Esercizi sulle serie

1. Sistudi il carattere delle seguenti serie (specificando in caso di convergenza se si tratta di convergenza
assoluta):
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2. Siano {ay} e {b,} due successioni reali tali che
{bn} & monotona e infinitesima e a, ~ b, per n — oco. (1)
(i) Si dimostri che, se b, # 0 e {* & monotona definitivamente, allora » 3(—1)"a, converge.

(ii) Si puo concludere che Y (—1)"a, converge sotto la sola ipotesi (1)?

Suggerimenti.

(i) Si scriva (=1)"an = (—=1)"by (%n - 1) + (=1)"bn.

3. Per ciascuna delle seguenti serie, si stabilisca se & assolutamente convergente, semplicemente ma non
assolutamente convergente o non convergente:
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4. Si stabilisca per quali z € R la serie

converge.

5. Si consideri la serie




(i) Per ognin > 2, sia S, = >.;_,log (1 + (_g)k) la somma parziale n-esima. Si dimostri che, per
ognin > 1,

1
Son = log (1 + ) s Son+1 = 0.
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(i) Si verifichi che la serie converge e si calcoli la sua somma.

6. Per quali valori del parametro reale o la seguente serie ¢ convergente:
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