

Materiali per energia solare

Dipartimento di Scienza dei Materiali, Centro MIB-SOLAR (U5)

Energia dal sole

WE NEED ENERGY FOR

ELECTRICITY

Photovoltaics

THERMAL ENERGY HEATING
Direct/Fuels

REACTANTS AND FUELS

for manufacturing and transportation

- 1st and 2nd Gen: natural photosynthesis (biomasses, biofuels)
- 3^{rd} Gen: Artificial Photosynthesis (reduction of H_2O and CO_2 to H_2 , CH_4 , CH_3OH , etc.)

Combustibili e Reagenti da

Energy from Sun

Natural photosynthesis (1st and 2nd Gen. biomasses)

Refinery

process

Double step process

Photovoltaic (electricity)

PV-driven electrolysis

Single step process

Artificial photosynthesis (3nd Gen)

Solar fuels (H_2 , O_2 , CH_4 , CH_3OH , etc.)

L'approccio molecolare

electrolyte/transport layers/...

DYE/LIQUID-SOLID INTERFACE

MOLECULAR
ENGINEERING
tuning of device
properties

ORGANIC/OXIDE INTERFACE

SEMICONDUCTOR
OXIDE
charge collector

Argomenti

Combustibili Solari

Industria: integrazione architettonica

90 mq, 24 kWh/day (9000 kWh/y)

Verso l'economia dell'idrogeno

ITALY: first hydrogen service station (Bolzano Sud, A22, Brennero highway)
(June 2015)

Fotovoltaico

PROGETTAZIONE, SINTESI E CARATTERIZZAZIONE DI MOLECOLE E POLIMERI AROMANICI ED ETEROAROMATICI

progettazion

e

caratterizzazione

dispositivo

group

Molecole e elettroliti per l'energia solare

SENSIBILIZZATORI A BASE AROMATICA ED ETEROAROMATICA

ELETROLITI A BASE ACQUOSA

Design of

metal free sensitizers

- * Enhancing optical properties and light harvesting efficiencies
- » Introduction of π spacers between D and A groups

* Enhancing wettability

» Hydrophilic groups

phenothiazine scaffold

* Bio-inspired conjugates

» Sugars, Hydrogenases

» Different anchoring groups

★ DEGLI STUD

WORKAT MIB-SOLAR: I'metal-free dye-sensitized photocatalysis

Phenothiazine/Phenoxazine

Bended core

Planar core

Carbazole

Introduction:

Natural vs Artificial Photosynthesis

Natural Photosynthesis

Solar efficiencies < 1%

 $H_2O \xrightarrow{hv} "H_2" + 1/2 O_2$ $\downarrow CO_2$ $\downarrow CO_2$ $\downarrow carbohydrates$

Artificial Photosynthesis

$$H_2O \xrightarrow{hv} H_2 + 1/2 O_2$$

THE CHEMICAL CHALLENGE:

Increase efficiency of multi-electron multi-proton transformations

WORK AT MIB-SOLAR:

metal-free dye-sensitized photoelectrochemistry to hydrogen

Sensitizers and water oxidation catalyst

Photoelectrochemical cell

Roadmap to artificial leaf