Laboratorio Sintesi Materiali Organici

Prof. Luca Beverina Dr. Mauro Sassi

Dr.ssa Sara Mattiello

2 synthesis labs

1 formulation lab (U28)

1 NMR-GC-MS lab

1 characterization lab

1 Post Doc

9 PhD students

2 Grad Students

Materiali organici sostenibili

Materiali

- Molecole e polimeri coniugati
- Coloranti e pigmenti

Metodi

- reazioni in ambienti micro e nanoeterogenei
- reazioni di arilazine diretta

Targets in the 2023-2024 Timeframe

Workflow

Describe the problem in chemical and material science terms

Design (based on structure property relationships)

Retrosynthesis (and related operations at the device level)

Synthesis, optimization and scale up

Full characterization(UV-Vis, FTIR, NMR, DSC/TGA, Mass, AE,...)

Why organics

Methods

Standard organic chemistry procedures

Nature's way

- Toxic solvents
- Long reaction time
- High temperature
- High palladium loading
- Controlled environment
- Complex purification

■Water

☐ Fast reactions

☐ Room temperature

☐Traces of metals

☐In air

■ No purification

The E-factor, processes beyond the yield

$$E - factor = \frac{Amount of organic waste (kg)}{Amount of product (kg)}$$

Industry sector	Annual production (t)	E-factor	Waste produced (t)
Oil refining	$10^6 - 10^8$	< 0.1	$10^5 - 10^7$
Bulk chemicals	$10^4 - 10^6$	<1–5	$10^4 - 5 \times 10^6$
Fine chemicals	$10^2 - 10^4$	5–50	$5 \times 10^2 - 5 \times 10^5$
Pharmaceuticals	10–10 ³	25–100	$2.5 \times 10^2 - 10^5$

How about organic semiconductors?

The problem is essentially non debated. Estimates based on experimental procedures hints at numbers in the 10³-10⁴ range!

Most of the organic waste is solvents

Association colloids, a different way of tackling solubility

Micellar solutions

Interface rich environments

10⁻²-10⁻³ M

Total organic content

> 0.1 M

microemulsion

nanoemulsion

emulsion

dispersion

The sweet spot of the association colloid

Reactions can be fast, compatible with aerated environment and efficient at low catalyst loading

Kolliphore EL: one with a secret weapon

Dispersion polymerizations – Green, efficient and food grade!

Literature
conditions

Micellar conditions

Dispersion (2 wt% lecithin/Tween80)

$$C_8H_{17}$$
 C_8H_{17} n

Mn = 19698 g/mol

Mw = 38997 g/mol

Mn = 11960 g/mol

Mw = 25130 g/mol

PDI = 2.10

PDI = 1.98

Mn = 18100 g/molMw = 33300 g/molPDI = 1.84

Yield: 91%

PDI = 2.10

Yield: 88%

Mn = 9923 g/molMn = 19891 g/mol

Mw = 22029 g/mol

PDI = 2.22

Yield: 95%

Mn = 23500 g/mol

Mw = 40655 g/mol

PDI = 1.73

E-factor = 41

PF8BT

E-factor = 302

Mw = 41771 g/mol

E-factor = 53

A. Sanzone, A. Calascibetta, M. Monti, S. Mattiello, M. Sassi, F. Corsini, G. Griffini, M. Sommer and L. Beverina, ACS Macro Lett., 2020, 9, 1167–1171. Chiara Ceriani, Mattia Scagliotti, Tommaso Losi, Alessandro Luzio, Sara Mattiello, Mauro Sassi, Matteo Rapisarda, Luigi Mariucci, Mario Caironi, and Luca Beverina. Manuscript in preparation

Photon management

С

9-bromo-10-phenylanthracene Pd(dtbpf)Cl₂, Et₃N 2 wt% K-EL in H₂O/toluene 9:1 80 °C, 18 h 45%

Spiro-4-DPA

intramolecular triplets annihilator

Multifunctional architectures

Perylene dyes

Luminescent radicals for LSC

Photoactive membrane probes

Photosensitization of neural retinal cells with engineered PUSH-PULL MOLECULES

SYNTHETICS TARGETS

Traditional linear push-pull systems

Rylenic twisted push-pull systems

$$\bigcirc = R \xrightarrow{N} \bigcirc \qquad \bigcirc \stackrel{N}{\longrightarrow} \bigcirc$$

$$R = CH_3, Ph$$

Tests in vitro

Localization in the cell:

- Localization in cytosol
- Inappropriate hydrophilic/lipophilic balance

Electrophysiology:

- No photoinduced effect recorded
- Not suitable for optopharmaceutics

Imaging:

- No evident cytotoxic effects
- Broad Stokes shift
- Good cytoplasmatic probe

HEK-293 cells live-stained with CellMask™ after removal of the unbound AZ36 , 3D z-stack confocal imaging A. Magni, PhD – Prof . G. Lanzani

Colloidal CsPbBr_{3-x}l_x perovskites

• Up to 2.6 g of nanocrystals in 30 min, working at room temperature and under standard aerated lab environment

PbBr₂ + NBr₄+Br-1:1 in 1:1:4,4 IPrOH/PA/OlAm

10 s

Dryed Fresh toluene 4000 rpm

Characterizations: SEM-EDS

Pd% (ICP-OES) = 1,90 %

