Master Degree in Materials Science: Knowledge of Quantum mechanics needed to fully understand advanced physics courses.

- 1. The need for quantum mechanics
 - Diffraction patterns in optics
 - Diffraction patterns in crystalline solids caused by electrons
 - Atomic spectra: why discrete lines? Bohr atomic model
 - De Broglie wavelength
- 2. The Schrodinger equation in 1D
 - Classical energy -> (Hamiltonian operator in cartesian coordinates)
 - Kinetic-energy operator, potential energy
 - Eigenvalues and eigenstates
 - Probabilistic interpretation
 - Heisenberg principle
 - Application: particle in a box, discrete levels for small systems
- 3. Further applications and extension to 3D
 - Harmonic oscillator (no demonstration)
 - Separation of variables: particle in a box in 3D
 - Kinetic Energy in 3D, angular momentum
- 4. Hydrogen atom
 - No demonstration of angular and radial solution, only variable separation
 - n,m,l quantum numbers, degeneracy, s, p, d states, energy levels
 - Hydrogen-like systems 1-electron ions (ex. Li++)
- 5. Magnetic momenta and spin
 - Coupling of a static magnetic field with a magnetic momentum; effect on hydrogen levels
 - Stern-Gerlach experiments and the need for introducing spin
 - Zeeman effect in the strong-field limit
- 6. Wave-matter interaction
 - Perturbation theory
 - Dipole approximation
 - Selection rules
 - Fermi golden rule
 - Adsorption/Emission
- 7. Many-particle hamiltonian
 - Hamiltonian of N-electron atoms: reduction to one-particle problem only if interaction neglected
- 8. Identical particles
 - Anti-symmetrization and Pauli Exclusion principle
 - Ground state of He atom by neglecting electron-electron interaction: wave function, singlet
 - Variational principle: application to He ground state.
- 9. Quantum statistics
 - Boltzmann distribution, Fermi-Dirac distribution, Bose-Einstein distribution
 - Electron gas at T->0, the concept of Fermi energy
- 10. Molecules
 - Hamiltonian of a molecule

- Adiabatic approximation
- H2+ molecule by LCAO (LCAO trial function bonding and antibonding)
- Rotations and vibrations of a diatomic molecule: energy levels for purely vibrational and purely rotational levels

Suggested book: S.M. Blinder, Introduction to quantum Mechanics in Chemistry, Materials Science, Biology

A dedicated tutor will help the students in learning such topics offering a short course. Details will be given at the beginning of the Academic Year.

For any additional information on physics pre-requisites write to Prof. Francesco Montalenti, (francesco.montalenti@unimib.it)