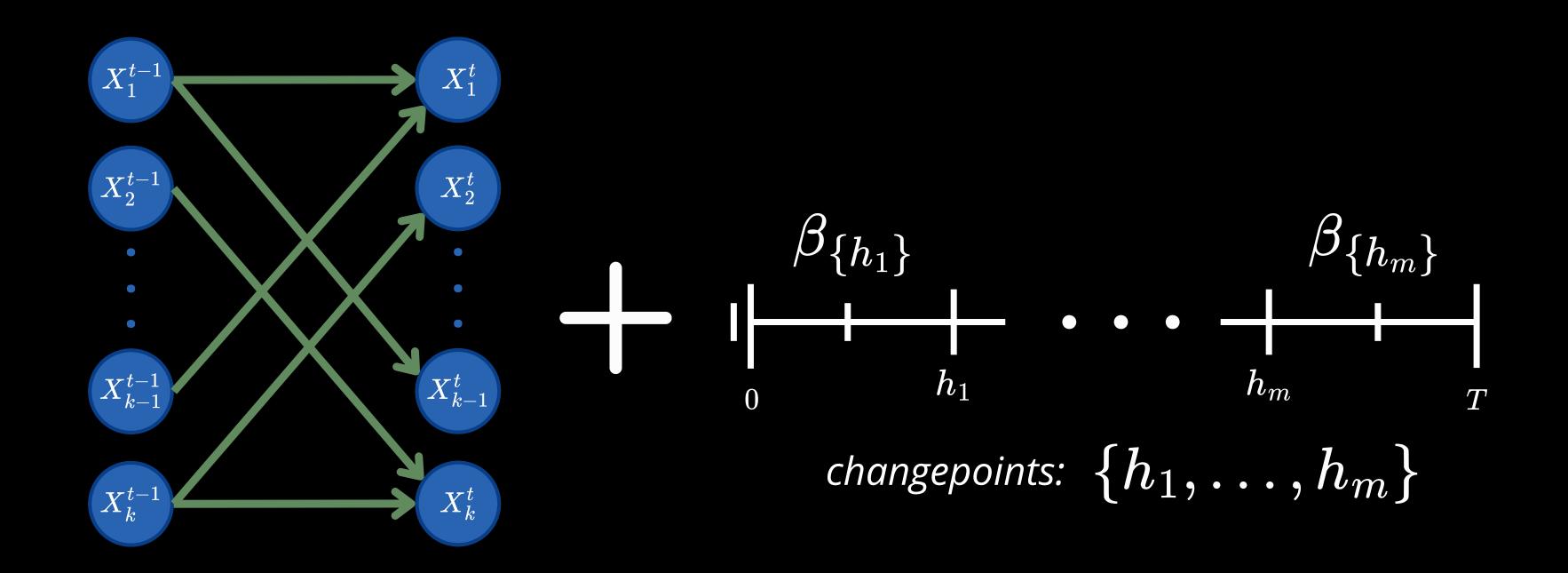
$$x_i^t = eta_{0\{h_2\}} + eta_{2\{h_2\}} x_2^{t-1} + eta_{3\{h_2\}} x_3^{t-1}$$



NON-HOMOGENEOUS DBNs

Structure is Fixed - Parameters Change Over Time

Non-homogeneous Dynamic Bayesian Networks

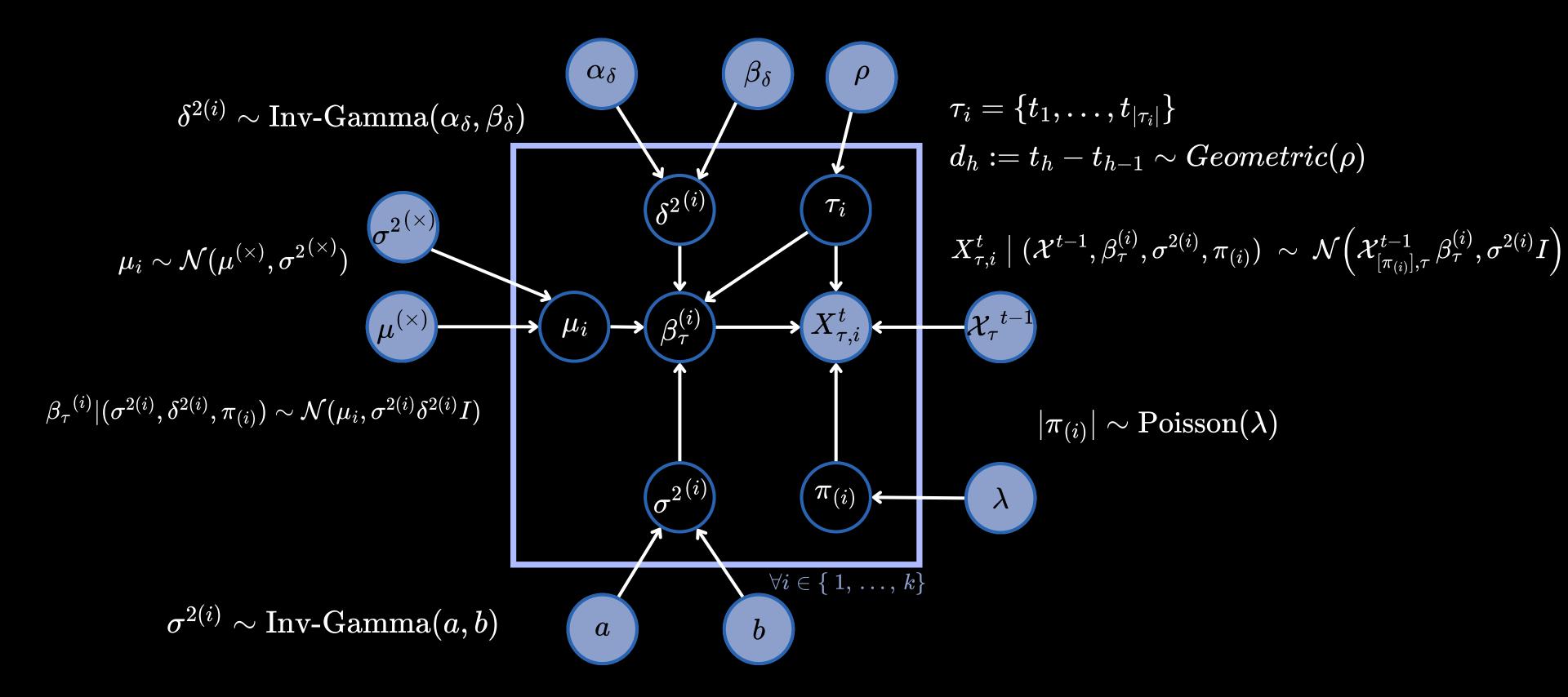


TRANSITION NETWORK

A SET OF CHANGEPOINTS

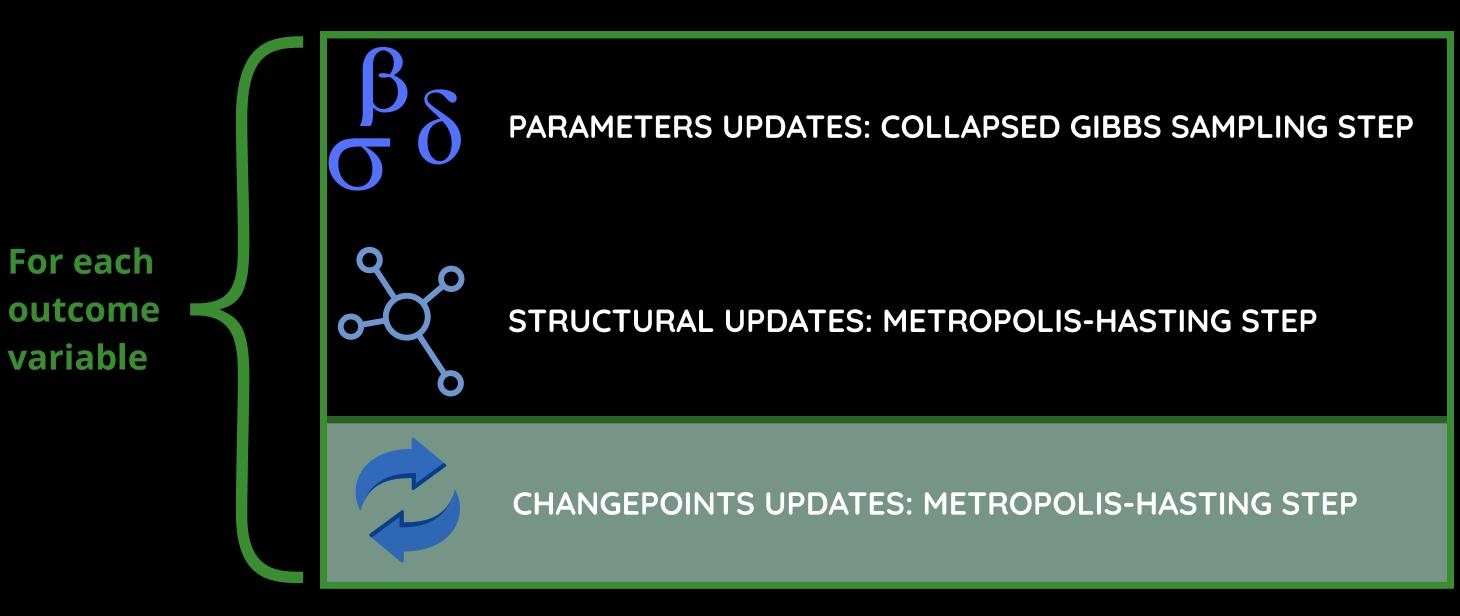
Learning NH-DBNs from Incomplete Data

Globally Coupled Non-Homogeneous DBNs



LUME-NH Algorithm

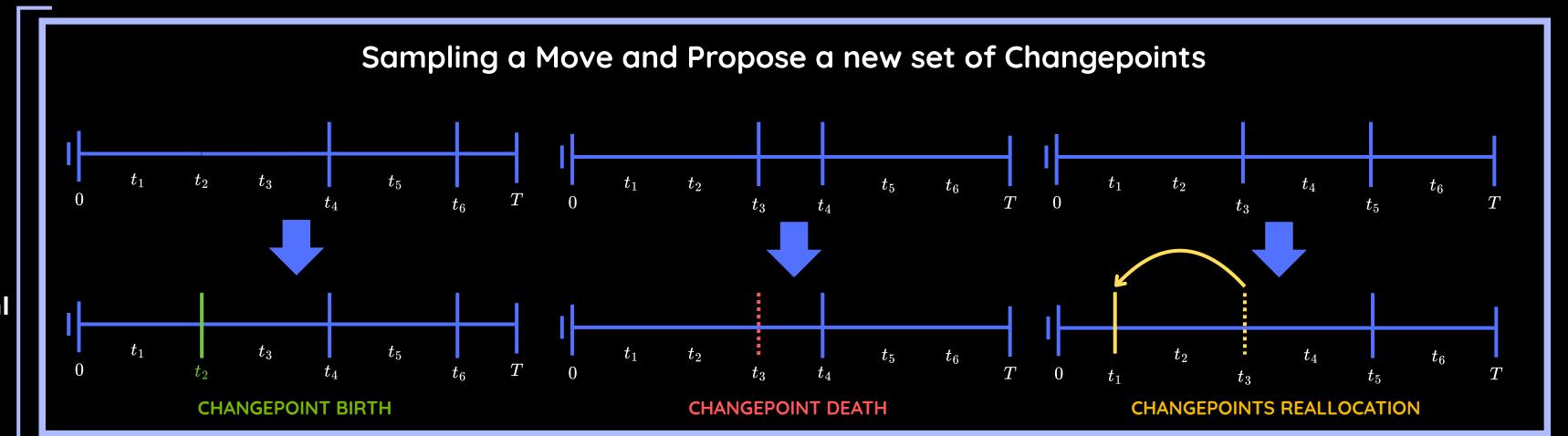
LUME-NH is an extension of **LUME-DBN** for learning NH-**DBNs** from **Incomplete data**.



MISSING VALUES IMPUTATION: GIBBS SAMPLING STEP

For each sample and time frame

Changepoint Set Update



Conditional on the current structure and missing values

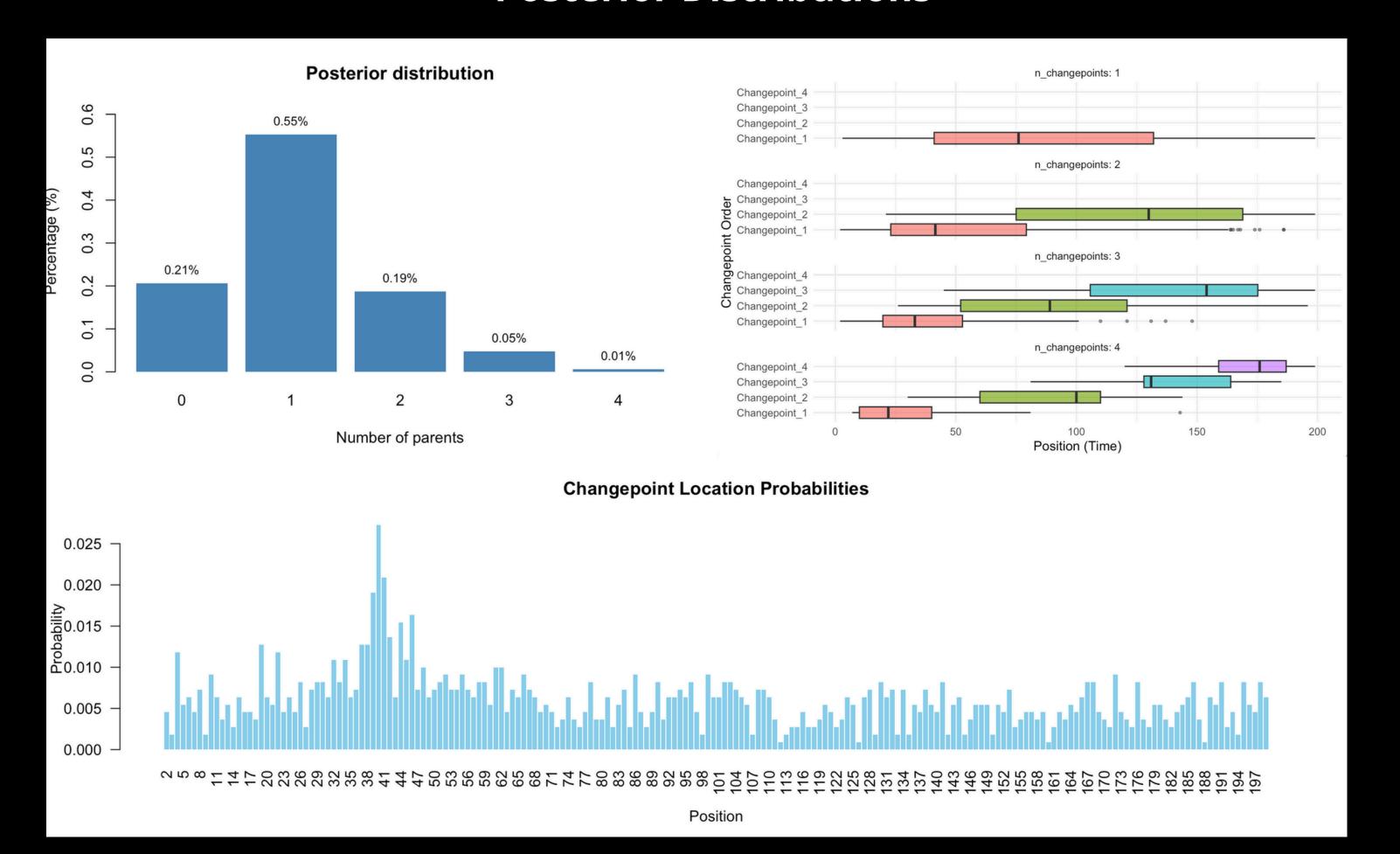
Sampling a New Global Mean Vector

$$au_{\star} \sim N(\mu^{ imes imes}, \Sigma^{ imes imes})$$

Changepoint Set Update Probability of Acceptance ${
m for}\ A>p\sim U(0,1)$

$$A([au,\mu]
ightarrow [au_\star,\mu_\star]) = \min \left\{ 1, \; rac{p(Y \mid au_\star,\mu_\star,\pi,\delta^2)}{p(Y \mid au,\mu,\pi,\delta^2)} \cdot rac{p(au_\star)}{p(au)} \cdot rac{p(\mu_\star)}{p(\mu)} \cdot rac{p(\mu \mid \sigma^2,\delta^2,\pi, au,Y)}{p(\mu_\star \mid \sigma^2,\delta^2,\pi, au_\star,Y)} \cdot HR
ight\}$$

Posterior Distributions



Take Home Messages

NO MODEL FITS EVERYTHING

- In real-world settings, controlling all external factors is impracticable. Every model is therefore imperfect.
- Searching for better models matters, but acknowledging and quantifying uncertainty matters even more.

THE APPLICATION DRIVES EVERYTHING

- A strong theoretical setting is essential, but real problems emerge in practice.
- Analyze your data. Visualize it. Let what you see challenge, and try to break your assumptions.

EXPERT KNOWNLEDGE IS NOT OPTIONAL

- Purely data-driven approaches rarely succeed, especially with limited data.
- Expert insight comes from literature, experience, and scientific reasoning. Ignoring what is already known is not innovation. It's information loss.

Thank You

