
Esercizi sulle serie

1. Si studi il carattere delle seguenti serie (specificando in caso di convergenza se si tratta di convergenza
assoluta):
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2. Siano {an} e {bn} due successioni reali tali che

{bn} è monotona e infinitesima e an ∼ bn per n → ∞. (1)

(i) Si dimostri che, se bn ̸= 0 e an

bn
è monotona definitivamente, allora

∑
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(ii) Si può concludere che
∑

(−1)nan converge sotto la sola ipotesi (1)?

Suggerimenti.

(i) Si scriva (−1)nan = (−1)nbn
(

an
bn

− 1
)
+ (−1)nbn.

(ii) Si consideri la serie
∑∞

n=1
(−1)n√

n

(
1 + (−1)n√

n

)
.

3. Per ciascuna delle seguenti serie, si stabilisca se è assolutamente convergente, semplicemente ma non
assolutamente convergente o non convergente:
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4. Si stabilisca per quali x ∈ R la serie
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(i) Per ogni n ≥ 2, sia Sn =
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la somma parziale n-esima. Si dimostri che, per
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(ii) Si verifichi che la serie converge e si calcoli la sua somma.

6. Per quali valori del parametro reale α la seguente serie è convergente:

+∞∑
n=2

lnα n

n+ n2 (1− cos (πn))
.

2


