A VERY SHORT TOUR ON DIFFERENTIAL GAMES

Andrea Calogero
Dipartimento di Matematica e Applicazioni – Università di Milano-Bicocca
(andrea.calogero@unimib.it)

August 19, 2019
## Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A comment</td>
<td>v</td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Concepts of equilibrium in game theory</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Differential games</td>
<td>2</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Some particular two-persons games</td>
<td>2</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Information structure: open-loop and feedback</td>
<td>3</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Target and game set</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Nash equilibria for two–persons game</td>
<td>5</td>
</tr>
<tr>
<td>2.1</td>
<td>Open-loop Nash equilibria</td>
<td>5</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Workers versus capitalists</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Feedback Nash equilibria</td>
<td>8</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Affine-Quadratic differential games</td>
<td>11</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Infinite horizon case</td>
<td>11</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Two firms in competition</td>
<td>12</td>
</tr>
<tr>
<td>2.3</td>
<td>Further examples and models</td>
<td>15</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Two fishermen at the lake</td>
<td>15</td>
</tr>
<tr>
<td>2.3.2</td>
<td>On international pollution</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>Stackelberg equilibria</td>
<td>21</td>
</tr>
<tr>
<td>3.1</td>
<td>Open-loop Stackelberg equilibria</td>
<td>21</td>
</tr>
<tr>
<td>3.1.1</td>
<td>On international pollution with hierarchical relations</td>
<td>23</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Father and son, fishermen at the lake</td>
<td>26</td>
</tr>
<tr>
<td>4</td>
<td>Two-persons zero-sum games</td>
<td>29</td>
</tr>
<tr>
<td>4.1</td>
<td>General problems</td>
<td>29</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Upper and lower value functions and Isaacs’s equations</td>
<td>30</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Isaacs’ condition</td>
<td>32</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Regular solutions of upper-lower Isaacs’ equations</td>
<td>33</td>
</tr>
<tr>
<td>4.1.4</td>
<td>Viscosity solutions of upper-lower Isaacs’ equations</td>
<td>37</td>
</tr>
<tr>
<td>4.1.5</td>
<td>Examples</td>
<td>45</td>
</tr>
<tr>
<td>4.1.6</td>
<td>War of attrition and attack</td>
<td>46</td>
</tr>
<tr>
<td>4.2</td>
<td>Pursuit-evasion games</td>
<td>49</td>
</tr>
<tr>
<td>4.2.1</td>
<td>The lady in the lake</td>
<td>51</td>
</tr>
<tr>
<td>4.3</td>
<td>Pursuit-evasion game of kind</td>
<td>56</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Interception of a straight flying evader</td>
<td>61</td>
</tr>
<tr>
<td>A</td>
<td>Optimal control tools</td>
<td>65</td>
</tr>
<tr>
<td>A.1</td>
<td>Variational approach</td>
<td>65</td>
</tr>
<tr>
<td>A.1.1</td>
<td>Infinite horizon problems</td>
<td>66</td>
</tr>
<tr>
<td>A.2</td>
<td>Dynamic Programming</td>
<td>67</td>
</tr>
</tbody>
</table>
These pages are only a schedule of some lessons for the final part of a course on Optimal Control. It is a collection of some things that I use during my lessons: in particular, I would like to mention the very interesting paper due to Bressan [3], the book [2], the sixth chapter of the note by Evans [6] and ....

In this schedule we use the optimal control theory, without recalling the fundamental notions and results: I will use the notations used in [4].

Andrea Calogero
Chapter 1

Introduction

1.1 Concepts of equilibrium in game theory

Game theory deals with situations in which a finite number of players do maximize their own payoff, deciding a strategy among all the available options. Generally each player establishes his own strategy at the same time, taking into account that the game’s result depends also on the choice taken by others. Without loss of generality, let’s consider the case with two players; both of them have to solve the following problem:

$$\max_{x_i \in X_i} J_i(x_1, x_2) \tag{1.1}$$

where $x_i \in X_i$, which is the set of all possible options for Player $i = 1, 2$. This is a “one shot game” meaning the payoff is entirely determined by the particular selected strategy.

In general it is not possible to find a solution $(x_1^*, x_2^*) \in X_1 \times X_2$ which leads both Player 1 and Player 2 to get the maximum payoff; indeed, the outcome could be favourable only for one of them. This is the reason why there exist different concepts of equilibrium that differ from each other in some features, such as the type of available information, games’ mechanism in terms of choices’ sequence or, as an alternative, the faculty to cooperate. Hereafter there are the main concepts of solution: Nash equilibrium, Stackelberg equilibrium and Pareto optimality, but first it is necessary to introduce some notations.

In the simplest case of two players, say “Player A” and “Player B” the required ingredients are given by:

- The two (finite/infinite) sets of strategy $A$ and $B$: the players choose their particular strategy, respectively $a \in A$ and $b \in B$, so that the payoffs achieved are $J_A(a, b)$ and $J_B(a, b)$.
- The two payoff functions: $J^A : A \times B \to \mathbb{R}$ and $J^B : A \times B \to \mathbb{R}$ which are continuous and known by both players.

**Definition 1.1 (Nash equilibrium).** The pair of strategies $(a^*, b^*)$ is a Nash equilibrium of the game if, for every $a \in A$ and $b \in B$, one has

$$J_A(a, b^*) \leq J_A(a^*, b^*) \quad J_B(a^*, b) \leq J_B(a^*, b^*)$$

In this situation none of the players may increase his payoff changing his own strategy if the other do not deviate from his one. This is a solution concept of non-cooperative game.

**Definition 1.2 (Stackelberg equilibrium).** A pair of strategies $(a^*, b^*) \in A \times B$ is called a Stackelberg equilibrium if $b^* \in R^B(a^*)$ and moreover

$$J_A(a, b) \leq J_A(a^*, b^*) \quad \forall (a, b), \ b \in R^B(a), \ a \in A,$$
where $R^B(a)$ is the set of best possible replies of Player B (the follower), since Player A (the leader) has already announced the strategy $a$, i.e.

$$R^B(a) = \{ b' \in B : J_B(a,b) \leq J_B(a,b'), \ \forall b \in B \}.$$ 

Note that $b^*$ stands for the best reply of Player B, which can choose his strategy only after Player A (the leader) has announced his own one. In other words, first Player A establishes his strategy optimizing his utility function, then Player B defines his strategy taking into account what the first player has decided (asymmetry of information).

### 1.2 Differential games

Let $x(t) \in \mathbb{R}^n$ describe the state of the system, evolving in time according to the ODE (called dynamics)

$$\dot{x}(t) = g(t, x, u_1, u_2 \ldots u_N), \quad \text{a.e. } t \in [0, T]$$

with fixed $T > 0$ and an initial data

$$x(0) = x_0 \in \mathbb{R}^n.$$ 

Here $u_1, u_2, \ldots, u_N$ are the controls of the $N$ players (clearly we suppose $N \geq 2$). We assume that they satisfy the pointwise constraints

$$u_i(t) \in U_i, \quad i = 1, \ldots N,$$

where $U_i \subset \mathbb{R}^{k_i}$ are the control sets for the $i$-Player.

It is clear that the possibility to solve the Cauchy problem (1.2–1.3) is not clear: however, we usually assume that the function $g$ is continuous, differentiable w.r.t. $x$ and with the derivatives $\frac{\partial g}{\partial x_j}(t, x, u_1, u_2 \ldots u_N)$ continuous.

The aim of the $i$-player is to maximize

$$J_i(u_1, \ldots u_N) = \int_0^T f_i(t, x, u_1, \ldots u_N) \, dt + \psi_i(T, x(T)),$$

where, as usual in the control theory, $f_i$ are the running cost and $\psi_i$ are the payoff. Clearly the $i$-player controls only the choice of $u_i$.

In all that follows we suppose that there are only two players ($N = 2$), but it is easy to generalize.

The information available to players, such as the current state of the system and the strategy adopted by the competitor, determine the kind of game that has to be undertaken by them. Let’s first give some assumptions upon which the following analysis will be established and then let’s expose some of the most well-known differential games. Each player has perfect knowledge of:

- the evolution of the system (identified by the function $g$), and the control sets $U_1, U_2$.
- the two payoff functions $J_1, J_2$.
- the instantaneous time $t \in [0, T]$
- the initial condition for the system $x_0$

#### 1.2.1 Some particular two-persons games

Let us introduce some particular situation for the two-persons games. We say that the game is symmetric if

$$f_1(t, x, u_1, u_2) = f_2(t, x, u_2, u_1),$$
$$\psi_1 = \psi_2,$$
$$g(t, x, u_1, u_2) = g(t, x, u_2, u_1), \quad U_1 = U_2.$$
A game is completely cooperative if
\[ f_1 = f_2, \quad \psi_1 = \psi_2, \quad U_1 = U_2. \]
A game is zero-sum if
\[ f_1 = -f_2, \quad \psi_1 = -\psi_2; \]
in this case, setting \( f = f_1 \) and \( \psi = \psi_1 \), the strike of the first player is to find a strategy \( u_1 \) in order to
\[
\max_{u_1} J(u_1, u_2),
\]
where
\[
J(u_1, u_2) = \int_0^T f(t, x, u_1, u_2) \, dt + \psi(x(T));
\]
while the strike of second player is to minimize the same functional, controlling \( u_2 \), since
\[
\max_{u_2} \int_0^T -f(t, x, u_1, u_2) \, dt - \psi(x(T)) = -\min_{u_2} J(u_1, u_2).
\]

### 1.2.2 Information structure: open-loop and feedback

In this context are just discussed two differential games: Open–loop strategies and Feedback (or Markovian) strategies. Essentially, open–loop means that the players base their decision only on time and an initial condition; whereas, the players use the position/state of the game as information basis in a feedback context. A feature that is common to those two information structure is that the players do not need to remember the whole history of the game when making a decision: only running time and the initial position \( x_0 \) are relevant for the open–loop information structure, while for the feedback structure, only information on the current position is relevant.

**Definition 1.3. Open–loop strategies.** The set \( S_i \) of strategies available to the \( i \)-th Player will consist of all measurable functions \( u_i : [0, T] \to U_i \) such that
\[
u_i(t, x_0),
\]
where \( x_0 \) is the initial data and \( \nu_i \) is a decision rule, i.e. a measurable function \( \nu_i : [0, T] \times \mathbb{R}^n \to U_i \).

**Definition 1.4. Feedback strategies (or Markovian strategies).** Here, the control implemented by Player \( i \) is \( u_i \), depending on both time \( t \) and system’s state \( x \). The set \( S_i \) of strategies available to the \( i \)-th Player will consist of all measurable functions \( u_i : [0, T] \to U_i \) such that
\[
u_i(t, x(t)),
\]
where \( \nu_i \) is a decision rule, i.e. a measurable function \( \nu_i : [0, T] \times \mathbb{R}^n \to U_i \); the player \( i \) observes the system’s position \( (t, x(t)) \) and chooses his action as described decision rule \( \nu_i \).

Other concepts of strategies can be given (see for example [2]).

Clearly, as we will see in the next lines, we require that the previous controls are admissible too. To be more precise,

**Definition 1.5. The class \( A_{OL} \) and the class \( A_{FB} \).** We say that \((u_1, u_2), \) with \( u_i(t, x_0) = \nu_i(t, x_0) \), is an admissible control (or strategy) in the class \( A_{OL} \) of open loop strategies for the game \((\mathcal{A}, \mathcal{B})\) if \( t \mapsto (\nu_1(t, x_0), \nu_2(t, x_0)) \in U_1 \times U_2 \) is a measurable function such that there exists a unique solution \( x \) of the ODE
\[
\begin{align*}
\dot{x}(t) &= g(t, x(t), \nu_1(t, x_0), \nu_2(t, x_0)) \quad \text{a.e. } t \in [0, T] \\
x(0) &= x_0
\end{align*}
\]
We say that \((u_1, u_2), \) with \( u_i(t, x(t)) = \nu_i(t, x(t)) \), is an admissible control (or strategy) in the class \( A_{FB} \) of feedback strategies for the game \((\mathcal{A}, \mathcal{B})\) if \( (t, x) \mapsto (\nu_1(t, x), \nu_2(t, x)) \in U_1 \times U_2 \) is a measurable function such that there exists a unique solution \( x \) of the ODE
\[
\begin{align*}
\dot{x}(t) &= g(t, x(t), \nu_1(t, x(t)), \nu_2(t, x(t))) \quad \text{a.e. } t \in [0, T] \\
x(0) &= x_0
\end{align*}
\]
1.2.3 Target and game set

In the games, as in the problem of optimal control, we deal with trajectories that satisfy some initial and final condition. Let us consider a target set $\mathcal{T} \subset \mathbb{R}^+ \times \mathbb{R}^n$; in this note we will consider closed target sets. If we consider a dynamics and a target set, we define the game set $\mathcal{G} \subset \mathbb{R}^+ \times \mathbb{R}^n$ as the points $(\tau, \xi) \in [0, \infty) \times \mathbb{R}^n$ such that there exists at least a trajectory $x : [\tau, T] \times \mathbb{R}^n$ such that

$$x(\tau) = \xi \quad \text{and} \quad (T, x(T)) \in \partial \mathcal{T};$$

usually we say that $x$ transfers $(\tau, \xi) \in \mathcal{G}$ in $\mathcal{T}$.

For every $(\tau, \xi) \in \mathcal{T}$, we can consider the trajectory $x : [\tau, \tau] \to \mathbb{R}^n$ defined by $x(\tau) = \xi$; this trajectory implies that

$$\mathcal{T} \subset \mathcal{G}.$$  

Let us list some particular case of game sets, depending on the final condition on the trajectory:

- **(fixed time and fixed value of the trajectory)**: for $x(T) = \beta$, with $T$ and $\beta$ fixed, we have $\mathcal{T} = \{(T, \beta)\}$;

- **(fixed time and free value of the trajectory)**: we have $\mathcal{T} = \{T\} \times \mathbb{R}^n$;

- **(free time and fixed value of the trajectory)**: we have $\mathcal{T} = \mathbb{R}^+ \times \{\beta\}$, with $\beta \in \mathbb{R}^n$ fixed.
Chapter 2

Nash equilibria for two–persons game

In all this chapter we are considering a two–person game (the general case of a N–person game is similar)

\[
\begin{align*}
\text{Player I: } & \max_{u_1} J_1(u_1, u_2) \\
\text{Player II: } & \max_{u_2} J_2(u_1, u_2) \\
J_i(u_1, u_2) &= \int_0^T f_i(t, x, u_1, u_2) \, dt + \psi_i(x(T)), \quad i = 1, 2 \\
\dot{x} &= g(t, x, u_1, u_2) \\
x(0) &= x_0
\end{align*}
\]

(2.1)

where \( T \) is fixed, \( U_1 \) and \( U_2 \) are the control sets for the players and \((u_1, u_2)\) is an admissible control, i.e. depending on the information structure.

2.1 Open-loop Nash equilibria

**Definition 2.1.** A pair of control functions \((u_1^*, u_2^*)\) \(\in A_{OL}\), with \(u_i^*(t) = \nu_i^*(t, x_0)\), is a Nash equilibrium within the class of open–loop strategies \(A_{OL}\) if the control \(u_i^*\) provides a solution to the optimal control problem for the \(i\)-th Player, i.e.

\[
\begin{align*}
J_1(u_1^*, u_2^*) &\ge J_1(u_1, u_2^*), \quad \forall (u_1, u_2^*) \in A_{OL} \\
J_2(u_1^*, u_2^*) &\ge J_2(u_1^*, u_2), \quad \forall (u_1^*, u_2) \in A_{OL}
\end{align*}
\]

Note the optimal solution for Player I is determined considering the optimal choice of Player II and viceversa, meaning there are two optimal control problems to be solved at the same time. More precisely the control \(u_1^*\), with \(u_1^*(t) = \nu_1^*(t, x_0)\), provides an optimal open–loop control for the problem for the first Player

\[
\begin{align*}
\max_{(u_1^*, u_2^*) \in A_{OL}} \int_0^T f_1(t, x(t), u_1(t), u_2^*(t)) \, dt + \psi_1(x(T)) \\
\dot{x}(t) &= g(t, x(t), u_1(t), u_2^*(t)) \\
x(0) &= x_0
\end{align*}
\]

while the control \(u_2^*\), with \(u_2^*(t) = \nu_2^*(t, x_0)\), provides an optimal open–loop control for the problem for the second Player

\[
\begin{align*}
\max_{(u_1^*, u_2^*) \in A_{OL}} \int_0^T f_2(t, x(t), u_1^*(t), u_2(t)) \, dt + \psi_2(x(T)) \\
\dot{x}(t) &= g(t, x(t), u_1^*(t), u_2(t)) \\
x(0) &= x_0
\end{align*}
\]

In order to find a pair of open-loop strategies \((u_1^*, u_2^*)\) yielding a Nash equilibrium, it is reasonable to introduce

\[
\begin{align*}
H_1(t, x, u_1, u_2, \lambda_1) &= f_1(t, x, u_1, u_2) + \lambda_1 \cdot g(t, x, u_1, u_2) \\
H_2(t, x, u_1, u_2, \lambda_2) &= f_2(t, x, u_1, u_2) + \lambda_2 \cdot g(t, x, u_1, u_2)
\end{align*}
\]

(2.2)
A necessary condition for optimality is given by Theorem $\text{A.1}$, taking into account that since $T$ is fixed and the final value of the trajectory is free we can assume that the control is normal:

**Theorem 2.1.** Let us consider the problem (2.7) with $f_i$, $\psi_i$ and $g$ in $C^1$. Let $(u_i^*, u_2^*)$, with $u_i(t) = \nu_i(t, x_0)$, be a Nash equilibrium in the class of open-loop strategies. Let $x^*$ be the associated trajectory. Then there exists a continuous multiplier $\lambda_i^* : [0, T] \to \mathbb{R}^n$ such that

i) for all $\tau \in [0, T]$ we have

\[
 u_i^*(\tau) \in \arg \max_{u \in U_i} H_1(\tau, x^*(\tau), v, u_2^*(\tau), \lambda_i^*(\tau)) \\
 u_2^*(\tau) \in \arg \max_{v \in U_2} H_2(\tau, x^*(\tau), u_i^*(\tau), v, \lambda_2^*(\tau));
\]

ii) in $[0, T]$ we have

\[
 \dot{\lambda}_1^* = -\nabla_x H_1(t, x^*, u_i^*, u_2^*, \lambda_1^*), \quad \dot{\lambda}_2^* = -\nabla_x H_2(t, x^*, u_i^*, u_2^*, \lambda_2^*);
\]

iii) we have $\lambda_1^*(T) = \nabla_x \psi_1(x(T))$, $\lambda_2^*(T) = \nabla_x \psi_2(x(T))$.

Since Theorem $\text{A.1}$ gives only a necessary condition for optimality, we have to consider sufficient results such as Mangasarian’s sufficient conditions (see Theorem $\text{A.2}$) or Arrow’s sufficient conditions (see Theorem $\text{A.3}$), in order to be sure the couple of controls $(u_i^*, u_2^*)$ stands for an open-loop Nash equilibrium.

### 2.1.1 Workers versus capitalists

This model is due to Lancaster (see [13]). Let us denote by $k = k(t)$ the capital stock of the economy, and the rate of production is proportional to $k$, i.e. the production at time $t$ is $ak(t)$, with $\alpha > 0$ fixed. Within the limits $a$ and $b$, workers decide their share $u = u(t)$ of production; the remaining production $(1 - u)ak$ is controlled by the capitalists, who invest a fraction $v = v(t)$ and consume the other portion, i.e. $(1 - v)(1 - u)ak$. Both workers and capitalists want to maximize their own total consumption.

\[
\begin{align*}
\text{Workers: } & \max_u \int_0^T uak \, dt \\
\text{Capitalists: } & \max_v \int_0^T (1 - v)(1 - u)ak \, dt \\
0 < a & \leq u \leq b < 1 \quad 0 \leq v \leq 1 \\
\dot{k} &= v(1 - u)ak \\
k(0) &= k_0 > 0
\end{align*}
\]

Although workers usually do gain future benefits from investments, their willingness to sacrifice consumption can be exploited to the capitalists. On the other hand, a willingness to invest will be less effective if the workers too soon press their share towards the limit $b$. We choose the time unit such that the constant of proportionality $\alpha$ is $1$.

We have the Hamiltonians

\[
H_1 = uk + \lambda_1 v(1 - u)k, \quad H_2 = (1 - v)(1 - u)k + \lambda_2 v(1 - u)k,
\]

and using Theorem 2.1 we have

\[
\begin{align*}
u &\in \arg \max_{p \in [a, b]} kp(1 - \lambda_1 v) = \begin{cases} b & \text{if } \lambda_1 v < 1 \\
a & \text{if } \lambda_1 v > 1 \end{cases} \\
v &\in \arg \max_{q \in [0, 1]} qk(\lambda_2 - 1) = \begin{cases} 1 & \text{if } \lambda_2 > 1 \\
0 & \text{if } \lambda_2 < 1 \end{cases} \\
\dot{k} &= v(1 - u)k \\
\dot{\lambda}_1 &= -u - \lambda_1 v(1 - u) \\
\dot{\lambda}_2 &= (u - 1)(1 - v + \lambda_2 v) \\
\lambda_1(T) &= 0 \\
\lambda_2(T) &= 0
\end{align*}
\]
where in order to obtain (2.3) and (2.4) we use that \( k(t) \geq k_0 > 0 \) since \( \dot{k} \geq 0 \). We note that \( u \) and \( v \) in (2.3) and (2.4) do not depend on the trajectory \( k \); hence we are in the position to looking for an open-loop solution.

It is easy to see that (2.4) implies that in (2.6) we have

\[
\dot{\lambda}_2(t) < 0, \quad \forall t \in [0, T]:
\]

indeed by the adjoint equation (2.6) and the Maximum principle (2.4),

\[
\begin{align*}
& \text{if } \lambda_2 > 1, \quad \Rightarrow \dot{\lambda}_2 = (u - 1)\lambda_2 < 0 \\
& \text{if } \lambda_2 \leq 1, \quad \Rightarrow \dot{\lambda}_2 = (u - 1) < 0.
\end{align*}
\]

Hence, by (2.8), there exists \( \tau \in [0, T) \) such that

\[
\lambda_2(t) < 1 \quad \forall t \in (\tau, T].
\] (2.10)

This implies, by (2.3) and (2.4), \( v(t) = 0 \) and \( u(t) = b \) in \( (\tau, T] \). Relations (2.3)–(2.8) give

\[
\lambda_1(t) = -b(t - T), \quad \lambda_2(t) = (1 - b)(T - t) \quad \forall t \in (\tau, T];
\] (2.11)

Condition (2.10) implies

\[
\tau = T - \frac{1}{1 - b}.
\] (2.12)

Note that \( \lambda_2(\tau) = 1 \) and together with (2.9) we have \( \lambda_2(t) < 1 \) in \([0, \tau)\): hence, by (2.4), we obtain

\[
v(t) = 1 \quad \forall t \in [0, \tau].
\] (2.13)

Now we have to distinguish two cases: \( b \geq \frac{1}{2} \) and \( b < \frac{1}{2} \).

- \( b \geq \frac{1}{2} \) : Note that for such \( b \), by (2.11), we have \( \lambda_1(\tau) = \frac{b}{1 - b} \geq 1 \); moreover, by in (2.3) we obtain \( \lambda_1(\tau) < 0 \) : This gives that \( \lambda_1(t) > 1 \) for \( t \in [\tau - \varepsilon, \tau) \) for some positive \( \varepsilon \): now, replacing the same arguments we obtain that \( \lambda_1(t) > 1 \) in \([0, \tau]\). Hence, this inequality and (2.13) give by (2.3) that \( u(t) = a \) in \([0, \tau]\). We obtain that the candidate to be a Nash equilibrium is \((u^*, v^*)\) with

\[
u^* = \begin{cases}
a & \text{if } t \in [0, \tau] \\
b & \text{if } t \in (\tau, T]
\end{cases}, \quad v^*(t) = \begin{cases}
1 & \text{if } t \in [0, \tau] \\
0 & \text{if } t \in (\tau, T]
\end{cases}
\]

with \( \tau \) as in (2.12). First, we have to guarantee that \((u^*, v^*)\) is admissible, i.e. there exists a unique path \( k^* \), solution of the dynamics and the initial condition. We have that

\[
\begin{align*}
\dot{k} &= v^*(1 - u^*)k = (1 - a)k & \text{if } t \in [0, \tau] \\
k(0) &= k_0
\end{align*}
\]

gives \( k(t) = k_0 e^{(1-b) t} \), for \( t \in [0, \tau] \); moreover

\[
\begin{align*}
\dot{k} &= v^*(1 - u^*)k = 0 & \text{if } t \in [\tau, T] \\
k(\tau) &= k_0 e^{(1-b) \tau}
\end{align*}
\]

gives \( k(t) = k_0 e^{(1-b) \tau} \), for \( t \in [\tau, T] \). Hence \((u^*, v^*)\) is admissible.

In order to prove that \((u^*, v^*)\) is really a Nash equilibrium, we remark that \((k, u) \mapsto H_1(t, k, u, v^*, \lambda_1^*)\) and \((k, v) \mapsto H_2(t, k, u^*, v, \lambda_2^*)\) are not concave functions (for fixed \( t \)) and hence we are not in the position to apply Theorem A.2; however, if we construct the maximized Hamiltonian functions \( H_1^0 \) and \( H_2^0 \) for \( H_1 \) and \( H_2 \) respectively, we obtain

\[
\begin{align*}
H_1^0(t, k, v, \lambda_1^*) &= \max_{u \in [a, b]} H_1(t, k, u, v, \lambda_1^*) = k[\lambda_1^* v^* + \max_{u \in [a, b]} u(1 - \lambda_1^*)v^*], \\
H_2^0(t, k, u^*, \lambda_2^*) &= \max_{v \in [0, 1]} H_2(t, k, u^*, v, \lambda_2^*) = k(1 - u^*)[1 + \max_{v \in [0, 1]} (\lambda_2^* - 1)v];
\end{align*}
\]
it is easy to verify that such two functions are concave in $k$, for fixed $t$, and hence Theorem A.3 guarantees that $(u^*, v^*)$ is a Nash equilibrium.

- $b < \frac{1}{2}$: Note that $\lambda_1(\tau) = \frac{b}{1-b} < 1$; then there exists $\tau' \in [0, \tau]$ such that

$$\lambda_1(t) < 1 \quad \forall t \in [\tau', \tau].$$  \hfill (2.14)

This inequality with (2.13) imply that, by (2.3), $u(t)$ is easy to verify that such two functions are concave in $k$, for fixed $t$, and hence Theorem A.3 guarantees that $(u^*, v^*)$ is a Nash equilibrium.

- $b < \frac{1}{2}$: Note that $\lambda_1(\tau) = \frac{b}{1-b} < 1$; then there exists $\tau' \in [0, \tau]$ such that

$$\lambda_1(t) < 1 \quad \forall t \in [\tau', \tau].$$  \hfill (2.14)

This inequality with (2.13) imply that, by (2.3), $u(t) = b$. The adjoint equation (2.5) and the condition for $\lambda_1$ in $\tau$ give the ODE

$$\begin{align*}
\lambda_1 &= -b - \lambda_1(1-b) \quad \text{for } t \in [\tau', \tau], \\
\lambda_1(\tau) &= \frac{b}{1-b}
\end{align*}$$

The solution is

$$\lambda_1(t) = \frac{2b}{1-b} e^{-(1-b)(t-\tau)} - \frac{b}{1-b}.$$

It is easy to see that for

$$\tau' = \tau + \frac{1}{1-b} \ln(2b)$$

we have $\lambda_1(\tau') = 1$. Now the same argument of the case $b \geq 1/2$ gives that $\lambda_1(t) > 1$ in $[0, \tau']$ and we obtain, as before, $u(t) = a$. Hence we have that the candidate to be a Nash equilibrium is $(u^*, v^*)$,

$$u^* = \begin{cases} a & \text{if } t \in [0, \tau] \\ b & \text{if } t \in (\tau', T] \end{cases} \quad v^*(t) = \begin{cases} 1 & \text{if } t \in [0, \tau] \\ 0 & \text{if } t \in (\tau, T] \end{cases}$$

with $\tau$ and $\tau'$ as in (2.12) and (2.15). In order to prove that $(u^*, v^*)$ is really a Nash equilibrium, we use arguments similar to the previous case.

### 2.2 Feedback Nash equilibria

**Definition 2.2.** A pair of control functions $(u_1^*, u_2^*) \in A_{FB}$, where $u_1^*(t) = \nu_1^*(t, x^*(t))$, is a Nash equilibrium within the class of feedback strategies $A_{FB}$ if the following holds:

1. The control $u_1^*$ provides an optimal feedback control to the problem for the first Player, i.e.

$$\begin{align*}
\max_{(u_1, u_2) \in A_{FB}} & \int_0^T f_1(t, x(t), \nu_1(t, x(t)), \nu_2(t, x(t))) \, dt + \psi_1(x(T)) \\
\dot{x}(t) &= g(t, x(t), \nu_1(t, x(t)), \nu_2(t, x(t))) \\
x(0) &= x_0
\end{align*}$$

where $u_1(t) = \nu_1(t, x(t))$.

2. The control $u_2^*$ provides an optimal feedback control to the problem for the second Player, i.e.

$$\begin{align*}
\max_{(u_1, u_2) \in A_{FB}} & \int_0^T f_2(t, x(t), \nu_1^*(t, x(t)), \nu_2(t, x(t))) \, dt + \psi_2(x(T)) \\
\dot{x}(t) &= g(t, x(t), \nu_1^*(t, x(t)), \nu_2(t, x(t))) \\
x(0) &= x_0
\end{align*}$$

where $u_2(t) = \nu_2(t, x(t))$. 

2.2. FEEDBACK NASH EQUILIBRIA

Variational approach is not useful

Let us suppose that we are interesting on finding a feedback solution using the variational method: we will show that the Pontryagin necessary condition is much more complicated and it is not useful. In order to do that, let us suppose that \((u_1^*, u_2^*) \in A_{FB}\), where \(u_i^*(t) = \nu_i(t, x^*(t))\), is a Nash equilibrium within the class of feedback strategies, with \(x^*\) its trajectory. Without lost of generality, we assume that \(n = k_1 = k_2 = 1\); moreover, we assume \(U_1 = U_2 = \mathbb{R}\).

Let us put our attention on the first Player and we fix a continuous function \(h : [0, T] \rightarrow \mathbb{R}\) and for every constant \(\epsilon \in \mathbb{R}\) we define the function \(u_{1,\epsilon} : [0, T] \rightarrow \mathbb{R}^2\) by

\[
u_1^*(t, x^*(t)) + \epsilon h(t) = u_1^*(t) + \epsilon h(t)
\]

and we suppose that there exists the trajectory \(x_\epsilon\) associated to \((u_{1,\epsilon}, \nu_2^*)\). Clearly

\[u_1^*(t) = u_{1,0}(t) \quad x_0(t) = x^*(t), \quad x_\epsilon(0) = x_0.
\]

As usual in the variational approach to a problem of optimal control, we define the function \(J_h : \mathbb{R} \rightarrow \mathbb{R}^2\) as

\[J_h(\epsilon) = \int_0^T f_1(t, x_\epsilon(t), u_{1,\epsilon}(t), \nu_2^*(t, x_\epsilon(t))) \, dt + \psi_1(x_\epsilon(T))
\]

We introduce the Hamiltonian \(H_1\) as in (2.2). Using the dynamics and by integrating by part we have

\[J_h(\epsilon) = \int_0^T \left[ H_1(t, x_\epsilon, u_{1,\epsilon}, \nu_2^*(t, x_\epsilon), \lambda_1) + \dot{\lambda}_1 x_\epsilon \right] \, dt - \left( \lambda_1 x_\epsilon \right)_0^T + \psi_1(x_\epsilon(T))
\]

Since \((u_1^*, u_2^*)\) is a Nash equilibrium, for the first Player we have that optimal \(J_h(0) \geq J_h(\epsilon)\), for every \(\epsilon\), and hence \(\frac{dJ_h}{d\epsilon}(0) = 0\). Classical calculation gives

\[0 = \frac{dJ_h}{d\epsilon}(0) = \int_0^T \left\{ \frac{\partial H_1}{\partial x}(t, x^*, u_1^*, u_2^*, \lambda_1) + \dot{\lambda}_1 + \frac{\partial H_1}{\partial u_2}(t, x^*, u_1^*, u_2^*, \lambda_1) \frac{\partial \nu_2^*}{\partial x}(t, x^*) \right\} \frac{dx_\epsilon}{d\epsilon}(0) + \frac{\partial H_1}{\partial u_1}(t, x^*, u_1^*, u_2^*, \lambda_1) h \right\} \, dt - \left( \lambda(T) - \frac{\partial \psi_1}{\partial x}(x^*(T)) \right) \frac{dx_\epsilon(T)}{d\epsilon}(0)
\]

We note that the bad new is the term \(\frac{\partial H_1}{\partial u_2}(t, x^*, u_1^*, u_2^*, \lambda_1) \frac{\partial \nu_2^*}{\partial x}(t, x^*)\) that arrives from the fact that we are working with feedback controls, i.e. \(\nu_2^*(t, x(t))\). In [9] (see Theorem 7.1) there is a sufficient condition for a particular type of games in order to obtain a feedback Nash equilibrium using the variational approach: such condition it not really useful.

With the Dynamic Programming approach

Let us start with the definition of the value function that, with respect to the situation of optimal control problems, it must be specialized:

**Definition 2.3.** Let’s suppose that a pair of control functions \((u_1^*, u_2^*) \in A_{FB}\), where \(u_i^*(t) = \nu_i(t, x^*(t))\), is a Nash equilibrium within the class of feedback strategies \(A_{FB}\). Then we define the value functions \(V_i : [0, T] \times \mathbb{R}^n \rightarrow \mathbb{R}\), for Player \(i\), by

\[V_i(\tau, \xi) = \sup_{(u_1, u_2) \in A_{FB}} \int_{\tau}^{t_1} f_i(t, x(t), \nu_1(t, x(t)), \nu_2^*(t, x(t))) \, dt + \psi_i(x(T))
\]
where \( u_1(t) = \nu_1(t, x(t)) \). Similarly, we define
\[
V_2(\tau, \xi) = \sup_{{(u_1^*, u_2^*)} \in \mathcal{A}_{FB}} \int_\tau^{t_1} f_2(t, x(t), \nu_1^*(t, x(t)), \nu_2^*(t, x(t))) \, dt + \psi_2(x(T))
\]
where \( u_2(t) = \nu_2(t, x(t)) \).

Some comments: first we remark that such definition is on a Nash equilibrium. Second, to be clear, in the definition of \( V_1 \) we consider the sup on all the feedback controls \( u_1 \) such that, for the fixed feedback control \( u_2^* \), there exists a unique solution of
\[
\begin{cases}
\dot{x}(t) = g(t, x(t), \nu_1(t, x(t)), \nu_2^*(t, x(t))) & \text{a.e. in } [\tau, T] \\
x(\tau) = \xi
\end{cases}
\]
Finally, since \((u_1^*, u_2^*)\) is a Nash equilibrium, we have that
\[
V_1(\tau, \xi) = \int_\tau^{t_1} f_1(t, x, u_1^*, u_2^*) \, dt + \psi_1(x(T))
\]
Similar situation appears in definition of \( V_2 \).

Now, we are in the position to apply the Dynamic Programming results. Let us suppose that the value functions \( V_i \), defined on a feedback Nash equilibrium \((u_1^*, u_2^*)\) with trajectory \( x^* \), are differentiable, then we know that such value functions solve
\[
\begin{cases}
\frac{\partial V_i}{\partial t}(t, x) + \max_{v_1 \in U_1} \left[ f_1(t, x, \nu_1, \nu_2^*(t, x)) + \nabla_x V_1(t, x) \cdot g(t, x, \nu_1, \nu_2^*(t, x)) \right] = 0, & \forall (t, x) \in [0, T] \times \mathbb{R}^n \\
\frac{\partial V_2}{\partial t}(t, x) + \max_{v_2 \in U_2} \left[ f_2(t, x, \nu_1^*(t, x), v_2) + \nabla_x V_2(t, x) \cdot g(t, x, \nu_1^*(t, x), v_2) \right] = 0, & \forall (t, x) \in [0, T] \times \mathbb{R}^n \\
V_1(T, x) = \psi_1(x), & \forall x \in \mathbb{R}^n \\
V_2(T, x) = \psi_2(x), & \forall x \in \mathbb{R}^n
\end{cases}
\]
and in particular along the optimal path, for all \( t \in [0, T] \) we have
\[
\begin{cases}
\frac{\partial V_1}{\partial t}(t, x^*(t)) + f_1(t, x^*(t), u_1^*(t), u_2^*(t)) + \nabla_x V_1(t, x^*(t)) \cdot g(t, x^*(t), u_1^*(t), u_2^*(t)) = 0 \\
\frac{\partial V_2}{\partial t}(t, x^*(t)) + f_2(t, x^*(t), u_1^*(t), u_2^*(t)) + \nabla_x V_2(t, x^*(t)) \cdot g(t, x^*(t), u_1^*(t), u_2^*(t)) = 0
\end{cases}
\]
And in order to construct such value functions, as in Theorem \((\ref{thm:2.2})\) we have (see \((\ref{thm:2.2})\))

**Theorem 2.2.** Let us consider the problem \((\ref{eq:2.1})\) with \( f_1, \psi_1, \) and \( g \) in \( C^1 \). Let’s consider a pair of control functions \((u_1^*, u_2^*) \in \mathcal{A}_{FB}\), where \( u_1^*(t) = \nu_1^*(t, x^*(t)) \) and \( x^* \) is the solution of the ODE
\[
\begin{cases}
\dot{x}(t) = g(t, x(t), \nu_1(t, x(t)), \nu_2^*(t, x(t))) & \text{a.e. in } [0, T] \\
x(0) = x_0
\end{cases}
\]
Let us suppose that there exist two functions \( W_i : [0, T] \times \mathbb{R}^n \to \mathbb{R}, i = 1, 2, \) differentiable such that, for every \((t, x) \in [0, T] \times \mathbb{R}^n\),
\[
\begin{align*}
- \frac{\partial W_1}{\partial t}(t, x) &= \max_{v_1 \in U_1} \left[ f_1(t, x, \nu_1, \nu_2^*(t, x)) + \nabla_x W_1(t, x) \cdot g(t, x, \nu_1, \nu_2^*(t, x)) \right] \\
&= f_1(t, x, \nu_1^*(t, x), \nu_2^*(t, x)) + \nabla_x W_1(t, x) \cdot g(t, x, \nu_1^*(t, x), \nu_2^*(t, x)) \\
- \frac{\partial W_2}{\partial t}(t, x) &= \max_{v_2 \in U_2} \left[ f_2(t, x, \nu_1^*(t, x), v_2) + \nabla_x W_2(t, x) \cdot g(t, x, \nu_1^*(t, x), v_2) \right] \\
&= f_2(t, x, \nu_1^*(t, x), \nu_2^*(t, x)) + \nabla_x W_2(t, x) \cdot g(t, x, \nu_1^*(t, x), \nu_2^*(t, x)) \\
W_1(T, x) &= \psi_1(x) \\
W_2(T, x) &= \psi_2(x)
\end{align*}
\]
Then \( x^* \) is the optimal trajectory and \((u_1^*, u_2^*)\) is a Nash equilibrium in the class \( \mathcal{A}_{FB} \). Finally, \( W_i \) are really the value functions for the problem \((\ref{eq:2.1})\) in such Nash equilibrium.
2.2. FEEDBACK NASH EQUILIBRIA

2.2.1 Affine–Quadratic differential games

Now let us consider a particular type of games: we say that a two person differential games is Linear–Quadratic if

\[\begin{align*}
\max_{u_1} & \frac{1}{2} \int_0^T (x'Q_1x + 2x'S_1 + u_1'R_{1,1}u_1 + u_1'R_{1,2}u_2) \, dt + \frac{1}{2}x(t_1)'P_1x(t_1)
\max_{u_2} & \frac{1}{2} \int_0^T (x'Q_2x + 2x'S_2 + u_1'R_{2,1}u_1 + u_1'R_{2,2}u_2) \, dt + \frac{1}{2}x(t_1)'P_2x(t_1)
\end{align*}\]

where \(v'\) is the transpose of the matrix \(v\); we denote the trajectory \(x\) and the control \(u\) such that \(x = (x_1, x_2, \ldots, x_n)'\) and \(u_i = (u_{i,1}, u_{i,2}, \ldots, u_{i,k_i})'\) respectively; with \(Q_i = Q_i(t)\) and \(P_i = P_i(t)\) symmetric matrices, and \(R_{i,j} = R_{i,j}(t), A = A(t), B_i = B_i(t)\) and \(C = C(t)\) matrices. We have the following result (see [2]):

**Proposition 2.1.** Let us suppose that for a Linear–Quadratic two person differential games there exist the value functions \(V_i\), then we have

\[V_i(t, x) = \frac{1}{2}x'Z_i x + xW_i + Y_i\] (2.18)

for \(i = 1, 2\), with \(Z_i = Z_i(t)\), \(W_i = W_i(t)\) and \(Y_i = Y_i(t)\) matrices.

Moreover, let us mention the following particular situation (see [2], [3] for details):

**Remark 2.1.** Let us consider the Linear–Quadratic two person differential games in the linear and homogeneous case, i.e. with

\[C = 0, \quad \text{and} \quad S_i = 0.\]

If there exists the value functions for the problem, then

\[V_i(t, x) = \frac{1}{2}x'Z_i(t)x.\]

2.2.2 Infinite horizon case

Let us consider a two–person, infinite horizon with discount, differential game

\[\begin{align*}
\text{Player I: max } J_1(u_1, u_2) & \quad \text{Player II: max } J_2(u_1, u_2)
J_i(u_1, u_2) & = \int_0^\infty f_i(x, u_1, u_2) e^{-rt} \, dt, \quad i = 1, 2
\dot{x} & = g(x, u_1, u_2)
\end{align*}\] (2.19)

where \(r \geq 0\) and \(U_i\) are the two control sets for the players. In this situation we are in the position to introduce the current value functions \(V_i^c : \mathbb{R}^n \to \mathbb{R}^n\). More precisely, since \(f\) and \(g\) do not depend on \(t\), it is possible to prove (as in a optimal control problem) that the existence of the value function \((V_1, V_2)\) that satisfies the BHJ system is equivalent to the existence of the current value function \((V_1^c, V_2^c)\) that satisfies a current BHJ system: moreover

\[V_i(t, x) = e^{-rt}V_i^c(x), \quad \forall (t, x) \in [0, \infty) \times \mathbb{R}^n\]

Taking into account that

\[\nabla_x V_i(t, x) = e^{-rt} \nabla_x V_i^c(x), \quad \frac{\partial V_i}{\partial t}(t, x) = -re^{-rt}V_i^c(x),\]

Theorem 2.2 becomes
Remark 2.2. Let us consider the problem with $f_i$ and $g$ in $C^1$. Let’s consider a pair of control functions $(u^*_i, u^*_2) \in A_{FB}$, where $u^*_i(t) = \nu^*_i(t, x^*(t))$ and $x^*$ is the unique solution of the ODE
\[
\begin{aligned}
&\dot{x}(t) = g(x(t), \nu^*_1(t, x(t)), \nu^*_2(t, x(t))) \quad \text{a.e. in } [0, \infty) \\
&x(0) = x_0
\end{aligned}
\]
Let us suppose that there exists two functions $V^c_i : \mathbb{R}^n \rightarrow \mathbb{R}$, $i = 1, 2$, differentiable such that for every $x \in \mathbb{R}^n$,
\[
\begin{aligned}
rV^c_1(x) &= \max_{v_1 \in U_1} \left[ f_1(x, v_1, \nu^*_2(t, x)) + \nabla_x V^c_1(x) \cdot g(x, v_1, \nu^*_2(t, x)) \right] \\
&= f_1(x, \nu^*_1(t, x), \nu^*_2(t, x)) + \nabla_x V^c_1(x) \cdot g(x, \nu^*_1(t, x), \nu^*_2(t, x)) \\
rV^c_2(x) &= \max_{v_2 \in U_2} \left[ f_2(x, \nu^*_1(t, x), v_2) + \nabla_x V^c_2(x) \cdot g(x, \nu^*_1(t, x), v_2) \right] \\
&= f_2(x, \nu^*_1(t, x), \nu^*_2(t, x)) + \nabla_x V^c_2(x) \cdot g(x, \nu^*_1(t, x), \nu^*_2(t, x))
\end{aligned}
\]
Then $(u^*_1, u^*_2)$ is a Nash equilibrium in the class $A_{FB}$. Finally, $V^c_i$ are really the current value functions for the problem (2.19) in such Nash equilibrium.

In many situation of the previous remark we have that the decision rule does not depend explicitly by $t$, i.e.
\[
u^*_i(t) = \nu^*_i(x(t)).
\]
(2.20)
We mention that in the case of problem (2.19) one can decide to restrict the attention only to the feedback control of the type (2.20), called stationary feedback strategies (see [14]).

2.2.3 Two firms in competition

Suppose two firms produce an identical product. The cost of producing is governed by the total cost function
\[
C(u_i) = cu_i + \frac{1}{2} u_i^2,
\]
where $u_i = u_i(t)$ refers to the $i$-firm’s production level at time $t$ and $c$ is a positive constant. Each firm sells all it produces at time $t$ into a market with a common price $p = p(t)$. The relationship between the total amount of production $u_1 + u_2$ supplied and the change in price is described by
\[
\dot{p} = s(a - u_1 - u_2 - p),
\]
where $s$ and $a$ are positive constants and $p_0$ is the price at the initial time $t = 0$. Hence the situation is (this model is presented in see [11], page 278)
\[
\begin{aligned}
&\text{I Prod.: } \max_{u_1} \int_0^\infty e^{-rt} \left( pu_1 - cu_1 - \frac{1}{2} u_1^2 \right) dt \quad u_1 \geq 0 \\
&\text{II Prod.: } \max_{u_2} \int_0^\infty e^{-rt} \left( pu_2 - cu_2 - \frac{1}{2} u_2^2 \right) dt \quad u_2 \geq 0 \\
&\dot{p} = s(a - u_1 - u_2 - p) \\
p(0) = p_0 > 0 \\
p(t) \geq 0
\end{aligned}
\]
with the rate of discount $r$ that is a positive constant. Note that it is a symmetric game. We are interested on a non zero Nash equilibrium in the family of feedback strategies, i.e. strategies for the two firms that depend, at every time, on the price $p(t)$.

With a infinite and discounted problems, it is convenient to introduce the current value functions $V^c_1 = V^c_1(p)$ and $V^c_2 = V^c_2(p)$ and their Bellman–Hamilton–Jacobi equations: for every $p$ we have
\[
-rV^c_1 + \max_{v \geq 0} \left[ pv - cv - \frac{1}{2} v^2 + s(V^c_1)'(a - v - \nu_2 - p) \right] = 0
\]
\[\Rightarrow -rV_1^c + s(a - \nu_2 - p)(V_1^c)' + \max_{v \geq 0} \left[(p - c - s(V_1^c)')(v - \frac{1}{2}v^2)\right] = 0\]

\[\Rightarrow -rV_2^c + \max_{v \geq 0} \left[pv - cv - \frac{1}{2}v^2 + s(V_2^c)'(a - \nu_1 - v - p)\right] = 0\]

Clearly, we obtain, for \(i = 1, 2\)

\[\nu_i^*(t, p) = \nu_i^*(p) = \begin{cases} 0 & \text{if } p - c - s(V_i^c)'(p) \leq 0 \\ p - c - s(V_i^c)'(p) & \text{if } p - c - s(V_i^c)'(p) > 0 \end{cases}\]

Note that such strategies are stationary feedback strategies: hence if our strategy is zero, for some \(t\), we have that such strategy is zero at every time. Let’s concentrate our attention on strategies that are different from zero: hence we have

\[\nu_1^*(t, p) = \nu_1^*(p) = p - c - s(V_1^c)'(p), \quad \nu_2^*(t, p) = \nu_2^*(p) = p - c - s(V_2^c)'(p). \quad (2.21)\]

in the assumption

\[p - c - s(V_i^c)'(p) > 0, \quad i = 1, 2 \quad (2.22)\]

Let us consider the first current BHJ equation; we obtain

\[-rV_1^c + s \left(a - 2p + c + s(V_2^c)'(V_1^c)' + \frac{1}{2}(p - c - s(V_1^c)')^2\right) = 0, \quad \forall p.\]

Since the problem is Linear-Quadratic (see Proposition 2.1), we looking for value functions as

\[V_1^c(p) = \alpha_1 + \beta_1 p + \frac{1}{2} \gamma_1 p^2, \quad V_2^c(p) = \alpha_2 + \beta_2 p + \frac{1}{2} \gamma_2 p^2. \quad (2.23)\]

We obtain, using (2.21) and (2.23), that the two current BHJ equations now require that for every \(p\)

\[-r \left(\alpha_1 + \beta_1 p + \frac{1}{2} \gamma_1 p^2\right) + s \left[a - 2p + c + s(\beta_2 + \gamma_2 p)\right] \left(\beta_1 + \gamma_1 p\right) + \frac{1}{2} \left(p - c - s(\beta_1 + \gamma_1 p)\right)^2 = 0 \quad (2.24)\]

\[-r \left(\alpha_2 + \beta_2 p + \frac{1}{2} \gamma_2 p^2\right) + s \left[a - 2p + c + s(\beta_1 + \gamma_1 p)\right] \left(\beta_2 + \gamma_2 p\right) + \frac{1}{2} \left(p - c - s(\beta_2 + \gamma_2 p)\right)^2 = 0 \quad (2.25)\]

The previous equations give two polynomials of degree 2 in \(p\) and they are identically zero for every \(p\): equating the coefficients of \(p^2\), we obtain

\[s^2 \gamma_1^2 + (-r - 6s + 2s^2 \gamma_2) \gamma_1 + 1 = 0 \quad (2.26)\]

\[s^2 \gamma_2^2 + (-r - 6s + 2s^2 \gamma_1) \gamma_2 + 1 = 0 \]

Let us prove that \(\gamma_1 = \gamma_2\): in order to do that, let us subtract the previous two equation obtaining

\[(\gamma_1 - \gamma_2)[s^2(\gamma_1 + \gamma_2) - r - 6s] = 0.\]

If \(\gamma_1 \neq \gamma_2\), we have

\[s^2(\gamma_1 + \gamma_2) = r + 6s \quad (2.27)\]

Now let us consider the dynamic: with \(u_1 = \nu_1^*\) and \(u_2 = \nu_2^*\) given in (2.21) and taking into account (2.23), we obtain

\[\dot{p} = s[s(\gamma_1 + \gamma_2) - 3]p + s[a + 2c + s(\beta_1 + \beta_2)].\]

The solution of this ODE in \(p\) is

\[p(t) = Ae^{s[s(\gamma_1 + \gamma_2) - 3]t} - \frac{a + 2c + s(\beta_1 + \beta_2)}{s(\gamma_1 + \gamma_2) - 3} \quad (2.28)\]
where $A$ is a constant that depends on $p_0$. We note that, by (2.27),

$$s(\gamma_1 + \gamma_2) - 3 = \frac{r + 3s}{s} > 0.$$  

Hence, $A \neq 0$, for the price $p(t)$ goes to $\text{sgn}(A) \cdot \infty$, for $t \to \infty$: this is not reasonable. If $A = 0$, then $p(t) = p_0$ is constant; relation (2.27) give $u_i^*(t) = \nu_i^*(p_0)$ and this is not a feedback strategy. Hence $\gamma_1 \neq \gamma_2$ is impossible.

From now on, let us simplify the notations setting $\gamma = \gamma_1 = \gamma_2$. The price, by (2.28), now is

$$p(t) = Ae^{s(2s\gamma - 3)t} - \frac{a + 2c + s(\beta_1 + \beta_2)}{2s\gamma - 3}$$  

and equation (2.27) becomes

$$3s^2\gamma^2 - (r + 6s)\gamma + 1 = 0$$

with solutions

$$\gamma_\pm = \frac{r + 6s \pm \sqrt{(r + 6s)^2 - 12s^2}}{6s^2}.$$  

We note that

$$\gamma_+ > \frac{6s + \sqrt{36s^2 - 12s^2}}{6s^2} = \frac{3 + \sqrt{6}}{3s} > \frac{3}{2s}$$

implies again that the price in (2.29) goes to $\infty$ for $t \to \infty$. Hence we consider only the solution $\gamma = \gamma_-$ and we obtain

$$\gamma_- = \frac{r + 6s - \sqrt{(r + 6s)^2 - 12s^2}}{6s^2}$$  

Let us prove that $\beta_1 = \beta_2$. Let us note that

$$0 < s^2\gamma_- < 6s^2\gamma_- < r + (6 - 2\sqrt{6})s < r + 3s.$$  

Equating the coefficients of $p$ in (2.24) and (2.25) we obtain

$$(2s^2\gamma_- - r - 3s)\beta_1 + s^2\gamma_- \beta_2 = c - 2sc\gamma_- - sa\gamma_-$$  

$$s^2\gamma_- \beta_1 + (2s^2\gamma_- - r - 3s)\beta_2 = c - 2sc\gamma_- - sa\gamma_-$$  

Let us subtract the previous two equation obtaining

$$(\beta_1 - \beta_2)(s^2\gamma_- - r - 3s) = 0.$$  

This relation, by (2.31), gives $\beta_1 = \beta_2$. Let us set $\beta = \beta_1 = \beta_2$; by (2.32)

$$\beta = \frac{s\gamma_- (2c + a) - c}{r + 3s - 3s^2\gamma_-}.$$  

It is easy to see that $\beta > 0$. Moreover, by (2.21) and (2.23) we have

$$\nu_i^*(p) = \nu_i^*(p) = p - c - s(\beta + \gamma_- p).$$  

Now let us prove that $\alpha_1 = \alpha_2$ (note that such coefficients play no role in the strategies, but we have to guarantee that exist $(V^1_i, V^2_i)$ solutions of the current BHJ equations). Taking into account that $\beta_1 = \beta_2 = \beta$, equating the coefficients of zero degree on $p$ in (2.24) and (2.25) we obtain

$$-ra_i + s(a + c + s\beta) + \frac{1}{2}(c + s\beta)^2 = 0, \quad i = 1, 2.$$
2.3. FURTHER EXAMPLES AND MODELS

Clearly such $\alpha_i$ exist and are equal. Finally, we obtain by (2.34)

$$u_i^*(t) = u_i^*(p^*(t)) = (1 - s\gamma_\cdot)p^*(t) - (\beta s + c), \quad i = 1, 2$$

$$p^*(t) = \left( p_0 - \frac{a + 2c + 2s\beta}{3 - 2s\gamma_\cdot} \right) e^{s(2s\gamma_\cdot - 3)t} + \frac{a + 2c + 2s\beta}{3 - 2s\gamma_\cdot} \quad (2.35)$$

where $\gamma_\cdot$ and $\beta$ are defined in (2.30) and (2.33) respectively.

Let us set $\tilde{k} = a + 2c + 2s\beta/3 - 2s\gamma_\cdot$. It is easy to see, using $\beta > 0$, that $\tilde{k} > 0$ and hence the shape of the trajectory–price function in (2.36) implies that

$$p^*(t) \geq \min \left( p^*(0), \lim_{t \to \infty} p^*(t) \right) = \min \left( p_0, \tilde{k} \right) > 0.$$  

Hence $p^*$ is a good price, i.e. $p^*(t) \geq 0$. Finally, the assumption (2.22) is now

$$(1 - s\gamma_\cdot)p > (\beta s + c) :$$

this condition requires that the trajectory $p$ lies in a region $R$:

$$R = \{ (t, p) \in [0, \infty) \times (0, \infty) : (1 - s\gamma_\cdot)p > (\beta s + c) \}.$$  

Clearly $R$ depends on the constants involved in the model. More precisely, our trajectory $p^*$ lies in this region $R$ if and only if, again by the shape of $p^*$ in (2.36), the following

$$\min \left( p^*(0), \lim_{t \to \infty} p^*(t) \right) = \min \left( p_0, \tilde{k} \right) > \frac{\beta s + c}{1 - s\gamma_\cdot} \quad (2.37)$$

is satisfied. Some computations gives that for some choice of $(a, c, r, s, p_0)$ the previous condition holds and for some others choice is not true. However, if (2.37) is satisfied, then Remark 2.2 guarantees that $(u_1^*, u_2^*)$ in (2.35) is a Nash equilibrium in the family of feedback strategies.

2.3 Further examples and models

2.3.1 Two fishermen at the lake

In the present model (see [11], page 285) we will see that the open–loop Nash equilibrium and the feedback Nash equilibrium coincide.

The model. Suppose that the evolution of the stock of fish $x = x(t)$ in a lake is governed by

$$\dot{x} = \alpha x - \beta x \ln x$$

for $t \geq 0$ and where $\alpha$ and $\beta$ are positive constants. We assume that $x(t) \geq 2$, one of each gender, for the fish population to survive and $x(0) = x_0 \geq 2$. At every time, the stock $x$ generates $\alpha x$ births and it has $\beta x \ln x$ deaths.

Two fishermen harvest fish form the lake and each fisherman’s catch $c_i$ is directly related to the level of effort $w_i = w_i(t)$ he devotes to this activity and the stock of fish: thus

$$c_i = x_i w_i.$$  

Clearly, the fisherman’s activity reduced the fish stock in the lake and with respect the equation of the evolution of the fish we have

$$\dot{x} = \alpha x - \beta x \ln x - w_1 x - w_2 x.$$  

Each fisherman derives satisfaction from his catch according to a log utility function $U_i$ as

$$U_i = a_i \ln(w_i x),$$

\footnote{We note that $(1 - s\gamma_\cdot) > 0.$}
where $a_i$ are positive constants, in an infinite period. Hence we will introduce a discount factor $e^{-rt}$, with $r > 0$, for such utility.

It is convenient for computations to set $y(t) = \ln x(t)$: hence $\dot{y} = \frac{\dot{x}}{x}$. the target of very player–fisherman is to realize

$$
\max_{w_1} \int_0^\infty a_i(y + \ln w_1)e^{-rt} \, dt = a_i \max_{w_1} \int_0^\infty (y + \ln w_1)e^{-rt} \, dt,
$$

since $a_i > 0$. Hence we have the following symmetric game.

$$
\left\{ \begin{array}{ll}
\text{I F.:} & \max_{w_1} \int_0^\infty (y + \ln w_1)e^{-rt} \, dt \\
\text{II F.:} & \max_{w_2} \int_0^\infty (y + \ln w_2)e^{-rt} \, dt
\end{array} \right.
$$

\begin{align*}
\dot{y} &= \alpha - w_1 - w_2 - \beta y \\
y(0) &= y_0 \geq \ln 2, & y(t) \geq \ln 2
\end{align*}

Let us assume for simplicity

$$
\alpha - 3\beta > 2r.
$$

(2.39)

We are interested on non zero Nash equilibria in the class of open–loop strategies and in the class of feedback strategies.

**Open–loop Nash equilibrium** Let us introduce the two current Hamiltonians:

$$
\begin{align*}
H_1^c &= y + \ln w_1 + \lambda_{1c}(\alpha - w_1 - w_2 - \beta y) \\
H_2^c &= y + \ln w_2 + \lambda_{2c}(\alpha - w_1 - w_2 - \beta y)
\end{align*}
$$

We have to guarantee the following conditions:

$$
\nu_i(t, y) \in \arg \max_{v \geq 0} H_i^c = \arg \max_{v \geq 0} (\ln v - \lambda_{ic}v) = \begin{cases} 
\frac{1}{\lambda_{ic}} & \text{if } \lambda_{ic} > 0 \\
\beta & \text{if } \lambda_{ic} \leq 0
\end{cases}
$$

(2.40)

$$
\dot{\lambda}_{ic} = r\lambda_{ic} - \frac{\partial H_i^c}{\partial y} = (r + \beta)\lambda_{ic} - 1
$$

(2.41)

for $i = 1, 2$. We note that $\nu_1$ and $\nu_2$ in (2.40) do not depend on the trajectory $y$: hence we are in the position to looking for a open–loop equilibrium. Let us looking for some non zero Nash equilibrium, we obtain by (2.40)

$$
\begin{align*}
w_1(t) &= \nu_1(t) = \frac{1}{\lambda_{1c}(t)} \\
w_2(t) &= \nu_2(t) = \frac{1}{\lambda_{2c}(t)}
\end{align*}
$$

(2.42)

in the assumption that

$$
\lambda_{ic} > 0.
$$

(2.43)

The adjoint equations (2.41) give

$$
\lambda_{1c}(t) = Ae^{(\beta + r)t} + \frac{1}{\beta + r}, \quad \lambda_{2c}(t) = Be^{(\beta + r)t} + \frac{1}{\beta + r},
$$

with $A$ and $B$ constants. Clearly (2.42) gives, putting in evidence the dependence by the two constants,

$$
\begin{align*}
w_1^A(t) &= \frac{\beta + r}{A(\beta + r)e^{(\beta + r)t} + 1}, & w_2^B(t) &= \frac{\beta + r}{B(\beta + r)e^{(\beta + r)t} + 1}.
\end{align*}
$$

(2.44)

Suggestion: In order to solve the Bellman–Hamilton–Jacobi equation for the current value functions, we suggest to looking for the solution in the family of functions

$$
\begin{align*}
V_1^c(y) &= ay + b, & V_2^c(y) &= cy + d,
\end{align*}
$$

(2.38)

with $a, b, c, d$ constants.

\text{In subsection we looking for a open–loop Stackelberg equilibrium.}
The dynamics now gives

$$y^{AB}(t) = e^{-\beta t} \left[ \int_0^t \left( \alpha - w_1^A(s) - w_2^B(s) \right) e^{\beta s} ds + y_0 \right].$$

(2.45)

We claim that the case $A = B = 0$ is the unique candidate to be a Nash equilibrium. In order to prove that, first we put $A < 0$ and, for $t$ sufficiently large, we obtain $w_1^A < 0$ which is impossible. The case $B < 0$ is similar. Now, let us suppose that $A$ and $B$ are non-negative; note in this case (2.43) hold: we want to prove that

$$\int_0^\infty (y^{AB} + \ln w_1^A) e^{-rt} dt < \int_0^\infty (y^0B + \ln w_1^0) e^{-rt} dt,$$

(2.46)

i.e. that $(w_1^A, w_2^B)$ is not a Nash equilibrium since for the first player, with $w_2^B$ fixed, there exists a better strategy with respect to $w_1^A$. Now, taking into account that

$$\int_0^t \frac{A(\beta + r)^2 e^{(\beta+r)s}}{A(\beta + r)e^{(\beta+r)s} + 1} ds = \ln (A(\beta + r)e^{(\beta+r)t} + 1) - \ln (A(\beta + r) + 1)$$

(2.47)

for every fixed $t$ we have, by (2.44) and (2.45),

$$y^{AB}(t) + \ln w_1^A(t) = e^{-\beta t} \left[ \int_0^t \left( \alpha - \frac{\beta + r}{A(\beta + r)e^{(\beta+r)s} + 1} - w_2^B(s) \right) e^{\beta s} ds + y_0 \right] +$$

(by (2.47))

$$+ \ln(\beta + r) - \ln (A(\beta + r)e^{(\beta+r)t} + 1)$$

$$< e^{-\beta t} \left[ \int_0^t (\alpha - w_2^B(s)) e^{\beta s} ds + y_0 \right] + \ln(\beta + r) +$$

$$- (\beta + r) \int_0^t \frac{A(\beta + r)e^{(\beta+r)s} + e^{\beta(s-t)}}{A(\beta + r)e^{(\beta+r)s} + 1} ds - \ln (A(\beta + r) + 1)$$

$$< e^{-\beta t} \left[ \int_0^t (\alpha - w_2^B(s)) e^{\beta s} ds + y_0 \right] + \ln(\beta + r) - (\beta + r) \int_0^t e^{\beta(s-t)} ds$$

$$= y^0B(t) + \ln w_1^0(t),$$

(2.48)

where in the inequality “$<$” we use $A(\beta + r) > 0$ and the fact that, for every $h$ and $k$ positive we have,

$$\frac{-k + h}{k + 1} \leq -h \iff h \leq 1.$$

Clearly relation (2.48) implies (2.46).

Let us study the case $A = B = 0$, i.e.

$$w_1^*(t) = w_2^*(t) = \beta + r$$

(2.49)

$$y^*(t) = y_0 e^{-\beta t} + \alpha - 2(\beta + r) \left( 1 - e^{-\beta t} \right)$$

$$\lambda^*_c(t) = \lambda^*_2(t) = \frac{1}{\beta + r}$$

Let us check that $y^*(t) \geq \ln 2$: in fact, by plotting the function $y^*$ and by (2.49), we have

$$y^*(t) \geq \min \left( y_0, \frac{\alpha - 2(\beta + r)}{\beta} \right) \geq 1, \quad t \geq 0.$$
We recall that in order to guarantee some sufficient condition of optimality in an infinite horizon problem (see subsection A.1.1), we require that \( \lim_{t \to \infty} \lambda^*_i(t) \cdot (x(t) - x^*(t)) \geq 0 \) where \( \lambda^*_i \) is the multiplier, \( x \) a generic trajectory and \( x^* \) the trajectory candidate to the optimal. Since \( \lambda^*_i(t) = e^{-rt} \lambda^*_i(t) = e^{-rt}/(\beta + r) \), this sufficient condition for the \( i \)-problem is

\[
\lim_{t \to \infty} \lambda^*_i(t)(y(t) - y^*(t)) \geq \lim_{t \to \infty} \frac{1}{\beta + r} e^{-rt}(\ln 2 - y^*(t)) = 0
\]

Finally it is easy to see that the Hamiltonians

\[
(y, w_1) \mapsto H^c_1(y, w_1, w_2^*(t), \lambda^*_c(t)) \quad \text{and} \quad (y, w_2) \mapsto H^c_2(y, w_1^*(t), w_2, \lambda^*_c(t))
\]

are concave functions, for every fixed \( t \), and that the control sets \( U_1 = U_2 = [0, \infty) \) are convex. Hence \((w_1^*, w_2^*)\) in (2.49) is an open–loop Nash equilibrium.

**Feedback Nash equilibrium.** Let us introduce the two current value functions \( V^c_1 = V^c_1(y) \) and \( V^c_2 = V^c_2(y) \): the BHJ equations are

\[
\begin{align*}
- rV^c_1 + y + (V^c_1)'(\alpha - \nu^*_2 - \beta y) + \max_{v \geq 0} \left[ \ln v - vV^c_1 \right] &= 0 \\
- rV^c_2 + y + (V^c_2)'(\alpha - \nu^*_1 - \beta y) + \max_{v \geq 0} \left[ \ln v - vV^c_2 \right] &= 0
\end{align*}
\]

We obtain that we realize the previous two max for

\[
\nu^*_i(t, y) = \nu^*_i(y) = \begin{cases} 
\frac{1}{(V^c_i)'(y)} & \text{if } (V^c_i)'(y) > 0 \\
0 & \text{if } (V^c_i)'(y) \leq 0 
\end{cases} \quad (2.50)
\]

Let us looking for a non zero Nash equilibrium. Hence the BHJ equations becomes

\[
\begin{align*}
- rV^c_1 + y + (V^c_1)' \left( \alpha - \frac{1}{(V^c_2)'} - \beta y \right) - \ln(V^c_1)' - 1 &= 0 \\
- rV^c_2 + y + (V^c_2)' \left( \alpha - \frac{1}{(V^c_1)'} - \beta y \right) - \ln(V^c_2)' - 1 &= 0
\end{align*}
\]

Now, using the suggestion (2.38), an easy computation in the previous system gives \( a = c = \frac{1}{\beta + r} \). It is clear, by (2.50), that we obtain

\[
w^*_i(t) = \nu^*_i(y) = \beta + r
\]

as in (2.49). Since such \((w^*_1, w^*_2)\) is admissible (solve the dynamics with the initial condition and check that \( y^* \geq 2 \) with calculations similar to the open–loop case) then it is a feedback Nash–equilibrium.

### 2.3.2 On international pollution

We denote by \( u_i = u_i(t) \), for \( i = 1, 2 \), the level of emissions of two economies and let \( x = x(t) \) be the stock of pollution at time \( t \). The system has a (little) capacity to self-cleaning; let us fix \( \alpha \in (0, 1) \) such that \( \dot{x} = -\alpha x \) describes this capacity of the system.

The damage of the emission is quadratic with respect to \( x \) with coefficients \( \frac{1}{2} \phi_i \), for every \( i \)-player, and we suppose that the utility for the \( i \)-economy related to its emission \( u_i \) is given by the concave function \( u_i(k_i - \frac{1}{2} u_i) \), with \( k_i \) positive constants. Hence we have

\[
\begin{align*}
\text{I Econ.:} \quad \max_{u_1} \int_0^\infty e^{-rt} \left( u_1 \left( k_1 - \frac{1}{2} u_1 \right) - \frac{1}{2} \phi_1 x^2 \right) \, dt & \quad u_1 \geq 0 \\
\text{II Econ.:} \quad \max_{u_2} \int_0^\infty e^{-rt} \left( u_2 \left( k_2 - \frac{1}{2} u_2 \right) - \frac{1}{2} \phi_2 x^2 \right) \, dt & \quad u_2 \geq 0
\end{align*}
\]

\[
\begin{align*}
\dot{x} &= u_1 + u_2 - \alpha x \\
x(0) &= x_0, \quad x(t) \geq 0
\end{align*}
\]
with the rate of discount $r$ that is a positive constant. This model is proposed in [5].

**Open loop Nash equilibrium, in the general case.** Let us introduce the two current Hamiltonians:

$$
H^c_1 = k_1 u_1 - \frac{1}{2} u_1^2 - \frac{1}{2} \phi x^2 + \lambda_{1c}(u_1 + u_2 - \alpha x)
$$

$$
H^c_2 = k_2 u_2 - \frac{1}{2} u_2^2 - \frac{1}{2} \phi x^2 + \lambda_{2c}(u_1 + u_2 - \alpha x)
$$

We have to guarantee the following conditions:

$$
\nu_i(t, x) \in \arg \max_{v \geq 0} H^c_i = \arg \max_{v \geq 0} \left( (k_i + \lambda_{ic}) v - \frac{1}{2} v^2 \right) = \begin{cases} k_i + \lambda_{ic} & \text{if } k_i + \lambda_{ic} \geq 0 \\ 0 & \text{if } k_i + \lambda_{ic} < 0 \end{cases} \tag{2.51}
$$

$$
\dot{\lambda}_{ic} = r \lambda_{ic} - \frac{\partial H^c_i}{\partial x} = (\alpha + r) \lambda_{ic} + \phi_i x \tag{2.52}
$$

for $i = 1, 2$. We note that $\nu_1$ and $\nu_2$ in (2.51) do not depend on the trajectory $x$: hence we are in the position to looking for a open–loop equilibrium.

Let us looking for some non zero Nash equilibrium: more precisely we are interested in the case where the emissions $u_i$ are positive in $[0, \infty)$, i.e. we assume that in (2.51) we have

$$
k_i + \lambda_{ic}(t) > 0, \quad \forall t \tag{2.53}
$$

Taking into account (2.51) in the dynamics and with (2.52), we have to solve the system

$$
\begin{pmatrix}
\dot{x} \\
\dot{\lambda}_{1c} \\
\dot{\lambda}_{2c}
\end{pmatrix} =
A
\begin{pmatrix}
x \\
\lambda_{1c} \\
\lambda_{2c}
\end{pmatrix} +
\begin{pmatrix}
k_1 + k_2 \\
0 \\
0
\end{pmatrix}, \quad \text{with } A =
\begin{pmatrix}
-\alpha & 1 & 1 \\
\phi_1 & \alpha + r & 0 \\
\phi_2 & 0 & \alpha + r
\end{pmatrix}
$$

The eigenvalues of $A$ are $\theta = \alpha + r$ and

$$
\theta_{\pm} = \frac{r \pm \sqrt{r^2 + 4(\alpha^2 + \alpha r + \phi_1 + \phi_2)}}{2}. \tag{2.54}
$$

Three eigenvectors for each eigenvalue are $v = (0, 1, -1)^T$ (related to $\theta$) and $v_{\pm} = (\alpha + r - \theta_{\pm}, -\phi_1, -\phi_2)^T$ respectively. Hence the general solution for the homogeneous part of our system is given by

$$(x, \lambda_{1c}, \lambda_{2c})^T = c_1 e^{\theta^+} v + c_2 e^{\theta^-} v_+ + c_3 e^{\theta^-} v_-$$

where $c_i$ are generic constants. It is easy to see that a particular solution of our system is given by

$$(x^{\text{part}}, \lambda_{1c}^{\text{part}}, \lambda_{2c}^{\text{part}})^T = \frac{(k_1 + k_2)}{\alpha(\alpha + r) + \phi_1 + \phi_2} ((\alpha + r), -\phi_1, -\phi_2)^T$$

Hence we obtain

$$
x(t) = c_2 e^{\theta^+} (\alpha + r - \theta^+) + c_3 e^{\theta^-} (\alpha + r - \theta^-) + x^{\text{part}}
$$

$$
\lambda_{1c}(t) = c_1 e^{(\alpha + r)t - \phi_1} \left( c_2 e^{\theta^+} + c_3 e^{\theta^-} \right) + \lambda_{1c}^{\text{part}}
$$

$$
\lambda_{2c}(t) = -c_1 e^{(\alpha + r)t - \phi_2} \left( c_2 e^{\theta^+} + c_3 e^{\theta^-} \right) + \lambda_{2c}^{\text{part}}. \tag{2.55}
$$
Using the expression of $\lambda_{1c}$ given by (2.55), putting (see (2.51))
\[ u_1(t) = \nu_1(t) = k_1 + \lambda_{1c}(t), \]
and taking into account that
\[ 2\theta - r > 0 \quad 2\theta_+ - r > 0, \]
it is easy to see that, if $(c_1, c_2) \neq (0, 0)$, then for $t \to \infty$ we have
\[ e^{-rt} \left( u_1 \left( k_1 - \frac{1}{2}u_1 \right) - \frac{1}{2}\psi_1 x^2 \right) \sim -\frac{1}{2}e^{-rt} \left( (\lambda_{1c})^2 + \psi_1 x^2 \right) \to -\infty \]
Hence we have $c_1 = c_2 = 0$ and, by the initial condition on the stock of pollution
\[
x^*(t) = \left( x_0 - \frac{(\alpha + r)(k_1 + k_2)}{\alpha(\alpha + r) + \phi_1 + \phi_2} \right) e^{\theta t} + \frac{(\alpha + r)(k_1 + k_2)}{\alpha(\alpha + r) + \phi_1 + \phi_2}
\]
\[
\lambda_{1c}^*(t) = -\frac{\phi_1}{\alpha + r - \theta} \left( x_0 - \frac{(\alpha + r)(k_1 + k_2)}{\alpha(\alpha + r) + \phi_1 + \phi_2} \right) e^{\theta t} - \frac{(k_1 + k_2)\phi_1}{\alpha(\alpha + r) + \phi_1 + \phi_2}
\]
\[
\lambda_{2c}^*(t) = -\frac{\phi_2}{\alpha + r - \theta} \left( x_0 - \frac{(\alpha + r)(k_1 + k_2)}{\alpha(\alpha + r) + \phi_1 + \phi_2} \right) e^{\theta t} - \frac{(k_1 + k_2)\phi_2}{\alpha(\alpha + r) + \phi_1 + \phi_2}
\]
Note that $x^*(t) > 0$. We have to verify that (2.53) holds. In order to do that note that
\[ \dot{\lambda}_{1c}^*(t) > 0 \iff x_0 > x^{\text{part}} \]
Hence, in the case $x_0 \geq x^{\text{part}}$ we have to check that $\lambda_{1c}^*(0) + k_i > 0$, while in the case $x_0 < x^{\text{part}}$ we have to check that $\lambda_{1c}^{\text{part}} + k_i > 0$. We are not interested on this tedious calculations.

Let us prove that $(u_1^*, u_2^*)$ defined by (2.51)
\[ u_1^*(t) = \nu_1^*(t) = k_1 + \lambda_{1c}^*(t), \quad u_2^*(t) = \nu_2^*(t) = k_2 + \lambda_{2c}^*(t), \]
and using $\lambda_{1c}^*$ as in the last expression. Let us study the situation from the point of view of the first player. It is immediate to see that
\[ (x, u_1) \mapsto H_1(t, x, u_1, u_2^*(t), \lambda_{1c}^*(t)) \]
is, for every fixed $t$, a concave function. It is clear that for every admissible trajectory $x = x(t)$ we have, in order to have $x^2 e^{-rt}$ integrable for $t \to \infty$,
\[ x^2(t) e^{-rt} \to 0, \quad t \to \infty. \]
Note that this is equivalent $x(t) e^{-rt/2} \to 0$, for $t \to \infty$. Recalling that $\lambda_{1c}^*(t) e^{-rt} \lambda_{1c}^*(t)$, we have
\[ \lim_{t \to \infty} \lambda_{1c}^*(t)(x(t) - x^*) = \lambda_{1c}^{\text{part}} \lim_{t \to \infty} e^{-rt}(x(t) - x^{\text{part}}) = 0 \]
Hence $u_1^*$ is optimal for the first player (see subsection A.1.1); similar arguments hold for the second economy and hence we have really that $(u_1^*, u_2^*)$, defined by (2.51), is a Nash equilibrium in the class of open loop strategies.
Chapter 3

Stackelberg equilibria

In 1934, von Stackelberg introduced a concept of a hierarchical solution for markets where some firms have power of domination over others. This solution concept is now known as the Stackelberg equilibrium or the Stackelberg solution which, in the context of two-persons nonzero-sum games, involves players with asymmetric roles, one leading (accordingly called the Leader) and the other one following (called the Follower).

In all this chapter we are considering the following hierarchy two–person game

\[
\begin{align*}
\text{Player I (Leader): } & \max_{u_L} J_L(u_L, u_F) \\
J_L(u_L, u_F) = & \int_0^T f_L(t, x, u_L, u_F) \, dt + \psi_L(x(T)) \\
\text{Player II (Follower): } & \max_{u_F} J_F(u_L, u_F) \\
J_F(u_L, u_F) = & \int_0^T f_F(t, x, u_L, u_F) \, dt + \psi_F(x(T)) \\
\dot{x} = & g(t, x, u_L, u_F) \\
x(0) = & x_0
\end{align*}
\]

where \( T \) is fixed and \((u_L, u_F)\) is an admissible control, i.e. depending on the information structure. We assume that the control sets for the Leader and for the Follower are \( U_L \) and \( U_F \) respectively; moreover we assume \( f_L, f_F, g, \psi_L \) and \( \psi_F \) in \( C^1 \).

### 3.1 Open-loop Stackelberg equilibria

Let us consider a open–loop strategy \( u_L \), with \( u_L(t) = \nu_L(t, x_0) \), for the Leader. We define the set of best possible replies of the Follower \( R^F(u_L) \) in the family of the open–loop strategies, where the Leader has already announced the strategy \( u_L \), as

\[
R^F(u_L) = \left\{ u_F : (u_L, u_F) \in A_{OL}, \quad J_F(u_L, u_F) \leq J_F(u_L, u_F') \quad \forall (u_L, u_F') \in A_{OL} \right\}.
\]

Clearly \((u_L, u_F) \in R^F(u_L)\) is an admissible pair of strategies and the set \( R^F(u_L) \) can be empty.

**Definition 3.1.** A pair of control functions \((u_L^*, u_F^*) \in A_{OL}\), with \( u_L^*(t) = \nu_L^*(t, x_0) \) and \( u_F^*(t) = \nu_F^*(t, x_0) \), is a Stackelberg equilibrium within the class of open–loop strategies \( A_{OL} \) if

i. \( u_F^* \in R^F(u_L^*) \), with associated trajectory \( x^* \);

ii. given any open–loop strategy \( u_L \) for the Leader and every best reply \( u_F \in R^F(u_L) \) for the Follower, the following holds

\[
\int_0^T f_L(t, x_{LF}, u_L, u_F) \, dt + \psi_L(x_{LF}(T)) \leq
\]
where \( x_{LF} \) is the trajectory associated to the pair \((u_L, u_F)\).

In this case the problem has to be solved backward.

First of all, from the point of view of the Follower, for every \( u_L \) fixed, we construct the set of best possible replies \( R^F(u_L) \). We have to solve, for a fixed \( u_L \)

\[
\begin{aligned}
\max_{u_F} \int_0^T f_F(t, x, u_L, u_F) \, dt + \psi_F(x(T)) \\
x = g(t, x, u_L, u_F) \\
x(0) = x_0
\end{aligned}
\]  

(3.2)

Applying Theorem B.1.1 if \( u_F \in R^F(u_L) \) and \( x \) is the trajectory associated to \((u_L, u_F)\), then there exists a continuous multiplier \( \lambda_F : [0,T] \to \mathbb{R}^n \) such that

\[
\begin{aligned}
\nu_F(t, x_0) &\in \arg \max_{\nu \in \mathcal{C}_F} H_F(t, x(t), u_L(t), \nu, \lambda_F(t)) \quad \forall t \in [0,T] \\
\lambda_F &= -\nabla_x H_F(t, x, u_L, u_F, \lambda_F) \\
\lambda_F(T) &= \nabla_x \psi_F(x(T))
\end{aligned}
\]  

(3.3) (3.4) (3.5)

where \( u_F(t) = \nu_F(t, x_0) \) and the Hamiltonian \( H_F \) of the Follower is defined by

\[
H_F(t, x, u_L, u_F, \lambda_F) = f_F(t, x, u_L, u_F) + \lambda_F \cdot g(t, x, u_L, u_F).
\]  

(3.6)

We note that \( x \) depends on the choice of \( u_L \) and on the choice of \( u_F \) in \( R^F(u_L) \) (with the possibility that this second choice can be not unique): hence \( x \) depends on \((u_L, u_F)\), i.e. \( x = x(u_L, u_F) \). Moreover, the multiplier is associated to the pair trajectory–control functions \((x, (u_L, u_F))\): hence \( \lambda_F \) depends on \((x, u_L, u_F)\), i.e. \( \lambda_F = \lambda_F(x, u_L, u_F) \).

We are looking for a open–loop strategy: hence let us suppose that in (3.3) \( \nu_F \) does not depend on \( x \). Taking into account of the previous dependence, we have \( \nu_F = \nu_F(t, u_L, \lambda_F) \). Moreover, since in this situation the value \( x(T) \) of the trajectory at the final fixed time \( T \) is free, then our controls are normal: this is the reason of our definition of \( H_F \) in (3.6). At this point we have to guarantee some sufficient conditions for the game of the Follower.

Now, let us consider the point of view of the Leader. For every \( u_L \) we associated \((u_F, x, \lambda_F)\) where \( u_F \in R^F(u_L) \) is given by (3.3) and by \( u_F(t) = \nu_F(t, u_L(t), \lambda_F(t)) \); \( x \) is given by the dynamics of the problem and \( \lambda_L \) is given by (3.4): in this procedure, the best choice for the Leader is \( u_L^* \). Hence the Leader has to solve the following problem, where its control is \( u_L \) and its trajectory is \((x, \lambda_F)\) with the conditions \( x(0) = x_0 \) and (3.3):

\[
\begin{aligned}
\max_{u_L} \int_0^T f_L(t, x, u_L, \nu_F(u_L, \lambda_F)) \, dt + \psi_L(x(T)) \\
x = g(t, x, u_L, \nu_F(u_L, \lambda_F)) \\
\lambda_F = -\nabla_x H_F(t, x, u_L, \nu_F(u_L, \lambda_F), \lambda_F) \\
x(0) = x_0 \\
\lambda_F(T) = \nabla_x \psi_F(x(T))
\end{aligned}
\]  

(3.7)

In this case the Hamiltonian \( H_L \) for the Leader is defined by

\[
H_L(t, x, \lambda_F, u_L, \lambda_{0L}, \lambda_{1L}, \lambda_{2L}) = \lambda_{0L} f_L(t, x, u_L, \nu_F(u_L, \lambda_F)) + \lambda_{1L} \cdot g(t, x, u_L, \nu_F(u_L, \lambda_F)) + \lambda_{2L} \cdot \nabla_x H_F(t, x, u_L, \nu_F(u_L, \lambda_F), \lambda_F)
\]  

(3.8)

1We omit all the \(*\).
3.1. OPEN-LOOP STACKELBERG EQUILIBRIA

We note that in the definition of $H_L$, since the value of the trajectory $(x, \lambda_F)$ has a condition in the initial point $t = 0$ and in the final point $t = T$, we are not in the position to guarantee the normality of the extremal: hence we insert $\lambda_0$.

Let us apply again Theorem 3.1. Hence if $u^*_L$ is a Stackelberg equilibrium, there then there exists a continuous multiplier $(\lambda_0L, \lambda_{1L}, \lambda_{2L}) : [0, T] \rightarrow \mathbb{R}^{2n+1}$ such that $\lambda_0L$ is a non negative constant, $(\lambda_0L, \lambda_{1L}, \lambda_{2L}) \neq (0, 0, 0)$ and

$$
\nu_L(t, x_0) \in \arg \max_{\nu \in U_L} H_L(t, x(t), \lambda_L(t), \nu, \lambda_0L, \lambda_{1L}(t), \lambda_{2L}(t)) \quad \forall t \in [0, T]
$$

$$
\dot{\lambda}_{1L} = -\nabla_x H_L(t, x, \lambda_L, \nu, \lambda_0L, \lambda_{1L}, \lambda_{2L})
$$

$$
\dot{\lambda}_{2L} = -\nabla_{\lambda} H_L(t, x, \lambda_L, \nu, \lambda_0L, \lambda_{1L}, \lambda_{2L})
$$

$$
\lambda_{1L}(T) = \lambda_0L \nabla_x \psi_L(x(T))
$$

$$
\lambda_{1L}(0) = \lambda_0L \nabla_{\lambda} \psi_L(x(0))
$$

with $u_L(t) = \nu_L(t, x_0)$ since we are looking for a open–loop strategy.

Clear, up to now we are discussing only of sufficient conditions of optimality for the two problems (3.2) and (3.7): in order to find a Stackelberg equilibrium for (3.1) we have to guarantee some sufficient conditions for the two mentioned previous problems.

3.1.1 On international pollution with hierarchical relations

Let us denote by $u_L = u_L(t)$ and $u_F = u_F(t)$ the level of emissions of two economies, where the first (the Leader) has a sort of domination with respect to the second economy (the Follower); for example, this is the situation that occurs when the Follower has a big debit with the Leader. Now, as in subsection 2.3.2 let $x = x(t)$ be the stock of pollution at time $t$, $\alpha \in (0, 1)$ is the coefficient of capacity to self-cleaning of the system. The damage of the emission is quadratic with respect to $x$ with coefficients $\frac{1}{2}\phi_L$ and $\frac{1}{2}\phi_F$, and we suppose that the utility for the two economies related to its emission are quadratic. As in subsection 2.3.2 we have

$$
\begin{align*}
\text{Leader:} & \quad \max_{u_L} \int_0^\infty e^{-rt} \left( u_L \left( k_L - \frac{1}{2} u_L \right) - \frac{1}{2} \phi_L x^2 \right) dt \quad u_L \geq 0 \\
\text{Follower:} & \quad \max_{u_F} \int_0^\infty e^{-rt} \left( u_F \left( k_F - \frac{1}{2} u_F \right) - \frac{1}{2} \phi_F x^2 \right) dt \quad u_F \geq 0 \\
\end{align*}
$$

with the rate of discount $r$ that is a positive constant and with $\phi_L, \phi_F, K_L$ and $K_F$ positive constants. Let us looking for a non zero Stackelberg equilibrium in the family of open–loop strategies.

Let us introduce the current Hamiltonian $H_F^c$ for the Follower

$$
H_F^c = k_F u_F - \frac{1}{2} u_F^2 - \frac{1}{2} \phi_F x^2 + \lambda_F c(u_L + u_F - \alpha x)
$$

Let us fix $u_L$: hence all that follows for the Follower depends on such $u_L$. We have to guarantee the following conditions:

$$
\nu_F \in \arg \max_{u_F \geq 0} H_F^c = \arg \max_{v \geq 0} \left( (k_F + \lambda_F c)v - \frac{1}{2} v^2 \right) =
$$

$$
\begin{align*}
&= \begin{cases} 
  k_F + \lambda_F c & \text{if } k_F + \lambda_F c \geq 0 \\
  0 & \text{if } k_F + \lambda_F c < 0 
\end{cases} \\
(3.9)
\end{align*}
$$

$$
\dot{\lambda}_F c = r \lambda_F c - \frac{\partial H_F^c}{\partial x} = (\alpha + r) \lambda_F c + \phi_F x
$$

(3.10)

2We omit again all the $^{**}$.
where \( \nu_F = \nu_F(t, x, u_L) \), \( \lambda_{Fc} = \lambda_{Fc}(t, u_L) \) and \( x = x(t, u_L) \). We note that \( \nu_F \) in (3.3) does not depend on the trajectory \( x \); hence we are in the position to looking for a open-loop equilibrium.

Let us looking for some Stackelberg equilibrium where the emissions are positive in \( [0, \infty) \), i.e. we assume that in (3.9) we have

\[
 k_F + \lambda_{Fc}(t, u_L) > 0, \quad \forall t
\]

We add to these necessary conditions (3.9)–(3.10), some considerations with respect to the sufficient conditions of optimality for the Follower, for every \( u_L \) fixed by the Leader. Suppose that for every fixed \( u_L \) we have a extremal tern \( (x_F(t, u_L), \lambda_{Fc}(t, u_L), u_F(t, u_L)) \): it is immediate to see that, always for every fixed \( u_L \),

\[
 (x, u_F) \mapsto H_F^c(t, x, u_L(t), u_F, \lambda_{Fc}(t, u_L))
\]

is, for every fixed \( t \), a concave function. Moreover we have to guarantee that for every admissible trajectory \( x = x(t, u_L) \) we have

\[
 \lim_{t \to \infty} \lambda_{Fc}^*(t, u_F)e^{-rt}(x(t, u_L) - x^*(t, u_L)) \geq 0.
\]

In order to do that, let us note that if \( x(t, u_L) \) is associated to an admissible control, then \( \frac{\phi_F}{2}(x(t, u_L))^2e^{-rt} \to 0 \) for \( t \to \infty \), and hence

\[
 \lim_{t \to \infty} e^{-rt/2}x(t, u_L) = 0
\]

Now, if \( |\lambda_{Fc}^*(t, u_F)| \to \infty \) for \( t \to \infty \), then \( |u^*(t, u_F)| = |k_F + \lambda_{Fc}^*(t, u_F)| \to \infty \). Again, if \( u^*(t, u_F) \) is admissible, then \( -\frac{1}{2}(u^*(t, u_L))^2e^{-rt} \to 0 \) for \( t \to \infty \), and hence

\[
 \lim_{t \to \infty} u^*(t, u_L)e^{-rt/2} = \lim_{t \to \infty} \lambda_{Fc}^*(t, u_F)^{-rt/2} = 0.
\]

Clearly, (3.13) and (3.14) imply (3.12).

Let us pass to the point of view of the Leader; its current Hamiltonian \( H_L^F \) is, taking into account (3.9), (3.10) and (3.11),

\[
 H_L^F = \lambda_0 \left( k_L u_L - \frac{1}{2} u_L^2 - \frac{1}{2} \phi_L x^2 \right) + \lambda_{1Lc}(u_L + K_F + \lambda_{Fc} - \alpha x) + \\
+ \lambda_{2Lc} (\alpha + r) \lambda_{Fc} + \phi_F x.
\]

We note that we have no conditions on the final point \( t = \infty \) of the trajectory \( t \mapsto (x(t), \lambda_{Fc}(t)) \); hence we are in the position to put \( \lambda_0 = 0 \). Now we have to guarantee the following necessary conditions:

\[
 \nu_L \in \arg \max_{u_L \geq 0} H_L^F = \arg \max_{v \geq 0} \left( (k_F + \lambda_{1Lc})v - \frac{1}{2} v^2 \right) = \\
= \begin{cases} 
 k_L + \lambda_{1Lc} & \text{if } k_L + \lambda_{1Lc} \geq 0 \\
 0 & \text{if } k_L + \lambda_{1Lc} < 0
\end{cases}
\]

\[
 \lambda_{1Lc} = r \lambda_{1Lc} - \frac{\partial H_L^F}{\partial x} = (\alpha + r) \lambda_{1Lc} + \phi_L x - \phi_F \lambda_{2Lc}
\]

\[
 \lambda_{2Lc} = r \lambda_{2Lc} - \frac{\partial H_L^F}{\partial \lambda_{Fc}} = -\lambda_{1Lc} - \alpha \lambda_{2Lc}
\]

\[
 \lambda_{2Lc}(0) = 0
\]

Since that \( \nu_L \) in (3.15) does not depend on the trajectory \( x \), we are in the position to looking for a open-loop equilibrium. Let us assume

\[
 k_L + \lambda_{1Lc}(t) > 0, \quad \forall t
\]

Hence, by (3.9) and (3.15), we have \( u_F = K_F + \lambda_{Fc} \) and \( u_L = K_L + \lambda_{1Lc} \). Putting these information in the dynamic, together with (3.10), (3.16), (3.17), we have to solve the system

\[
 \dot{z} = Az + z_0
\]
where

\[ z = \begin{pmatrix} x \\ \lambda_{Fc} \\ \lambda_{1Lc} \\ \lambda_{2Lc} \end{pmatrix}, \quad z_0 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \quad A = \begin{pmatrix} -\alpha & 1 & 1 & 0 \\ \phi_F & \alpha + r & 0 & 0 \\ \phi_L & 0 & \alpha + r & -\phi_F \\ 0 & 0 & -1 & -\alpha \end{pmatrix} \]

with the conditions

\[ x(0) = x_0, \quad \lambda_{2Lc}(0) = 0 \quad (3.21) \]

The eigenvalues \( \theta \) of \( A \) solve det\((A - I\theta) = 0 \), i.e., using the first line for the computation of the determinant

\[ \left[ (-\alpha - \theta)(r + \alpha - \theta) - \phi_F \right]^2 \left[ (-\alpha - \theta)(r + \alpha - \theta)\phi_L \right] = 0. \]

Setting

\[ A = (-\alpha - \theta)(r + \alpha - \theta) \quad (3.22) \]

we obtain \( A^2 - A(2\phi_F + \phi_L) + \phi_F^2 = 0 \). Hence

\[ A_{\pm} = \frac{2\phi_F + \phi_L \pm \sqrt{4\phi_L\phi_F + \phi_F^2}}{2} \quad (3.23) \]

Note that \( A_{\pm} > 0 \). Putting \( A_{\pm} \) in (3.22) and solving we obtain

\[ \theta_{\pm\pm} = \frac{r \pm \sqrt{r^2 + 4(\alpha^2 + \alpha r + A_{\pm})}}{2} \quad (3.24) \]

where the first “\( \pm \)” in the subscript of \( \theta \) is related to the \( \pm \) in front of “\( \sqrt{\cdot} \)” and the second is related to \( A_{\pm} \).

Let \( z^{part} = (x^{part}, \lambda_{Fc}^{part}, \lambda_{1Lc}^{part}, \lambda_{2Lc}^{part})^T \neq 0 \) be such that \( Az^{part} = 0 \): clear this is a particular solution of (3.20). Hence the general solution of (3.20) is

\[ z(t) = c_1 e^{\theta_{++}} v_{++} + c_2 e^{\theta_{+-}} v_{+-} + c_3 e^{\theta_{-+}} v_{-+} + c_4 e^{\theta_{--}} v_{--} + z^{part} \quad (3.25) \]

where \( c_i \) are generic constants and \( v_{\pm\pm} \) eigenvectors relative to the eigenvalue \( \theta_{\pm\pm} \).

We claim that \( c_1 = c_2 = 0 \): in order to prove that, let us denote by \( v_{++} \in \mathbb{R}^4 \) the eigenvector related to the eigenvalue \( \theta_{++} \). Let us suppose that the first component \( v_{++}^1 \) of \( v_{++} \) is zero. It is easy to see that \((A - I\theta_{++})v_{++} = 0\) implies \( v_{++} = 0 \). Hence \( v_{++} \neq 0 \).

Now, if \( c_1 \neq 0 \), (3.25) implies that, for \( t \to \infty \),

\[ x(t)^2 e^{-rt} \sim \left( c_1 v_{++}^1 \right)^2 e^{(2\theta_{++} - r)t} \to \infty \]

and integral, in our model, does not converge. Hence \( c_1 = 0 \). Similar arguments imply that \( c_2 = 0 \). Hence we obtain

\[ z(t) = (x^*(t), \lambda_{Fc}^*, \lambda_{1Lc}^*, \lambda_{2Lc}^*)^T = c_3 e^{\theta_{+-}} v_{+-} + c_4 e^{\theta_{--}} v_{--} + z^{part} \quad (3.26) \]

where the two constants \( c_3 \) and \( c_4 \) depends on the two initial conditions (3.21). We are not interested to discuss the sufficient conditions for the Leader.
3.1.2 Father and son, fishermen at the lake

The model is presented in [2.3.1] but now the situation for the two players is hierarchical. The first player, the father, decide to use its influence on the second player, the son. Let us looking for a Stackelberg equilibrium in the family of open-loop strategies. Let us rewrite the problem taking into account that the the father is the Leader and the son is the Follower:

\[
\begin{align*}
\text{Leader (father):} & \quad \max_{w_L} \int_0^\infty (y + \ln w_L)e^{-rt} \, dt \\
\text{Follower (son):} & \quad \max_{w_F} \int_0^\infty (y + \ln w_F)e^{-rt} \, dt
\end{align*}
\]

\[
\begin{align*}
\dot{y} &= \alpha - w_L - w_F - \beta y \\
y(0) &= y_0 \geq \ln 2, \quad y(t) \geq \ln 2
\end{align*}
\]

Let us assume for simplicity \(\alpha - 3\beta > 2r\). (3.27)

Let us fix \(w_L\) the strategy of the father. We consider the point of view of the Follower–son and we look for \(R^F(w_L)\), the set of best replies for the son: the current Hamiltonian is

\[
H_F^c = y + \ln w_F + \lambda_{Fc}(\alpha - w_L - w_F - \beta y).
\]

We have to guarantee the following conditions:

\[
\nu_F(t) \in \arg \max_{v \geq 0} H_F^c = \arg \max_{v \geq 0} (\ln v - v\lambda_{Fc}(t)) = \begin{cases} \frac{1}{\lambda_{Fc}} & \text{if } \lambda_{Fc}(t) > 0 \\ \frac{1}{\beta} & \text{if } \lambda_{Fc}(t) \leq 0 \end{cases}
\]

(3.28)

\[
\lambda_{Fc} = r\lambda_{Fc} - \frac{\partial H_F^c}{\partial y} = (r + \beta)\lambda_{Fc} - 1
\]

(3.29)

Note that \(\nu_F\) in (3.28) do not depend on the trajectory \(y\): hence we are in the position to looking for a open–loop equilibrium

\[
w_F(t) = \nu_F(t) = \frac{1}{\lambda_{Fc}(t)}
\]

(3.30)

in the assumption that

\[
\lambda_{Fc}(t) > 0.
\]

(3.31)

The adjoint equation (3.29) gives

\[
\lambda_{Fc}(t) = B e^{(\beta + r)t} + \frac{1}{\beta + r},
\]

with \(B\) constants. Clearly (3.30) gives, putting in evidence the dependence by \(B\),

\[
w_F^B(t) = \frac{\beta + r}{B(\beta + r)e^{(\beta + r)t} + 1}
\]

(3.32)

and the dynamics implies

\[
y^B(t) = e^{-\beta t} \left[ \int_0^t (\alpha - w_L(s) - w_F^B(s)) e^{\beta s} \, ds + y_0 \right].
\]

(3.33)

We claim that the case \(B = 0\) is the unique candidate to be in \(R^F(w_L)\). In order to prove that, first we put \(B < 0\) and, for \(t\) sufficiently large, we obtain \(w_F^B < 0\) which is impossible. Now, let us suppose that \(B \geq 0\): note that in this case (3.31) holds: we want to prove that

\[
\int_0^\infty (y^B + \ln w_F^B)e^{-rt} \, dt < \int_0^\infty (y^0 + \ln w_F^0)e^{-rt} \, dt,
\]

(3.34)
3.1. OPEN-LOOP STACKELBERG EQUILIBRIA

i.e. \( w_F^R \not\in \mathcal{R}^F(w_L) \) for \( B > 0 \). Now, taking into account that

\[
\int_0^t \frac{B(\beta + r)^2 e^{(\beta+r)s}}{B(\beta + r)e^{(\beta+r)s} + 1} \, ds = \\
= \ln \left( B(\beta + r)e^{(\beta+r)t} + 1 \right) - \ln(B(\beta + r) + 1)
\]

for every fixed \( t \) we have, by (3.32) and (3.33),

\[
y^R(t) + \ln w_F^R(t) = e^{-\beta t} \left[ \int_0^t \left( \alpha - w_L(s) - \frac{\beta + r}{B(\beta + r)e^{(\beta+r)s} + 1} \right) e^{\beta s} \, ds + y_0 \right] + \\
+ \ln(\beta + r) - \ln \left( B(\beta + r)e^{(\beta+r)t} + 1 \right)
\]

(by (3.35)) \[
= e^{-\beta t} \left[ \int_0^t (\alpha - w_L(s)) e^{\beta s} \, ds + y_0 \right] + \ln(\beta + r) + \\
- (\beta + r) \int_0^t \frac{B(\beta + r)e^{(\beta+r)s} + e^{(s-t)}}{B(\beta + r)e^{(\beta+r)s} + 1} \, ds - \ln(B(\beta + r) + 1)
\]

\[
< e^{-\beta t} \left[ \int_0^t (\alpha - w_L(s)) e^{\beta s} \, ds + y_0 \right] + \ln(\beta + r) - (\beta + r) \int_0^t e^{\beta(s-t)} \, ds \\
= y^0(t) + \ln w_F^0(t), \quad (3.36)
\]

where in the inequality “\(<\)” we use \( B(\beta + r) > 0 \) and the fact that, for every \( h \) and \( k \) positive\(^3\) we have,

\[
-\frac{k + h}{k + 1} \leq -h \quad \iff \quad h \leq 1.
\]

Clearly relation (3.36) implies (3.34). By (3.33), we have

\[
w_F^0(t) = \beta + r \\
y^0(t) = y_0 e^{-\beta t} + \frac{\alpha - (\beta + r)}{\beta} (1 - e^{-\beta t}) - \int_0^t w_L(s) e^{\beta(s-t)} \, ds \\
\lambda_{Fc}(t) = \frac{1}{\beta + r}
\]

for every \( w_L \) fixed. Since such \( w_L \) is generic, we are not in the position to guarantee that \( y^0(t) \geq \ln 2 \), i.e. \( (w_L, w_F) \in \mathcal{A}_{OL} \). However, if \( \mathcal{R}^F(w_L) \) is nonempty, then \( \mathcal{R}^F(w_L) = \{ w_F \} \) with \( w_F \) as in (3.37).

Let us pass to the point of view of the Leader–father. For every strategy of the Leader–father, the Follower–son consider the strategy in \( w_F \) in (3.37). The current Hamiltonians for the Leader is similar to the definition in (3.3), taking into account that we use the current adjoint equation for the Follower:

\[
H_L^e = y + \ln w_L + \lambda_{1Lc}(\alpha - w_L - (\beta + r) - \beta y) + \lambda_{2Lc}((\beta + r)\lambda_{Fc} - 1).
\]

We have to guarantee the following conditions:

\[
\nu_L(t) \in \text{arg max } H_L^e = \text{arg max } (\ln v - v\lambda_{1Lc}(t)) = \begin{cases} 
\frac{1}{\lambda_{1Lc}(t)} & \text{if } \lambda_{1Lc}(t) > 0 \\
\beta & \text{if } \lambda_{1Lc}(t) \leq 0
\end{cases}
\]

\[
\dot{\lambda}_{1Lc} = r\lambda_{1Lc} - \frac{\partial H_L^e}{\partial y} = (r + \beta)\lambda_{1Lc} - 1
\]

\[
\dot{\lambda}_{2Lc} = r\lambda_{2Lc} - \frac{\partial H_L^e}{\partial \lambda_{Fc}} = -\beta\lambda_{2Lc}
\]

(3.38)

(3.39)

(3.40)

(3.41)

\(^3\)in our case \( h = e^{\beta(s-t)} \)
Note that (3.40) and (3.41) imply $\lambda_{2Lc}(t) = 0$. Moreover the two conditions (3.38)–(3.39) are exactly the same of the two conditions (3.28)–(3.29): all the same arguments of before used to obtain the strategy for the follower in (3.37) can be used to show that the candidate to be the optimal strategy for the Leader, the associated trajectory and multiplier are

$$w_L(t) = \beta + r$$

$$y(t) = y_0 e^{-\beta t} + \frac{\alpha - 2(\beta + r)}{\beta}(1 - e^{-\beta t})$$

$$\lambda_{1Lc}(t) = \frac{1}{\beta + r}$$

$$\lambda_{2Lc}(t) = 0$$

Let us check that $y(t) \geq \ln 2$: in fact, by plotting the function $y$ and by (3.27), we have

$$y(t) \geq \min \left( y_0, \frac{\alpha - 2(\beta + r)}{\beta} \right) \geq 1, \quad t \geq 0.$$ 

Now, considering

$$w^*_L(t) = w^*_F(t) = \beta + r$$

$$y^*(t) = y_0 e^{-\beta t} + \frac{\alpha - 2(\beta + r)}{\beta}(1 - e^{-\beta t})$$

$$\lambda^*_{Fc}(t) = \lambda^*_{1Lc}(t) = \frac{1}{\beta + r}$$

$$\lambda^*_{2Lc}(t) = 0$$

we know that $(w^*_L, w^*_F) \in A_{OL}$; in order to conclude our problem, we have to prove that $R_F^c(w^*_L) = \{w^*_F\}$ and that $w_L$ is optimal for the point of view of the Leader. In order to do that, note that

$$\lim_{t \to \infty} \lambda^*_{Fc}(t)(y(t) - y^*(t)) \geq \lim_{t \to \infty} \frac{1}{\beta + r} e^{-rt}(\ln 2 - y^*(t)) = 0$$

$$\lim_{t \to \infty} \lambda^*_{1Lc}(t)(y(t) - y^*(t)) \geq \lim_{t \to \infty} \frac{1}{\beta + r} e^{-rt}(\ln 2 - y^*(t)) = 0$$

$$\lim_{t \to \infty} \lambda^*_{2Lc}(t)(\lambda_{Fc}(t) - \lambda^*_{Fc}(t)) = \lim_{t \to \infty} 0(\lambda_{Fc}(t) - \lambda^*_{Fc}(t)) = 0.$$

Finally it is easy to see that the Hamiltonians

$$(y, w_F) \mapsto H^c_1(y, w_F, w^*_L(t), \lambda^*_c(t)) \quad \text{and} \quad (y, \lambda_{Fc}, w_L) \mapsto H^c_2(y, \lambda_{Fc}, w_F(t), w_L, \lambda^*_{1Lc}(t), \lambda^*_{2Lc}(t))$$

are concave functions, for every fixed $t$, and that the control sets $U_1 = U_2 = [0, \infty)$ are convex. Hence $(w^*_L, w^*_F)$ is a Stackelberg equilibrium.
Chapter 4

Two-persons zero-sum games

4.1 General problems

We are interested in the game

\[
\begin{align*}
\text{Player I: } & \max_{u_1} J(u_1, u_2), & \text{Player II: } & \min_{u_2} J(u_1, u_2) \\
J(u_1, u_2) &= \int_0^T f(t, x, u_1, u_2) \, dt + \psi(x(T)) \\
x &= g(t, x, u_1, u_2) \\
x(0) &= \alpha
\end{align*}
\]

(4.1)

where \( T \) is fixed and \( U_1 \) and \( U_2 \) are the two control sets for the players.

Note that Player I, whose control is \( u_1 \), wants to maximize the functional \( J \); Player II has the control \( u_2 \) and wants to minimize \( J \). This is a two-persons zero-sum differential game. We intend now to define value functions and to study the game using dynamic programming. In this context

**Definition 4.1.** A pair of control functions \((u_1^*, u_2^*) \in A_{OL}\), with \( u_1^*(t) = \nu_1^*(t, x_0) \), is a Nash equilibrium within the class of open–loop strategies \( A_{OL} \) for (4.1) if

\[
J(u_1, u_2^*) \leq J(u_1^*, u_2^*) \leq J(u_1^*, u_2)
\]

(4.2)

for every \((u_1, u_2^*) \in A_{OL}\) and for every \((u_1^*, u_2) \in A_{OL}\).

A pair of control functions \((u_1^*, u_2^*) \in A_{FB}\), where \( u_1^*(t) = \nu_1^*(t, x^*(t)) \), is a Nash equilibrium within the class of feedback strategies \( A_{FB} \) for (4.1) if (4.2) holds for every \((u_1, u_2^*) \in A_{FB}\) and for every \((u_1^*, u_2) \in A_{FB}\).

Relation (4.2) implies that \((u_1^*, u_2^*)\) is a saddle-point for \( J \). In all that follows in this section, let us assume that for the problem (4.1) we have that

1. \( f : [0, T] \times \mathbb{R}^n \times U_1 \times U_2 \to \mathbb{R} \) and \( g : [0, T] \times \mathbb{R}^n \times U_1 \times U_2 \to \mathbb{R}^n \) and \( \psi : \mathbb{R}^n \to \mathbb{R} \) are bounded and uniformly continuous with

\[
\begin{align*}
|f(t, x, u_1, u_2)| &\leq C_1 \\
|f(t, x, u_1, u_2) - f(t, x', u_1, u_2)| &\leq C_1 \|x - x'\|, \\
\|g(t, x, u_1, u_2)\| &\leq C_1 \\
\|g(t, x, u_1, u_2) - g(t, x', u_1, u_2)\| &\leq C_1 \|x - x'\|, \\
|\psi(x)| &\leq C, \\
|\psi(x) - \psi(x')| &\leq C \|x - x'\|,
\end{align*}
\]

for some constant \( C \) and for every \( x, x' \in \mathbb{R}^n, u_1 \in U_1, u_2 \in U_2 \);

2. the control sets \( U_i \) are compacts; more precisely we assume \( U_i \subset B_{\mathbb{R}^n}(0, R_i) \) for some fixed and positive \( R_i \).
4.1.1 Upper and lower value functions and Isaacs’s equations

For the Player I, let us introduce the set of controls at time $\tau$, with $\tau \in [0, T]$ fixed, as

$$\mathcal{U}_1(\tau) = \{ u_1 : [\tau, T] \rightarrow U_1, \text{ measurable} \}.$$ 

In a similar way, we define $\mathcal{U}_2(\tau) = \{ u_2 : [\tau, T] \rightarrow U_2, \text{ measurable} \}$.

**Remark 4.1.** By the previous assumptions 1. on $g$ and 2., for every $(\tau, \xi)$ and $(u_1, u_2) \in \mathcal{U}_1(\tau) \times \mathcal{U}_2(\tau)$, then $(u_1, u_2)$ is admissible, i.e. there exists a unique solution $x$ of

$$\begin{cases}
\dot{x} = g(t, x, u_1, u_2) \quad \text{for a.e. } t \in [\tau, T] \\
x(\tau) = \xi
\end{cases}$$ 

Let us introduce our notion of strategy:

**Definition 4.2.** Let us fix $\tau \in [0, T]$. A map

$$\Phi_1 : \mathcal{U}_2(\tau) \rightarrow \mathcal{U}_1(\tau)$$

is a nonanticipative strategy for the Player I at time $\tau$ if, for any time $t \in [\tau, T]$ and any controls $u_2, u'_2 \in \mathcal{U}_2(\tau)$ such that $u_2 = u'_2$ almost everywhere in $[\tau, t]$, then we have $\Phi_1[u_2] = \Phi_1[u'_2]$ almost everywhere in $[\tau, t]$. We denote by $S_1(\tau)$ the set of such nonanticipative strategies at time $\tau$ for the Player I.

In a symmetric way we denote by $S_2(\tau)$ the set of Player II nonanticipative strategies, which are the nonanticipative maps

$$\Phi_2 : \mathcal{U}_1(\tau) \rightarrow \mathcal{U}_2(\tau)$$

Note that for every $(\tau, \xi)$ and for every $u_1 \in \mathcal{U}_1(\tau)$ we have, by remark 4.1 that $(u_1, \Phi_1[u_1])$ is admissible.

The simplest example of nonanticipative strategy $\Phi_1$ for the Player I at time $\tau$ is the constant one: more precisely, let us fix $\tilde{u}_1 \in \mathcal{U}_1(\tau)$ and let us define the constant strategy $\Phi_1 = \Phi_1^{\tilde{u}_1}$ by

$$\Phi_1[u_2] = \tilde{u}_1, \quad \forall u_2 \in \mathcal{U}_2(\tau)$$

For the problem 4.1 in the assumption 1.-2. let us define the two value functions as follows:

**Definition 4.3.** The **lower value function** $V^- : [0, T] \times \mathbb{R}^n \rightarrow \mathbb{R}$ is defined by

$$V^-(\tau, \xi) = \inf_{\Phi_2 \in S_2(\tau)} \sup_{u_1 \in \mathcal{U}_1(\tau)} \int_{\tau}^{T} f(t, x, u_1, \Phi_2[u_1]) dt + \psi(x(T)),$$

where $x$ is the trajectory associated to the control $(u_1, \Phi_2[u_1]) \in \mathcal{U}_1(\tau) \times \mathcal{U}_2(\tau)$ with initial data $x(\tau) = \xi$.

The **upper value function** $V^+ : [0, T] \times \mathbb{R}^n \rightarrow \mathbb{R}$ is defined as

$$V^+(\tau, \xi) = \sup_{\Phi_1 \in S_1(\tau)} \inf_{u_2 \in \mathcal{U}_2(\tau)} \int_{\tau}^{T} f(t, x, \Phi_1[u_2], u_2) dt + \psi(x(T)),$$

where $x$ is the trajectory associated to the control $(\Phi_1[u_2], u_2) \in \mathcal{U}_1(\tau) \times \mathcal{U}_2(\tau)$ with initial data $x(\tau) = \xi$.

Note that assumptions 1. on $g$ and 2. imply that every pair $(\Phi_1[u_2], u_2)$ and $(u_1, \Phi_2[u_1])$ is admissible and hence we are considering sup and inf on a nonempty sets; moreover, assumptions 1. on $f$ and $\psi$ imply that $V^+$ and $V^-$ are bounded.

One of the two players announces his strategy in response to the other’s choice of control, the other player chooses the control. The player who “plays second”, i.e., who chooses the strategy, has an advantage. In the definition of $V^+$, the Player II chooses its nonanticipative strategies $\Phi_2$ and “after” the Player I chooses its optimal $u_1$. Hence we have that

---

1The rigorous proof of this remark follows by further considerations.
Remark 4.2. For every $(\tau, \xi)$ we have

\[ V^-(\tau, \xi) \leq V^+(\tau, \xi) \]  

(4.3)

In general $V^+$ and $V^-$ are different functions (as we will see in Example 4.1.1). The next example is in [1]:

Example 4.1.1. Let us consider the problem

\[
\begin{align*}
\text{Player I: } & \max J(u_1, u_2), & \text{Player II: } & \min J(u_1, u_2) \\
|u_1| & \leq 1 & |u_2| & \leq 1 \\
J(u_1, u_2) & = \int_0^\infty \text{sgn}(x) \left(1 - e^{-|x|}\right) e^{-t} \, dt \\
\dot{x} & = (u_1 - u_2)^2 \\
x(0) & = x_0
\end{align*}
\]

By definition we have

\[
V^-(0, \xi) = \inf_{\Phi_2 \in \mathcal{S}^2(0)} \sup_{u_1 \in U_1(0)} \int_0^\infty f(t, x) \, dt
\]

\[
V^+(0, \xi) = \sup_{\Phi_1 \in \mathcal{S}^1(0)} \inf_{u_2 \in U_2(0)} \int_0^\infty f(t, x) \, dt
\]

where $f(t, x) = \text{sgn}(x) \left(1 - e^{-|x|}\right) e^{-t}$ and $x$ is the trajectory associated with $x(0) = \xi$. We show that, for every $\xi > 0$, we have

\[ V^-(0, \xi) < V^+(0, \xi) \]  

(4.4)

Let us fix $\xi \geq 0$. First we note that the dynamics gives $x(t) \geq \xi$, for every $(u_1, u_2)$. Moreover, it is easy to see that the function $x \mapsto f(t, x)$ is increasing, for every fixed $t$.

For every $u_1 \in U_1(0)$, where $U_1(0) = \{u : [0, \infty) \to [-1, 1], \text{measurable}\}$, let us consider the nonanticipative strategy $\tilde{\Phi}_2 : U_1(0) \to U_2(0)$ defined by $\tilde{\Phi}_2[u_1] = u_1$. Hence the trajectory $x$ associated to such pair $(u_1, \tilde{\Phi}_2[u_1])$ is the solution of

\[
\begin{align*}
\dot{x} & = (u_1 - \tilde{\Phi}_2[u_1])^2 = 0 \\
x(0) & = \xi
\end{align*}
\]

hence $x(t) = \xi$. Clearly, since $x \mapsto f(t, x)$ is increasing and $x(t) \geq \xi$, such particular strategy $\tilde{\Phi}_2$ for the second Player is the best possible (remember that the second Player want to minimize). Hence we obtain

\[
V^-(0, \xi) \leq \sup_{u_1 \in U_1(0)} \int_0^\infty f(t, x) \, dt \quad \text{(we choose } \Phi_2 = \tilde{\Phi}_2) \\
= \int_0^\infty \left(1 - e^{-\xi}\right) e^{-t} \, dt \\
= 1 - e^{-\xi}
\]

(4.5)

Now for every $u_2 \in U_2(0)$ let us consider the nonanticipative strategy $\tilde{\Phi}_1 : U_2(0) \to U_1(0)$ defined by

\[
\tilde{\Phi}_1[u_2](t) = \begin{cases} +1 & \text{if } u_2(t) \leq 0 \\ -1 & \text{if } u_2(t) > 0 \end{cases}
\]

Hence the trajectory $x$ associated to such pair $(\tilde{\Phi}_1[u_2], u_1)$ is the solution of

\[
\begin{align*}
\dot{x} & = (\tilde{\Phi}_1[u_2] - u_2)^2 = (1 + |u_2|)^2 \\
x(0) & = \xi
\end{align*}
\]

Clearly, for such particular strategy $\tilde{\Phi}_1$ for the first Player, the optimal control for the second player is $u_2 = 0$; in this case the associated trajectory is $x(t) = \xi + t$. Hence we obtain

\[
V^+(0, \xi) \geq \inf_{u_2 \in U_2(0)} \int_0^\infty f(t, x) \, dt \quad \text{(we choose } \Phi_1 = \tilde{\Phi}_1) \\
= \int_0^\infty \left(1 - e^{-\xi(t+1)}\right) e^{-t} \, dt \quad \text{(we choose } u_2 = 0) \\
= 1 - e^{-\xi} \frac{1}{2}
\]

(4.6)

Hence, by (4.5) and (4.6), we obtain

\[ V^+(0, \xi) \geq 1 - e^{-\xi} \frac{1}{2} > 1 - e^{-\xi} \geq V^-(0, \xi), \quad \forall \xi > 0 \]

i.e. relation (4.4).
Definition 4.4. We say that the game \(4.3\) has value function \(V : [0, T] \times \mathbb{R}^n \to \mathbb{R}\) when \(4.3\) is an equality, for every \((\tau, \xi)\), and in this case we set
\[
V = V^+ = V^-
\]
Clearly, the problem to guarantees that \(4.1\) has value function is very interesting and crucial. We will discuss this problem in subsection 4.1.2.

4.1.2 Isaacs’ condition.

In the next subsections we are interested on giving the main ideas of Isaacs theory. Let us start:

Definition 4.5. Let us define the upper Hamiltonian of Dynamic Programming \(H_{DP}^+ : [0, T] \times \mathbb{R}^{2n} \to \mathbb{R}\) defined by
\[
H_{DP}^+(t, x, \lambda) = \min_{v_2 \in U_2} \max_{v_1 \in U_1} \left( f(t, x, v_1, v_2) + \lambda \cdot g(t, x, v_1, v_2) \right)
\]
and the lower Hamiltonian of Dynamic Programming \(H_{DP}^- : [0, T] \times \mathbb{R}^{2n} \to \mathbb{R}\) defined by
\[
H_{DP}^-(t, x, \lambda) = \max_{v_1 \in U_1} \min_{v_2 \in U_2} \left( f(t, x, v_1, v_2) + \lambda \cdot g(t, x, v_1, v_2) \right).
\]

We note that in the definition of \(V^+\) we have a “sup–inf”, while in the definition of \(H_{DP}^+\) we have a “min–max”.

Remark 4.3. We have
\[
H_{DP}^+(t, x, \lambda) \leq H_{DP}^-(t, x, \lambda) \tag{4.7}
\]
Proof. Let us fix \((t, x, \lambda)\) and let us denote by \(h\) the function \(h(v_1, v_2) = f(t, x, v_1, v_2) + \lambda \cdot g(t, x, v_1, v_2)\). Clearly
\[
\min_{v_2 \in U_2} h(v_1, v_2) \leq h(v_1, v_2), \quad \forall (v_1, v_2) \in U_1 \times U_2.
\]
This implies
\[
\max_{v_1 \in U_1} \min_{v_2 \in U_2} h(v_1, v_2) \leq \max_{v_1 \in U_1} h(v_1, v_2), \quad \forall v_2 \in U_2
\]
and hence the thesis.

The next example shows that inequality \(4.7\) can be strict.

Example 4.1.2. Let us consider the problem in Example \(4.1\), Clearly we have
\[
H_{DP}^+(t, x, \lambda) = \min_{|v_1| \leq 1} \max_{|v_2| \leq 1} \left( \text{sgn}(x) \left(1 - e^{-|x|}\right) e^{-t} + \lambda (v_1 - v_2)^2 \right) = \text{sgn}(x) \left(1 - e^{-|x|}\right) e^{-t} + \min_{|v_1| \leq 1} \max_{|v_2| \leq 1} \lambda (v_1 - v_2)^2
\]
\[
H_{DP}^-(t, x, \lambda) = \max_{|v_1| \leq 1} \min_{|v_2| \leq 1} \left( \text{sgn}(x) \left(1 - e^{-|x|}\right) e^{-t} + \lambda (v_1 - v_2)^2 \right) = \text{sgn}(x) \left(1 - e^{-|x|}\right) e^{-t} + \max_{|v_1| \leq 1} \min_{|v_2| \leq 1} \lambda (v_1 - v_2)^2
\]
First, let us fix \(\lambda\) and \(v_2 \in [1, -1]\): we have
\[
\max_{|v_1| \leq 1} \lambda (v_1 - v_2)^2 = \begin{cases} 0 & \text{if } \lambda \leq 0 \\ \lambda (1 + |v_2|)^2 & \text{if } \lambda > 0 \end{cases}
\]
and hence
\[
\min_{|v_1| \leq 1} \max_{|v_2| \leq 1} \lambda (v_1 - v_2)^2 = \begin{cases} 0 & \text{if } \lambda \leq 0 \\ \lambda & \text{if } \lambda > 0 \end{cases} \tag{4.8}
\]
Now, let us fix \(\lambda\) and \(v_1 \in [1, -1]\): we have
\[
\min_{|v_2| \leq 1} \lambda (v_1 - v_2)^2 = \begin{cases} 0 & \text{if } \lambda \leq 0 \\ \lambda (1 + |v_2|)^2 & \text{if } \lambda > 0 \end{cases}
\]
and hence
\[
\max_{|v_1| \leq 1} \min_{|v_2| \leq 1} \lambda (v_1 - v_2)^2 = \begin{cases} 0 & \text{if } \lambda \leq 0 \\ \lambda & \text{if } \lambda > 0 \end{cases} \tag{4.9}
\]
Inequalities \(4.8\) and \(4.9\) give that
\[
H_{DP}^-(t, x, \lambda) < H_{DP}^+(t, x, \lambda), \quad \forall \lambda \neq 0
\]
4.1. GENERAL PROBLEMS

The previous example suggests the following definition:

**Definition 4.6.** We say that the minimax condition, or *Isaacs’ condition*, is satisfied if

\[ H_{DP}^{-}(t, x, \lambda) = H_{DP}^{+}(t, x, \lambda) \]

for every \((t, x, \lambda)\). In this case we define by \(H_{DP} : [0, T] \times \mathbb{R}^{2n} \rightarrow \mathbb{R}\) the **Hamiltonian of Dynamic Programming** by

\[ H_{DP}(t, x, \lambda) = H_{DP}^{-}(t, x, \lambda) = H_{DP}^{+}(t, x, \lambda). \]

### 4.1.3 Regular solutions of upper-lower Isaacs’ equations.

In this subsections we discuss the case where of regular value functions. In next subsection we will discuss all the details and questions of regularity. A result very similar to theorem A.5 is the following

**Theorem 4.1.** Let us consider the problem (4.1). Let us suppose that the Isaacs’ condition is satisfied and (4.12) is called **Isaacs’ equation**. Let us consider the problem (4.1). Let us suppose that the Isaacs’ condition is satisfied and (4.12) is called **Isaacs’ equation**. Let us consider the problem (4.1). Let us suppose that the Isaacs’ condition is satisfied and (4.12) is called **Isaacs’ equation**.

The system in (4.10) is called **upper Isaacs’ equation**, while (4.11) is called **lower Isaacs’ equation**.

If the Isaacs’ condition is satisfied, clearly the systems (4.10) and (4.11) coincide, and we obtain

\[
\begin{align*}
\frac{\partial V}{\partial t}(t, x) + H_{DP}(t, x, \nabla x V(t, x)) &= 0 \quad \text{for } (t, x) \in [0, T] \times \mathbb{R}^{n} \\
V(T, x) &= \psi(x) \quad \text{for } x \in \mathbb{R}^{n}
\end{align*}
\]

(4.10)

and

\[
\begin{align*}
\frac{\partial V}{\partial t}(t, x) + H_{DP}(t, x, \nabla x V(t, x)) &= 0 \quad \text{for } (t, x) \in [0, T] \times \mathbb{R}^{n} \\
V(T, x) &= \psi(x) \quad \text{for } x \in \mathbb{R}^{n}
\end{align*}
\]

(4.11)

The system in (4.10) is called **upper Isaacs’ equation**, while (4.11) is called **lower Isaacs’ equation**.

If the Isaacs’ condition is satisfied, clearly the systems (4.10) and (4.11) coincide, and we obtain

\[
\begin{align*}
\frac{\partial V}{\partial t}(t, x) + H_{DP}(t, x, \nabla x V(t, x)) &= 0 \quad \text{for } (t, x) \in [0, T] \times \mathbb{R}^{n} \\
V(T, x) &= \psi(x) \quad \text{for } x \in \mathbb{R}^{n}
\end{align*}
\]

(4.12)

(4.12) is called **Isaacs’ equation**. If exists the value function \(V\), then Theorem 4.1 gives

**Theorem 4.2.** Let us consider the problem (4.1). Let us suppose that the Isaacs’ condition is satisfied and that \(V\) is the value function with \(V \in C^{1}\). Then \(V\) solves the Isaacs’ equation (4.12).

**A geometric proof of Isaacs’ equation**

We are interested to give a geometric idea of Theorem 4.2. In particular, let us consider the problem (4.11) with \(f = 0\) and \(T\) free: more precisely let us consider

\[
\begin{align*}
\text{Player I: } & \max_{u_1} J(u_1, u_2), \quad \text{Player II: } \min_{u_2} J(u_1, u_2) \\
J(u_1, u_2) &= \psi(T, x(T)) \\
\dot{x} &= g(t, x, u_1, u_2) \\
x(0) &= \alpha \\
(T, x(T)) &\in \partial \mathcal{T}
\end{align*}
\]

(4.13)

where \(\mathcal{T} \subset [0, \infty) \times \mathbb{R}^{n}\) is a closed target set and \(\mathcal{G}\) is the game set, i.e. that \(x\) transfers \((\tau, \xi) \in \mathcal{G}\) in \(\mathcal{T}\). Recall that \(\mathcal{T} \subset \mathcal{G}\). As usual we define the exit time \(T_x\) for the trajectory \(x\) by

\[ T_x = \inf\{t \geq 0 : (t, x(t)) \in \mathcal{T}\}. \]

(4.14)
**Theorem 4.3.** Let us consider the problem (4.13) with a closed target set $\mathcal{T}$ and game set $\mathcal{G}$. Let $(0, \alpha) \in \mathcal{G} \setminus \mathcal{T}$.

Let us suppose that

1. the Isaacs’ condition holds; in this case we have

$$H_{DP}(t, x, \lambda) = \max_{u_1 \in U_1} \min_{u_2 \in U_2} \lambda \cdot g(t, x, u_1, u_2) = \min_{u_2 \in U_2} \max_{u_1 \in U_1} \lambda \cdot g(t, x, u_1, u_2); \quad (4.15)$$

2. the problem has value function $V$, with $V \in C^1(\mathcal{G} \setminus \mathcal{T})$ and $\nabla V(t, x) = (\frac{\partial V}{\partial t}(t, x), \nabla_x V(t, x)) \neq 0$ for all $(t, x) \in \mathcal{G} \setminus \mathcal{T}$.

Let us consider a Nash equilibrium $(u_1^*, u_2^*)$ for the problem (4.13) and its optimal trajectory $x^*$ with exit time $T^*$.

Then $V$ satisfies the Isaacs’s equation (4.12) along the optimal path; more precisely,

$$\begin{cases}
\frac{\partial V}{\partial t}(t, x^*(t)) + H_{DP}(t, x^*(t), \nabla_x V(t, x^*(t))) = 0 \quad \text{for } t \in [0, T^*] \\
V(T^*, x(T^*)) = \psi(T^*, x(T^*))
\end{cases}$$

**Proof.** Let us consider a Nash equilibrium $(u_1^*, u_2^*)$ and its optimal trajectory $x^*$ with exit time $T^*$ for the problem (4.13); clearly we have

$$x^*(0) = \alpha, \quad (T^*, x^*(T^*)) \in \partial \mathcal{T}.$$ 

Moreover, for every $\tau \in [0, T^*]$ fixed, if we consider the new problem (4.13) with the new initial data

$$x(\tau) = x^*(\tau),$$

the new optimal trajectory coincides, by the Bellman’s principle, with $x^*$ (the idea of the proof coincides with the classical situation of an optimal control problem). Hence, for every $\tau \in [0, T^*],$

$$V(\tau, x^*(\tau)) = \psi(T^*, x^*(T^*)) = c$$

where $c$ is a constant. Clearly we obtain

$$\frac{dV(t, x^*(t))}{dt} = \frac{\partial V}{\partial t}(t, x^*(t)) + \nabla_x V(t, x^*(t)) \cdot \dot{x^*}(t) = 0,$$

for every $t \in [0, T^*].$

Let us consider the curve $\gamma : [0, T^*] \to [0, T] \times \mathbb{R}^n$, defined by $\gamma(t) = (t, x^*(t))$ is such that $V(\gamma(t)) = c$ for every $t \in [0, T^*]$. Since $\nabla V(t, x) \neq 0$, the Dini’s theorem guarantees that locally the curve $\gamma$ divides the set $\mathcal{G} \setminus \mathcal{T}$ in two different regions where $V(t, x) > c$ and $V(t, x) < c$. 
where such vector “enters” in the region where $V > c$.

Now fix $t \in [0, T^\star]$ and consider the point $P = (t, x^\star(t))$. In such point $P$, the function $V$ has the maximum growth in the direction of the vector
\[
\left( \frac{\partial V}{\partial t}(t, x^\star(t)), \nabla_x V(t, x^\star(t)) \right).
\]

Since the Player I wants to maximizes, he wishes to move $P$ in such direction; but he has some “constraints” for the movements of the point $P$, i.e. on the trajectory, given by the dynamics and the choice of the Player II. Hence, if the Player II choices $u_2^\star(t)$, then Player I considers its strategy such that
\[
u^\star_1(t) \in \arg \max_{u_1 \in U_1} \left[ \left( \frac{\partial V}{\partial t}(t, x^\star(t)) \right. \cdot w \right],
\]
where $w$ is a vector which depends on $t$, $x^\star(t)$ and $u_2^\star(t)$. Since $x^\star$ is the optimal trajectory, the “best” direction for the problem in $(t, x^\star(t))$ is $w = \frac{\partial P}{\partial t^\star} = (1, x^\star(t))$ (in the points $t$ where $x^\star(t)$ exists); using the dynamics we obtain
\[
u^\star_1(t) \in \arg \max_{u_1 \in U_1} \left( \frac{\partial V}{\partial t}(t, x^\star(t)) + \nabla_x V(t, x^\star(t)) \cdot g(t, x^\star(t), u_1, u_2^\star(t)) \right)
\]
\[
= \arg \max_{u_1 \in U_1} \left( \nabla_x V(t, x^\star(t)) \cdot g(t, x^\star(t), u_1, u_2^\star(t)) \right)
\]
(4.17)

Since the Player II wants to minimize, with similar arguments we obtain
\[
u^\star_2(t) \in \arg \min_{u_2 \in U_2} \left( \nabla_x V(t, x^\star(t)) \cdot g(t, x^\star(t), u_1^\star(t), u_2) \right)
\]
(4.18)

Now, by (4.10) and the dynamics, we have
\[
0 = \frac{\partial V}{\partial t}(t, x^\star(t)) + \nabla_x V(t, x^\star(t)) \cdot x^\star(t)
\]
\[
= \frac{\partial V}{\partial t}(t, x^\star(t)) + \nabla_x V(t, x^\star(t)) \cdot g(t, x^\star(t), u_1^\star(t), u_2^\star(t))
\]
(by (4.17))
\[
\frac{\partial V}{\partial t}(t, x^\star(t)) + \max_{u_1 \in U_1} \left( \nabla_x V(t, x^\star(t)) \cdot g(t, x^\star(t), u_1, u_2^\star(t)) \right)
\]
(by (4.18))
\[
\frac{\partial V}{\partial t}(t, x^\star(t)) + \min_{u_2 \in U_2} \left( \nabla_x V(t, x^\star(t)) \cdot g(t, x^\star(t), u_1^\star(t), u_2) \right).
\]

In order to conclude the proof using the Isaacs condition, for every fixed $t$ let us introduce the function
\[
\tilde{h}_t(u_1, u_2) = \nabla_x V(t, x^\star(t)) \cdot g(t, x^\star(t), u_1, u_2).
\]

The previous equalities give that
\[
\tilde{h}_t(u_1^\star(t), u_2^\star(t)) = \max_{u_1 \in U_1} \tilde{h}_t(u_1, u_2^\star(t)) = \min_{u_2 \in U_2} \tilde{h}_t(u_1^\star(t), u_2).
\]
(4.19)

If we show that
\[
\tilde{h}_t(u_1^\star(t), u_2^\star(t)) = \max_{u_1 \in U_1} \min_{u_2 \in U_2} \tilde{h}_t(u_1, u_2) = \min_{u_2 \in U_2} \max_{u_1 \in U_1} \tilde{h}_t(u_1, u_2)
\]
(4.20)

we obtain $0 = \frac{\partial V}{\partial t}(t, x^\star(t)) + H_{DP}(t, x^\star(t), \nabla_x V(t, x^\star(t)))$ and the proof is finished (note that in (4.20) the second equality is true by the Isaacs’ condition). Hence let us suppose, in order to obtain a contradiction,
that (4.20) is false: then

\[ \tilde{h}_t(u^*_1(t), u^*_2(t)) = \max_{u_1 \in U_1} \tilde{h}_t(u_1, u^*_2(t)) > (4.20) \min_{u_2 \in U_2} \max_{u_1 \in U_1} \tilde{h}_t(u_1, u_2) = \max_{u_1 \in U_1} \min_{u_2 \in U_2} \tilde{h}_t(u_1, u_2) \geq 4.19 \min_{u_2 \in U_2} \tilde{h}_t(u^*_1(t), u_2) = 4.19 \tilde{h}_t(u^*_1(t), u^*_2(t)), \]

which clearly is impossible.

\[ \square \]

Other results

In the spirit of Theorem 4.4, we have the following result (see for example [2]):

**Theorem 4.4.** Let us consider the problem (4.1) and let us suppose that the Isaacs’ condition is satisfied. Let \( V : [0, T] \times \mathbb{R}^n \rightarrow \mathbb{R} \) be a \( C^1 \) solution of the (4.12).

Let \((u^*_1, u^*_2) \in A_{ FB}, \) where \( u^*_i(t) = \nu^*_i(t, x^*(t)) \), with the corresponding trajectory \( x^* \) with \( x(0) = \alpha \), be such that

\[ \frac{\partial V}{\partial t}(t, x^*(t)) + H_{DP}(t, x^*(t), \nabla_x V(t, x^*(t))) = 0 \quad (4.21) \]

for every \( t \in [0, T] \). Then \((u^*_1, u^*_2)\) is a Nash equilibrium and \( V \) is the value function for (4.1).

We remark that (4.21) implies that \((u^*_1, u^*_2)\) are such that

\[ f(t, x^*(t), u^*_1(t), u^*_2(t)) + \nabla_x V(t, x^*(t)) \cdot g(t, x^*(t), u^*_1(t), u^*_2(t)) = \]

\[ = \max_{v_2 \in U_2} \min_{v_1 \in U_1} \left( f(t, x^*(t), v_1, v_2) + \nabla_x V(t, x^*(t)) \cdot g(t, x^*(t), v_1, v_2) \right) \]

for every \( t \in [0, T] \).

If the saddle point exists, the Pontryagin necessary condition is

**Theorem 4.5.** Let us consider the problem (4.1) with \( f, g \) and \( \psi \) in \( C^1 \), and let us suppose that the Isaacs’ condition is true.

Let \((u^*_1, u^*_2) \in A_{ OL} \) be a Nash equilibrium with \( x^* \) associated trajectory, \( x(0) = \alpha \).

Then there exists a continuous multiplier \( \lambda^* : [0, T] \rightarrow \mathbb{R}^n \) such that

i. (min–max principle) for all \( t \in [0, T] \), \( u_1 \in U_1 \) and \( u_2 \in U_2 \)

\[ H(t, x^*(t), u_1, u_2^*(t), \lambda^*(t)) \leq \min_{v_2 \in U_2} \max_{v_1 \in U_1} \left( f(t, x^*(t), v_1, v_2) + \nabla_x V(t, x^*(t)) \cdot g(t, x^*(t), v_1, v_2) \right) \]

\[ \leq H(t, x^*(t), u_1^*(t), u_2^*(t), \lambda^*(t)) \leq H(t, x^*(t), u_1^*(t), u_2, \lambda^*(t)); \]

ii. (adjoint equation) in \([0, T]\) we have \( \dot{\lambda}^* = -\nabla_x H(t, x^*, u_1^*, u_2^*, \lambda^*); \)

iii. (transversality condition) \( \lambda^*(T) = \nabla_x \psi(x^*(T)) \),

where \( H \) is the Hamiltonian function \( H \) defined by

\[ H(t, x, u_1, u_2, \lambda) = f(t, x, u_1, u_2) + \lambda \cdot g(t, x, u_1, u_2). \]
In the situation of the previous two theorems, we know that
\[ \nabla_{x}V(\mathbf{x}(t), \mathbf{x}^*(t)) = \lambda^*(t) \tag{4.22} \]
for every \( t \in [0, T] \).

In some situation, there exists a Nash equilibrium with the class of feedback strategies for the problem \((4.1)\), while the Nash equilibrium in the class of the open–loop strategies does not exists (see for example “the lady in the lake” in subsection 4.2.1). In this situation the previous Theorem 4.5 and the variational approach is not useful for the reasons explained in subsection 2.2. Even if an open–loop Nash equilibrium does not exists, a version of the previous theorem can still be utilized to obtain the feedback Nash equilibrium: let us give the details since this approach is largely adopted in the literature for solving pursuit–evasion games. Let \((u^*_1, u^*_2) \in \mathcal{A}_{FB}\), where
\[ u^*_i(t) = \nu^*_i(t, x^*(t)) \tag{4.23} \]
with the corresponding trajectory \( x^* \) with \( x(0) = \alpha \), be a Nash equilibrium within the class of feedback strategies for the game \((4.1)\). Moreover let us suppose that a Nash equilibrium in the class of open–loop strategies does not exists. However, let us consider the function
\[ (u^*_1(t), u^*_2(t)) \tag{4.24} \]
given by \((4.23)\); this function is not a open–loop strategies, since by definition a open–loop strategy is a function which depends only on \( t \) and \( x_0 \). This function is usually called open–loop representation of the feedback strategy.

**Theorem 4.6.** As in Theorem 4.5, let us consider the problem \((4.1)\) with \( f, g \) and \( \psi \) in \( C^1 \). We assume that there exists a Nash equilibrium within the class of feedback strategies \((u^*_1, u^*_2) \in \mathcal{A}_{FB}\), with \( u^*_i(t) = \nu^*_i(t, x^*(t)) \), with \( x^* \) associated trajectory. Let us consider its open–loop representation in \((4.24)\). Then there exists a continuous multiplier \( \lambda^* : [0, T] \to \mathbb{R}^n \) such that i.–iii. in Theorem 4.5 are satisfied.

This result will play notion a fundamental role in “the lady in the lake” in subsection 4.2.1.

### 4.1.4 Viscosity solutions of upper-lower Isaacs’ equations.

Clearly, at this point, first we are interested to study the regularity of \( V^+ \) and \( V^- \):

**Theorem 4.7.** Let us consider the problem \((4.1)\) with the assumptions 1.–2. Then \( V^- \) is bounded and uniformly Lipschitz continuous, i.e.
\[ |V^-(\tau, \xi) - V^-(\tau', \xi')| \leq \hat{C} \left( |\tau - \tau'| + \|\xi - \xi'\| \right) \]
for every \( \tau, \tau' \in [0, T] \) and \( \xi, \xi' \in \mathbb{R}^n \), for some constant \( \hat{C} \).

A similar results holds for \( V^+ \).

**Proof.** (see Theorem 3.2 in [8]). Let us fix \( \tau < \tau' \in [0, T] \) and \( \xi, \xi' \in \mathbb{R}^n \). It is immediate to see that
\[ |V^-(\tau, \xi)| \leq C_1 T + C_2. \]

Now let us fix \( \epsilon > 0 \). There exists \( \hat{\Phi}_2 \in \mathcal{S}_2(\tau) \) such that
\[ V^-(\tau, \xi) \geq \sup_{u_1 \in \mathcal{U}_1(\tau)} \left\{ \int_{\tau}^{T} f(t, x, u_1, \hat{\Phi}_2[u_1]) \, dt + \psi(x(T)) \right\} - \epsilon. \tag{4.25} \]

Fix \( u_{1fix} \in U_1 \). For every \( u_1 \in \mathcal{U}_1(\tau') \), let us define \( \hat{u} \in \mathcal{U}_1(\tau) \) by
\[ \hat{u}(t) = \begin{cases} u_{1fix}, & \text{for } t \in [\tau, \tau') \\ u_1(t), & \text{for } t \in [\tau', T] \end{cases} \tag{4.26} \]
Let us define \( \tilde{\Phi}_2 \in S_2(\tau') \) such that
\[
\tilde{\Phi}_2[u_1](t) = \tilde{\Phi}_2[\tilde{u}_1](t), \quad \forall u_1 \in U_1(\tau'), \quad t \in [\tau', T]
\]

Clearly
\[
V^{-}(\tau', \xi') \leq \sup_{u_1 \in U_1(\tau')} \left\{ \int_{\tau}^{T} f(t, x, u_1, \tilde{\Phi}_2[u_1]) \, dt + \psi(x(T)) \right\}.
\]

Now there exists \( \tilde{u}_1 \in U_1(\tau') \) such that
\[
V^{-}(\tau', \xi') \leq \int_{\tau}^{T} f(t, x, \tilde{u}_1, \tilde{\Phi}_2[\tilde{u}_1]) \, dt + \psi(x(T)) + \epsilon.
\]

And (4.25) gives
\[
V^{-}(\tau', \xi') \geq \int_{\tau}^{T} f(t, x, \tilde{u}_1, \tilde{\Phi}_2[\tilde{u}_1]) \, dt + \psi(x(T)) - \epsilon,
\]

where \( \tilde{u}_1 \) is defined by (4.26). Note that the trajectories \( x \) that appear in (4.27) and in (4.28) are different functions; in particular, denoting by \( \tilde{x} \) and \( \hat{x} \) such trajectories in (4.27) and in (4.28) respectively, they solve
\[
\begin{align*}
\dot{\tilde{x}}(t) &= g(t, \tilde{x}(t), \tilde{u}_1(t), \tilde{\Phi}_2[\tilde{u}_1](t)) \quad \text{a.e. in } [\tau', T], \\
\tilde{x}(\tau') &= \xi' \\
\dot{\hat{x}}(t) &= g(t, \hat{x}(t), \hat{u}_1(t), \hat{\Phi}_2[\hat{u}_1](t)) \quad \text{a.e. in } [\tau, T], \\
\hat{x}(\tau) &= \xi 
\end{align*}
\]

Clear we have, by the bounded assumption 2. on \( g \),
\[
\|\xi - \tilde{x}(\tau')\| = \left\| \int_{\tau}^{\tau'} g(t, \tilde{x}, \tilde{u}_1, \tilde{\Phi}_2[\tilde{u}_1]) \, dt \right\| \leq C_1(\tau' - \tau). \tag{4.29}
\]

The Lipschitz assumption 2. on \( g \) and since \( \tilde{u}_1 = \hat{u}_1 \) and \( \tilde{\Phi}_2[\tilde{u}_1] = \hat{\Phi}_2[\hat{u}_1] \) on \( [\tau', T] \), we have that, for every \( t \in [\tau', T] \),
\[
\frac{d}{dt}\|\tilde{x}(t) - \hat{x}(t)\| = \frac{\|\dot{\tilde{x}}(t) - \dot{\hat{x}}(t)\|}{\|\tilde{x}(t) - \hat{x}(t)\|} \leq \frac{\|\dot{\tilde{x}}(t) - \dot{\hat{x}}(t)\|}{\|\tilde{x}(t) - \hat{x}(t)\|} \leq C_1 \|\tilde{x}(t) - \hat{x}(t)\|.
\]

The Gronwall’s inequality (see the appendix in [7]) implies, for every \( t \in [\tau', T] \),
\[
\|\tilde{x}(t) - \hat{x}(t)\| \leq C \|\tilde{x}(\tau') - \hat{x}(\tau')\| \exp \left( \int_{\tau}^{t} C_1 \, ds \right) \leq C \|\tilde{x}(\tau') - \hat{x}(\tau')\| \exp \left( \int_{\tau}^{t} C_1 \, ds \right). \tag{4.30}
\]

Now, for every \( t \in [\tau', T] \), (4.29) and (4.30) give us
\[
\|\tilde{x}(t) - \hat{x}(t)\| \leq C \left( \|\tilde{x}(\tau') - \hat{x}(\tau')\| + \|\xi - \xi'\| \right) \leq C \left( \|\xi' - \xi\| + (\tau' - \tau) \right). \tag{4.31}
\]

By (4.27) and (4.28), assumption 2. and 3. we obtain
\[
V^{-}(\tau', \xi') - V^{-}(\tau, \xi) \leq \int_{\tau}^{T} \left( f(t, \tilde{x}, \tilde{u}_1, \tilde{\Phi}_2[\tilde{u}_1]) - f(t, \hat{x}, \hat{u}_1, \hat{\Phi}_2[\hat{u}_1]) \right) \, dt + \psi(\tilde{x}(T)) - \psi(\hat{x}(T)) + 2\epsilon
\]
\[
\leq C_1 \int_{\tau}^{T} \|\tilde{x}(t) - \hat{x}(t)\| \, dt + C_1 (\tau' - \tau) + C_2 \|\tilde{x}(T) - \hat{x}(T)\| + 2\epsilon
\]
\[
\leq C \left( \|\xi' - \xi\| + (\tau' - \tau) \right) + 2\epsilon. \tag{4.32}
\]
This concludes the first part of the proof.

Let $\epsilon$ again be fixed. Then there exists $\Phi_2 \in S_2(\tau')$ such that

$$V^-(\tau', \xi') \geq \sup_{u \in U_1(\tau')} \left\{ \int_{\tau'}^{T} f(t, x, u, \Phi_2[u]) dt + \psi(x(T)) \right\} - \epsilon. \quad (4.33)$$

For every $u_1 \in U_1(\tau)$, let us define $\tilde{u} \in U_1(\tau')$ by

$$\tilde{u}_1(t) = u_1(t), \quad \forall t \in [\tau', T] \quad (4.34)$$

Fix $u_{2fix} \in U_2$. Let us define $\Phi_2 \in S_2(\tau)$ such that, for every $u_1 \in U_1(\tau)$

$$\Phi_2[u_1](t) = \begin{cases} u_{2fix}, & \text{for } t \in [\tau, \tau') \\ \Phi_2[\tilde{u}_1](t), & \text{for } t \in [\tau', T] \end{cases}$$

Clearly

$$V^-(\tau, \xi) \leq \sup_{u \in U_1(\tau)} \left\{ \int_{\tau}^{T} f(t, x, u, \Phi_2[u]) dt + \psi(x(T)) \right\}. \quad (4.35)$$

Now there exists $\tilde{u}_1 \in U_1(\tau)$ such that

$$V^-(\tau, \xi) \leq \int_{\tau}^{T} f(t, x, \tilde{u}_1, \Phi_2[\tilde{u}_1]) dt + \psi(x(T)) + \epsilon. \quad \text{(4.35)}$$

Now (4.33) gives

$$V^-(\tau', \xi') \geq \int_{\tau'}^{T} f(t, x, \tilde{u}_1, \Phi_2[\tilde{u}_1]) dt + \psi(x(T)) - \epsilon. \quad (4.36)$$

where $\tilde{u}_1$ is defined by $\tilde{u}_1$ via relation (4.34). Denoting by $\tilde{x}$ and $\hat{x}$ the trajectories in (4.35) and in (4.36) respectively, they solve

$$\begin{cases} \hat{x}(t) = g(t, \tilde{x}(t), \tilde{u}_1(t), \Phi_2[\tilde{u}_1](t)) \quad \text{in } [\tau, T] \\ \tilde{x}(\tau) = \xi \end{cases}$$

and

$$\begin{cases} \hat{x}(t) = g(t, \tilde{x}(t), \tilde{u}_1(t), \Phi_2[\tilde{u}_1](t)) \quad \text{in } [\tau', T] \\ \hat{x}(\tau') = \xi' \end{cases}$$

By assumption 2. and using the same arguments of before we obtain inequality (4.31). By (4.35) and (4.36), assumption 2. and 3. we obtain

$$V^-(\tau', \xi') - V^-(\tau, \xi) \leq \int_{\tau'}^{T} \left( f(t, \tilde{x}, \tilde{u}_1, \Phi_2[\tilde{u}_1]) - f(t, \hat{x}, \tilde{u}_1, \Phi_2[\tilde{u}_1]) \right) dt +$$

$$- \int_{\tau}^{\tau'} f(t, \tilde{x}, \tilde{u}_1, \Phi_2[\tilde{u}_1]) dt + \psi(\tilde{x}(T)) - \psi(\hat{x}(T)) + 2\epsilon$$

$$\leq C_1 \int_{\tau'}^{T} \|\tilde{x}(t) - \hat{x}(t)\| dt + C_1(\tau' - \tau) + C_2\|\tilde{x}(T) - \hat{x}(T)\| + 2\epsilon$$

$$\leq \hat{C} \left( \|\xi' - \xi\| + (\tau' - \tau) \right) + 2\epsilon.$$

This inequality and (4.32) conclude the proof.

The previous result implies that the lower value function admits the gradient $\nabla V^-(t, x)$ for almost everywhere $(t, x) \in [0, T] \times \mathbb{R}^n$. Moreover, it gives the possibility to $V^-$ to be a viscosity solution, as we will see in definition (4.7).
Definition 4.7. Let $H : [0, T] \times \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}$ be a continuous function and let $V : [0, T] \times \mathbb{R}^n \rightarrow \mathbb{R}$ be a bounded and uniformly continuous function, with $V(T, x) = \psi(x)$ in $\mathbb{R}^n$.

We say that $V$ is a viscosity subsolution of the Hamilton–Jacobi equation

$$
\begin{cases}
\frac{\partial V}{\partial t}(t, x) + H(t, x, \nabla V(t, x)) = 0 & \text{in } (0, T) \times \mathbb{R}^n \\
V(T, x) = \psi(x) & \text{in } \mathbb{R}^n
\end{cases}
$$

(4.37)

if whenever $v$ is a test function in $C^\infty((0, T) \times \mathbb{R}^n)$ such that $V - v$ has a local minimum in the point $(t_0, x_0) \in (0, T) \times \mathbb{R}^n$ we have

$$
\frac{\partial V}{\partial t}(t_0, x_0) + H(t_0, x_0, \nabla v(t_0, x_0)) \geq 0.
$$

(4.38)

We say that $V$ is a viscosity supersolution of the equation (4.37) if $v$ is a test function in $C^\infty((0, T) \times \mathbb{R}^n)$ such that $V - v$ has a local maximum in the point $(t_0, x_0) \in (0, T) \times \mathbb{R}^n$ we have

$$
\frac{\partial V}{\partial t}(t_0, x_0) + H(t_0, x_0, \nabla v(t_0, x_0)) \leq 0.
$$

(4.39)

A function that is both a viscosity subsolution and a viscosity supersolution is called viscosity solution.

Let us start with the following Dynamic Programming optimality condition (see Theorem 3.1 in [8])

Theorem 4.8. Let us consider the problem (4.1) with assumptions assumption 1. and 2.. Then

$$
V^-(\tau, \xi) = \inf_{\Phi_2 \in \mathcal{S}_2(\tau)} \sup_{u_1 \in U_1(\tau)} \left\{ \int_{\tau}^{\tau+\sigma} f(t, x, u_1, \Phi_2[u_1]) \, dt + V^-(\tau+\sigma, x(\tau+\sigma)) \right\}
$$

for every $\tau$, $\tau+\sigma \in [0, T]$ and $\xi \in \mathbb{R}^n$.

Proof. Let us define the function $W$ by

$$
W(\tau, \xi) = \inf_{\Phi_2 \in \mathcal{S}_2(\tau)} \sup_{u_1 \in U_1(\tau)} \left\{ \int_{\tau}^{\tau+\sigma} f(t, x, u_1, \Phi_2[u_1]) \, dt + V^-(\tau+\sigma, x(\tau+\sigma)) \right\}
$$

for every $\tau$, $\xi$. Let us fix $\epsilon > 0$.

Then there exists a $\tilde{\Phi}_2 \in \mathcal{S}_2(\tau)$ such that

$$
W(\tau, \xi) \geq \sup_{u_1 \in U_1(\tau)} \left\{ \int_{\tau}^{\tau+\sigma} f(t, x, u_1, \tilde{\Phi}_2[u_1]) \, dt + V^-(\tau+\sigma, x(\tau+\sigma)) \right\} - \epsilon.
$$

(4.40)

Also, for every $\eta \in \mathbb{R}^n$, by definition of $V^-$

$$
V^-(\tau+\sigma, \eta) = \inf_{\Phi_2 \in \mathcal{S}_2(\tau+\sigma)} \sup_{u_1 \in U_1(\tau+\sigma)} \left\{ \int_{\tau+\sigma}^{T} f(t, x, u_1, \Phi_2[u_1]) \, dt + \psi(x(T)) \right\}
$$

where $x$ is the trajectory with initial data $x(\tau+\sigma) = \eta$. Thus exists a $\tilde{\Phi}_2^\eta \in \mathcal{S}_2(\tau+\sigma)$ such that

$$
V^-(\tau+\sigma, \eta) \geq \sup_{u_1 \in U_1(\tau+\sigma)} \left\{ \int_{\tau+\sigma}^{T} f(t, x, u_1, \tilde{\Phi}_2^\eta[u_1]) \, dt + \psi(x(T)) \right\} - \epsilon.
$$

(4.41)

Now define $\mathcal{F}_2 \in \mathcal{S}_2(\tau)$ in this way: for each $u_1 \in U_1(\tau)$ set

$$
\mathcal{F}_2[u_1](t) = \begin{cases} 
\tilde{\Phi}_2[u_1](t), & \text{for } t \in [\tau, \tau+\sigma] \\
\tilde{\Phi}_2^\eta[t+\sigma][u_1](t), & \text{for } t \in (\tau+\sigma, T]
\end{cases}
$$
Consequently for any $u_1 \in U_1(\tau)$, by (4.40) and (4.41) we have

$$W(\tau, \xi) \geq \int_{\tau}^{\tau+\sigma} f(t, x, u_1, \tilde{\Phi}_2[u_1]) dt + W^{-}(\tau + \sigma, x(\tau + \sigma)) - \epsilon$$

$$\geq \int_{\tau}^{\tau+\sigma} f(t, x, u_1, \tilde{\Phi}_2[u_1]) dt + \int_{\tau+\sigma}^{T} f(t, x, u_1, \tilde{\Phi}_2^{x(\tau+\sigma)}[u_1]) dt + \psi(x(T)) - 2\epsilon$$

$$= \int_{\tau}^{T} f(t, x, u_1, \tilde{\Phi}_2[u_1]) dt + \psi(x(T)) - 2\epsilon$$

So that

$$V^{-}(\tau, \xi) \leq \sup_{u_1 \in U_1(\tau)} \left\{ \int_{\tau}^{T} f(t, x, u_1, \tilde{\Phi}_2[u_1]) dt + \psi(x(T)) \right\} \leq W(\tau, \xi) + 2\epsilon. \quad (4.42)$$

Let us pass to the second part of the proof. Now, there exists $\hat{\Phi}_2 \in S_2(\tau)$ such that

$$V^{-}(\tau, \xi) \geq \sup_{u_1 \in U_1(\tau)} \left\{ \int_{\tau}^{T} f(t, x, u_1, \hat{\Phi}_2[u_1]) dt + \psi(x(T)) \right\} - \epsilon. \quad (4.43)$$

Then

$$W(\tau, \xi) \leq \sup_{u_1 \in U_1(\tau)} \left\{ \int_{\tau}^{\tau+\sigma} f(t, x, u_1, \hat{\Phi}_2[u_1]) dt + V^{-}(\tau + \sigma, x(\tau + \sigma)) \right\}$$

and there exists $\tilde{u}_1 \in U_1(\tau)$ such that

$$W(\tau, \xi) \leq \int_{\tau}^{\tau+\sigma} f(t, x, \tilde{u}_1, \hat{\Phi}_2[\tilde{u}_1]) dt + V^{-}(\tau + \sigma, x(\tau + \sigma)) + \epsilon. \quad (4.44)$$

For every $u_1 \in U_1(\tau + \sigma)$ we define $u_1^* \in U_1(\tau)$ by

$$u_1^*(t) = \begin{cases} 
\tilde{u}_1(t), & \text{for } t \in [\tau, \tau + \sigma] \\
u_1(t), & \text{for } t \in (\tau + \sigma, T]
\end{cases}$$

and we define $\Phi_2^1 \in S_2(\tau + \sigma)$ by

$$\Phi_2^1[u_1](t) = \hat{\Phi}_2[u_1^*(t)], \quad \forall u_1 \in U_1(\tau + \sigma), \ t \in [\tau, T]$$

Hence

$$V^{-}(\tau + \sigma, x(\tau + \sigma)) \leq \sup_{u_1 \in U_1(\tau + \sigma)} \left\{ \int_{\tau+\sigma}^{T} f(t, x, u_1, \Phi_2^1[u_1]) dt + \psi(x(T)) \right\}. \quad (4.45)$$

Clearly there exists $u_1^* \in U_1(\tau + \sigma)$ such that

$$V^{-}(\tau + \sigma, x(\tau + \sigma)) \leq \int_{\tau+\sigma}^{T} f(t, x, u_1^*, \Phi_2^1[u_1^*]) dt + \psi(x(T)) + \epsilon. \quad (4.45)$$

Now we define $u_1' \in U_1(\tau)$ by

$$u_1'(t) = \begin{cases} 
\tilde{u}_1(t), & \text{for } t \in [\tau, \tau + \sigma] \\
u_1^*(t), & \text{for } t \in (\tau + \sigma, T]
\end{cases}$$

Now by (4.44) and (4.45) we have

$$W(\tau, \xi) \leq \int_{\tau}^{\tau+\sigma} f(t, x, u_1, \tilde{\Phi}_2[\tilde{u}_1]) dt + V^{-}(\tau + \sigma, x(\tau + \sigma)) + \epsilon$$

$$\leq \int_{\tau}^{\tau+\sigma} f(t, x, u_1, \tilde{\Phi}_2[\tilde{u}_1]) dt + \int_{\tau+\sigma}^{T} f(t, x, u_1, \Phi_2^1[u_1]) dt + \psi(x(T)) + 2\epsilon$$

$$= \int_{\tau}^{T} f(t, x, u_1', \hat{\Phi}_2[\tilde{u}_1]) dt + \psi(x(T)) + 2\epsilon$$

$$\leq \sup_{u_1 \in U_1(\tau)} \left\{ \int_{\tau}^{T} f(t, x, u_1, \hat{\Phi}_2[u_1]) dt + \psi(x(T)) \right\} + 2\epsilon$$

$$\leq V^{-}(\tau, \xi) + 3\epsilon.$$
This last inequality and \eqref{4.42} conclude the proof. \hfill \Box 

**Theorem 4.9.** Let us consider the problem \eqref{4.1} with the assumptions 1.-2.. Then

A. \( V^- \) is a viscosity solution of the lower Isaacs’ equation \eqref{4.11};

B. \( V^- \) is the unique viscosity solution of the lower Isaacs’ equation \eqref{4.11};

A’. \( V^+ \) is a viscosity solution of the upper Isaacs’ equation \eqref{4.10};

B’. \( V^+ \) is the unique viscosity solution of the upper Isaacs’ equation \eqref{4.10}.

The proof of A’. is very similar to the proof of A. The proofs of B. and B’ are similar but they require a comparison principle for BHJ equation: such very interesting argument is very difficult and long, and it requires another course. Clearly Theorem 4.1 is a consequence of Theorem 4.9.

**Proof of 1.** It is obvious, by definition, that \( V^- (T, x) = \psi(x) \), for every \( x \in \mathbb{R}^n \). So, let us fix \( (t_0, x_0) \in (0, T) \times \mathbb{R}^n \).

**First part of the proof:** \( V^- \) is a supersolution. Let \( v \in C^1((0, T) \times \mathbb{R}^n) \) be a test function touching \( V^- \) from below at \( (t_0, x_0) \), i.e.

\[
V^- (t_0, x_0) = v(t_0, x_0) \quad \text{and} \quad V^- (t, x) \geq v(t, x) \quad \text{in a neighborhood of} \quad (t_0, x_0). \tag{4.46}
\]

We have to prove that

\[
\frac{\partial v}{\partial t} (t_0, x_0) + H_{D_p} (t_0, x_0, \nabla v(t_0, x_0)) \leq 0.
\]

Let us assume that this is not true and that there exists \( \theta > 0 \) such that

\[
\frac{\partial v}{\partial t} (t_0, x_0) + H_{D_p} (t_0, x_0, \nabla v(t_0, x_0)) \geq \theta. \tag{4.47}
\]

Defining the function \( \Gamma \) in a compact neighborhood of \( (t_0, x_0) \) by

\[
\Gamma (t, x, u_1, u_2) = \frac{\partial v}{\partial t} (t, x) + f(t, x, u_1, u_2) + \nabla v(t, x) \cdot g(t, x, u_1, u_2)
\]

\( \Gamma \) is equivalent to

\[
\max_{u_1 \in U_1} \min_{u_2 \in U_2} \Gamma (t_0, x_0, u_1, u_2) \geq \theta
\]

Hence there exists \( u^*_1 \in U_1 \) such that

\[
\min_{u_2 \in U_2} \Gamma (t_0, x_0, u^*_1, u_2) \geq \theta
\]

Since \( \Gamma \) is uniformly continuous in its domain and by assumption 2. on \( g \), there exists \( \tau > 0 \) such that

\[
\min_{u_2 \in U_2} \Gamma (s, \tilde{x}(s), u^*_1, u_2) \geq \frac{\theta}{2}, \quad \forall s \in [t_0, t_0 + \tau] \tag{4.48}
\]

where \( \tilde{u}_1 \) and \( \tilde{u}_2 \) are generic controls in \( U_1(t_0) \) and in \( U_2(t_0) \) respectively, and \( \tilde{x} \) solves

\[
\begin{cases}
\dot{\tilde{x}} = g(t, \tilde{x}, \tilde{u}_1, \tilde{u}_2) \quad \text{in} \quad [t_0, T] \\
\tilde{x}(t_0) = x_0
\end{cases} \tag{4.49}
\]

Hence, choosing \( \tilde{u}_1(\cdot) = u^*_1 \) and for any \( \Phi_2 \in \mathcal{S}_2(t_0) \) we have that inequality \eqref{4.48} implies

\[
\Gamma (s, \tilde{x}(s), \tilde{u}_1(s), \Phi_2 [\tilde{u}_1](s)) \geq \frac{\theta}{2}, \quad \forall s \in [t_0, t_0 + \tau]
\]
where now $\tilde{x}$ is the trajectory in (4.39) associated to the controls $\tilde{u}_1 = u^*_1$ and $\Phi_2[\tilde{u}_1]$. If we integrate the last inequality, we obtain that there exists $\tilde{u}_1 \in U_1(t_0)$ such that for every $\Phi_2 \in S_2(t_0)$ we have
\[
\int_{t_0}^{t_0 + \tau} \Gamma(s, \tilde{x}(s), \tilde{u}_1(s), \Phi_2[\tilde{u}_1](s))ds \geq \frac{\tau \theta}{2}
\]
and hence
\[
\inf_{\Phi_2 \in S_2(t_0)} \sup_{u_1 \in U_1(t_0)} \int_{t_0}^{t_0 + \tau} \left( \frac{\partial v}{\partial t}(s, x) + f(s, x, u_1, \Phi_2[u_1]) + \nabla v(s, x) \cdot g(s, x, u_1, \Phi_2[u_1]) \right) ds \geq \frac{\tau \theta}{2} \tag{4.50}
\]
where $x$ solves
\[
\begin{cases}
  \dot{x} = g(t, x, u_1, \Phi_2[u_1]) & \text{in } [t_0, T] \\
  x(t_0) = x_0
\end{cases}
\tag{4.51}
\]
Now by Theorem 4.8 we know that
\[
V^-(t_0, x_0) = \inf_{\Phi_2 \in S_2(t_0)} \sup_{u_1 \in U_1(t_0)} \left\{ \int_{t_0}^{t_0 + \tau} f(s, x, u_1, \Phi_2[u_1]) ds + V^-(t_0 + \tau, x(t_0 + \tau)) \right\} \tag{4.52}
\]
with $x$ as before. For every such $x$, requirement (4.40) and the lipschitz assumption 2. on $g$ imply that, for $\tau$ small enough
\[
0 = V^-(t_0, x_0) - v(t_0, x_0) \leq V^-(t_0 + \tau, x(t_0 + \tau)) - v(t_0 + \tau, x(t_0 + \tau)) \tag{4.53}
\]
Since $x$ is continuous and $v$ is in $C^1$, (4.51) implies
\[
v(t_0 + \tau, x(t_0 + \tau)) - v(t_0, x_0) = \int_{t_0}^{t_0 + \tau} \frac{dv(s, x(s))}{ds} ds
\]
\[
\int_{t_0}^{t_0 + \tau} \left( \frac{\partial v}{\partial t}(s, x(s)) + \nabla v(s, x(s)) \cdot g(s, x(s), u_1(s), \Phi_2[u_1](s)) \right) ds \tag{4.54}
\]
Relations (4.52)–(4.54) give
\[
0 \geq \inf_{\Phi_2 \in S_2(t_0)} \sup_{u_1 \in U_1(t_0)} \left\{ \int_{t_0}^{t_0 + \tau} f(s, x, u_1, \Phi_2[u_1]) ds + v(t_0 + \tau, x(t_0 + \tau)) - v(t_0, x_0) \right\}
\]
\[
= \inf_{\Phi_2 \in S_2(t_0)} \sup_{u_1 \in U_1(t_0)} \int_{t_0}^{t_0 + \tau} \left( f(s, x, u_1, \Phi_2[u_1]) + \frac{\partial v}{\partial t}(s, x) + \nabla v(s, x) \cdot g(s, x, u_1, \Phi_2[u_1]) \right) ds
\]
This inequality contradicts (4.50); hence (4.47) is false and this concludes the first part of the proof.

Second part of the proof: $V^-$ is a subsolution. Now, let $v \in C^1((0, T) \times \mathbb{R}^n)$ be a test function touching $V^-$ from above at $(t_0, x_0)$, i.e.
\[
V^-(t_0, x_0) = v(t_0, x_0) \quad \text{and } V^-(t, x) \leq v(t, x) \quad \text{in a neighborhood of } (t_0, x_0). \tag{4.55}
\]
We have to prove that
\[
\frac{\partial v}{\partial t}(t_0, x_0) + H^-_{D_p}(t_0, x_0, \nabla v(t_0, x_0)) \geq 0.
\]
Let us assume that this is not true and that there exists $\theta > 0$ such that
\[
\frac{\partial v}{\partial t}(t_0, x_0) + H^-_{D_p}(t_0, x_0, \nabla v(t_0, x_0)) \geq -\theta. \tag{4.56}
\]
This is equivalent to
\[
\max_{u \in U_1} \min_{u_2 \in U_2} \Gamma(t_0, x_0, u_1, u_2) \leq -\theta
\]
Hence, for every \( u_1 \in U_1 \) there exists \( u_2^{u_1} \in U_2 \) such that
\[
\Gamma(t_0, x_0, u_1, u_2^{u_1}) \leq -\theta
\]
Since \( \Gamma \) is uniformly continuous we have
\[
\Gamma(t_0, x_0, \tilde{u}_1, u_2^{u_1}) \leq -\frac{3\theta}{4}
\] (4.57)
for every \( u_1 \in U_1, \tilde{u}_1 \in B_{R^2}(u_1, r(u_1)) \cap U_1 \) and for some \( r(u_1) > 0 \). Since \( U_1 \) is compact (see assumption I.) there exist finitely many distinct points \( \{u_1^i\}_{i=1}^N \subset U_1 \), \( \{u_2^{u_1^i}\}_{i=1}^N \subset U_2 \) and rays \( \{r(u_1^i)\}_{i=1}^N \) such that
\[
U_1 \subset \bigcup_{i=1}^N B_{R^2}(u_1^i, r(u_1^i))
\]
and
\[
\Gamma(t_0, x_0, \tilde{u}_1, u_2^{u_1}) \leq -\frac{3\theta}{4}, \quad \forall \tilde{u}_1 \in B_{R^2}(u_1, r(u_1)) \cap U_1
\]
Let us define \( \phi : U_1 \to U_2 \) by \( \phi(u_1) = u_2^{u_1} \) with \( j = j(u_1) \) such that
\[
u_1 \in B_{R^2}(u_1, r(u_1)) \setminus \bigcup_{i=1}^{j-1} B_{R^2}(u_1^i, r(u_1^i)).
\]
Hence (4.57) implies
\[
\Gamma(t_0, x_0, u_1, \phi(u_1)) \leq -\frac{3\theta}{4}
\]
for every \( u_1 \in U_1 \). Since \( \Gamma \) is uniformly continuous there exists \( \tau > 0 \) such that we have
\[
\Gamma(s, \tilde{x}(s), u_1, \phi(u_1)) \leq -\frac{\theta}{2}, \quad \forall s \in [t_0, t_0 + \tau]
\] (4.58)
for every \( u_1 \in U_1 \) and for every \( \tilde{u}_1 \in \mathcal{U}_1(t_0), \tilde{u}_2 \in \mathcal{U}_2(t_0) \) where \( \tilde{x} \) is the associated trajectory as in (4.49). Now let us define \( \tilde{\Phi}_2 \in \mathcal{S}_2(t_0) \) such that
\[
\tilde{\Phi}_2[\tilde{u}_1](s) = \phi(\tilde{u}_1(s)), \quad \forall \tilde{u}_1 \in \mathcal{U}_1(t_0), \ s \in [t_0, T]
\]
Using (4.58)
\[
\Gamma(s, \tilde{x}(s), \tilde{u}_1(s), \tilde{\Phi}_2[\tilde{u}_1](s)) \leq -\frac{\theta}{2}, \quad \forall s \in [t_0, t_0 + \tau]
\]
for every \( \tilde{u}_1 \in \mathcal{U}_1(t_0) \) and where \( \tilde{x} \) is as in (4.49) with \( u_2 = \Phi_2[\tilde{u}_1] \). If we integrate the last inequality, we obtain that there exists \( \tilde{\Phi}_2 \in \mathcal{S}_2(t_0) \) such that for every \( \tilde{u}_1 \in \mathcal{U}(t_0) \) we have
\[
\int_{t_0}^{t_0 + \tau} \Gamma(s, \tilde{x}(s), \tilde{u}_1(s), \tilde{\Phi}_2[\tilde{u}_1](s))ds \leq -\frac{\tau\theta}{2}
\] (4.59)
and hence
\[
\inf_{\tilde{\Phi}_2 \in \mathcal{S}_2(t_0)} \sup_{\tilde{u}_1 \in \mathcal{U}(t_0)} \int_{t_0}^{t_0 + \tau} \left( \frac{\partial v}{\partial t}(s, \tilde{x}) + f(s, \tilde{x}, \tilde{u}_1, \tilde{\Phi}_2[\tilde{u}_1]) + \nabla v(s, \tilde{x}) \cdot g(s, \tilde{x}, \tilde{u}_1, \tilde{\Phi}_2[\tilde{u}_1]) \right)ds \leq -\frac{\tau\theta}{2}
\] (4.55)
where \( \tilde{x} \) is as in (4.51). For every such \( \tilde{x} \), requirement (4.55) and the lipschitz assumption 2. on \( g \) imply that, for \( \tau \) small enough
\[
0 = V^-(t_0, x_0) - v(t_0, x_0) \geq V^-(t_0 + \tau, x(t_0 + \tau)) - v(t_0 + \tau, x(t_0 + \tau))
\] (4.60)
Relations (4.52), (4.54) and (4.60) give

\[
0 \leq \inf_{\Phi_2 \in \mathcal{S}_2(t_0)} \sup_{u_1 \in \mathcal{U}(t_0)} \left\{ \int_{t_0}^{t_0+\tau} f(s, x, u_1, \Phi_2[u_1]) \, ds + v(t_0 + \tau, x(t_0 + \tau)) - v(t_0, x_0) \right\} \\
= \inf_{\Phi_2 \in \mathcal{S}_2(t_0)} \sup_{u_1 \in \mathcal{U}(t_0)} \int_{t_0}^{t_0+\tau} \left( f(s, x, u_1, \Phi_2[u_1]) + \frac{\partial v}{\partial t}(s, x) + \nabla v(s, x) \cdot g(s, x, u_1, \Phi_2[u_1]) \right) \, ds
\]

This inequality contradicts (4.59): hence (4.56) is false and this concludes the proof.

\[\square\]

### Isaacs’ condition and value function

The fundamental theorem on the value function is the following

**Theorem 4.10.** Let us consider the problem (4.1) with the assumptions 1.-2. Let us suppose that the Isaacs’ condition holds. Then

- a. the problem (4.1) has value function \( V \), i.e. (4.3) is always an equality;
- b. \( V \) is the unique viscosity solution of (4.12).

The proof of this theorem is an easy consequence of Theorem 1.9 with the Isaacs’s condition.

#### 4.1.5 Examples

**Example 4.1.3.** (see [2]) Let us consider the two-person zero-sum game

\[
\begin{aligned}
\text{Player I: } & \max_{u_1} J(u_1, u_2), & & \text{Player II: } \min_{u_2} J(u_1, u_2) \\
J(u_1, u_2) &= \frac{1}{2} \int_0^2 (u_2^2 - u_1^2) \, dt + \frac{1}{2} x(2)^2 \\
\dot{x} &= \sqrt{2} u_2 - u_1 \\
x(0) &= x_0
\end{aligned}
\]

First, it is easy to show that the Isaacs’ condition holds:

\[
H_{DP}(t, x, \lambda) = \max_{u_1 \in \mathbb{R}} \left( -\frac{1}{2} u_1^2 - \lambda u_1 \right) + \min_{u_2 \in \mathbb{R}} \left( \frac{1}{2} u_2^2 + \sqrt{2} \lambda u_2 \right) = H_{DP}^*(t, x, \lambda).
\]  

(4.61)

Hence we can define the Hamiltonian of Dynamic Programming \( H_{DP} : \) in order to do that, note that

\[
u_1^* = -\lambda^*, \quad u_2^* = -\sqrt{2} \lambda^*
\]  

(4.62)

realize the max and min in (4.61) respectively and hence \( H_{DP}(t, x, \lambda) = -\frac{1}{2} \lambda^2 \). Hence there exists the value function \( V \) that solves the Isaacs’ equation

\[
\begin{aligned}
\frac{\partial V}{\partial t}(t, x) - \frac{1}{2} \left( \frac{\partial V}{\partial x}(t, x) \right)^2 &= 0 \quad \text{for } (t, x) \in [0, 2] \times \mathbb{R} \\
V(2, x) &= \frac{1}{2} x^2 \quad \text{for } x \in \mathbb{R}
\end{aligned}
\]  

(4.63)

Since we are considering an Affine–Quadratic problem, we looking for a value function of the type (4.13), i.e. \( V(t, x) = \frac{1}{2} Z(t)x^2 + W(t)x + Y(t) : \) replacing such \( V \) in (4.63) we obtain

\[
\begin{aligned}
Zx^2 + 2Wx + 2Y - (Zx + W)^2 &= 0, \quad \forall (t, x) \in [0, 2] \times \mathbb{R} \\
&\Rightarrow \dot{Z} = Z^2 \\
W &= ZW \\
2Y &= W^2
\end{aligned}
\]  

(4.64)  

(4.65)  

(4.66)

\[
V(2, x) = \frac{1}{2} Z(2)x^2 + W(2)x + Y(2) = \frac{1}{2} x^2, \quad \forall x \in \mathbb{R}
\]  

\[
\Rightarrow Z(2) = 1, \quad W(2) = Y(2) = 0
\]  

(4.67)
Easy computations give: by (4.64) and (4.67) \( Z(t) = \frac{1}{3-t} \); by (4.65) and (4.67), \( W(t) = 0 \); finally, by (4.69) and (4.67), \( Y(t) = 0 \). Hence we obtain the value function

\[
V(t, x) = \frac{1}{2(3-t)} x^2.
\]

Now, relation (4.22) gives \( \lambda^*(t) = \frac{1}{3-t} x^*(t) \), where \( x^* \) is the optimal trajectory; (4.92) gives

\[
u_1^*(t) = -\frac{1}{3-t} x^*(t), \quad u_2^*(t) = -\sqrt{\frac{2}{3-t}} x^*(t).
\]

Hence we are in the position to find a feedback strategy. Using this expression for the control \((u_1, u_2)\), the dynamics gives

\[
\dot{x}^* = -\frac{x^*}{3-t};
\]

together with the initial condition \(x(0) = x_0\), we obtain \(x^* = x_0 \frac{3-t}{3}\). This implies that \((u_1^*, u_2^*)\) in (4.68) is a feedback Nash equilibrium.

\[\triangle\]

### 4.1.6 War of attrition and attack

This model is due to Isaacs (see section 5.4 in [10] and page 91 in [6]). We assume that two opponents \(A\) and \(B\) are at war with each other, for a very long time. Let us define \(B\)'s weapons against \(A\)'s production and \(c_2\) the effectiveness of \(A\)'s weapons against \(B\)'s production. We will assume \(c_2 > c_1\), a hypothesis that introduces an asymmetry into the problem. The dynamics are governed by the system of ODE

\[
\begin{align*}
\dot{x}_1 &= m_1 - c_1 \beta x_2 \\
\dot{x}_2 &= m_2 - c_2 \alpha x_1
\end{align*}
\]

The \(A\) opponent want to realize an advantage with respect to \(B\) in the direct attack, i.e

\[
\max \int_0^T [(1-\alpha)x_1 - (1-\beta)x_2] \, dt;
\]

the \(B\) opponent want to realize an advantage with respect to \(A\) in the direct attack, i.e

\[
\max \int_0^T [(1-\beta)x_2 - (1-\alpha)x_1] \, dt = - \min \int_0^T [(1-\alpha)x_1 - (1-\beta)x_2] \, dt.
\]

Hence we have the following two-persons zero-sum game

\[
\begin{align*}
\text{Player } A: \max_{\alpha} J(\alpha, \beta), & \quad \text{Player } B: \min_{\beta} J(\alpha, \beta) \\
0 \leq \alpha \leq 1 & \quad 0 \leq \beta \leq 1 \\
J(\alpha, \beta) &= \int_0^T [(1-\alpha)x_1 - (1-\beta)x_2] \, dt \\
\dot{x}_1 &= m_1 - c_1 \beta x_2 \\
\dot{x}_2 &= m_2 - c_2 \alpha x_1 \\
x_i(0) &= x_i0 > 0
\end{align*}
\]

The final time \(T\) is very large and fixed. Note that it is reasonable to require that \(x_i(t) > 0\) but, in order to simplify our solution, we remove it.

Let us looking for some Nash equilibrium in the family of open-loop strategies, using the variational approach. The Hamiltonian \(H = H(x_1, x_2, \alpha, \beta, \lambda_1, \lambda_2)\) is

\[
H = (1-\alpha)x_1 - (1-\beta)x_2 + \lambda_1 (m_1 - c_1 \beta x_2) + \lambda_2 (m_2 - c_2 \alpha x_1).
\]
Note that the final value of the trajectory \((x_1, x_2)\) is free and hence we put \(\lambda_0 = 1\). For the upper and lower Hamiltonians of Dynamic Programming we have, taking into account \(x_i > 0\),

\[
H^+_\text{DP}(x_1, x_2, \lambda_1, \lambda_2) = \min_{b \in [0, 1]} \max_{a \in [0, 1]} H(x_1, x_2, a, b, \lambda_1, \lambda_2)
\]

\[
= x_2 \left[ \min_{b \in [0, 1]} b(1 - c_1 \lambda_1) \right] + x_1 \left[ \max_{a \in [0, 1]} a(-1 - c_2 \lambda_2) \right] + x_1 - x_2 + m_1 \lambda_1 + m_2 \lambda_2
\]

\[
= \max_{a \in [0, 1]} \min_{b \in [0, 1]} H(x_1, x_2, a, b, \lambda_1, \lambda_2)
\]

\[
= H^-_{\text{DP}}(x_1, x_2, \lambda_1, \lambda_2)
\]

Hence the Isaacs’ condition is satisfied. We have to guarantee the conditions of Theorem 4.5:

\[
\alpha \in \arg \max_{\alpha \in [0, 1]} H = \arg \max_{\alpha \in [0, 1]} a(-1 - c_2 \lambda_2) = \begin{cases} 1 & \text{if } \lambda_2 < -\frac{1}{c_2} \\ ? & \text{if } \lambda_2 = -\frac{1}{c_2} \\ 0 & \text{if } \lambda_2 > -\frac{1}{c_2} \end{cases} \quad (4.69)
\]

\[
\beta \in \arg \min_{b \in [0, 1]} H = \arg \min_{b \in [0, 1]} b(1 - c_1 \lambda_1) = \begin{cases} 0 & \text{if } \lambda_1 < \frac{1}{c_1} \\ ? & \text{if } \lambda_1 = \frac{1}{c_1} \\ 1 & \text{if } \lambda_1 > \frac{1}{c_1} \end{cases} \quad (4.70)
\]

\[
\dot{\lambda}_1 = \frac{\partial H}{\partial x_1} = -(1 - \alpha) + c_2 \alpha \lambda_2
\]

\[
\dot{\lambda}_2 = \frac{\partial H}{\partial x_2} = (1 - \beta) + c_1 \beta \lambda_1
\]

\[
\lambda_1(T) = \lambda_2(T) = 0
\]

Note that the \(\arg \max\) and \(\arg \min\) in (4.69) and (4.70) do not depend on \((x_1, x_2)\); hence we are in the position to looking for a Nash equilibrium in the family of open–loop strategies.

The adjoint equation (4.71) and the Maximum Principle (4.69) imply that \(\lambda_1\) is a decrease function since \(\dot{\lambda}_1 \leq -1\): indeed

- if \(\lambda_2 < -1/c_2\) \(\Rightarrow\) \(\alpha = 1 \Rightarrow \dot{\lambda}_1 = -(1 - \alpha) + c_2 \alpha \lambda_2 < -1\)
- if \(\lambda_2 = -1/c_2\) \(\Rightarrow\) \(\dot{\lambda}_1 = -(1 - \alpha) + c_2 \alpha \lambda_2 = -1\)
- if \(\lambda_2 > -1/c_2\) \(\Rightarrow\) \(\alpha = 0 \Rightarrow \dot{\lambda}_1 = -(1 - \alpha) + c_2 \alpha \lambda_2 = -1\)

A similar argument, using the adjoint equation (4.72) and the Minimum Principle (4.70), implies that \(\lambda_2\) is an increase function since \(\lambda_2 \geq 1\).

Now, by (4.73) there exists \(\tau \in [0, T]\) such that

\[
\lambda_1(t) < \frac{1}{c_1}, \quad \lambda_2(t) > -\frac{1}{c_2}, \quad \forall t \in (\tau, T],
\]

i.e. \(\alpha = \beta = 0\) in \((\tau, T]\). The adjoint equation \(\dot{\lambda}_1 = -1\), \(\dot{\lambda}_2 = 1\), and the transversality conditions (4.73) give

\[
\lambda_1(t) = T - t, \quad \lambda_2(t) = t - T;
\]

the assumptions in (4.74), taking into account that \(c_2 > c_1\), imply

\[
\tau = T - \frac{1}{c_2} \quad \text{in } (\tau, T].
\]

Now, let us suppose that there exists \(\tau' \in [0, \tau)\) such that

\[
\lambda_1(t) < \frac{1}{c_1}, \quad \lambda_2(t) < -\frac{1}{c_2}, \quad \forall t \in (\tau', \tau)
\]
i.e. \( \alpha = 1 \), \( \beta = 0 \) in \((\tau', \tau]\). The adjoint equation \( \hat{\lambda}_1 = c_2 \lambda_2 \), \( \hat{\lambda}_2 = 1 \), and the continuity of the multipliers in the point \( t = \tau \) give

\[
\lambda_1(t) = \frac{c_2}{2} (T - t)^2 + \frac{1}{2c_2} \quad \lambda_2(t) = t - T; \quad \text{in} \ (\tau', \tau].
\]

the assumptions in (4.76), taking into account that \( 2c_2 > c_2 > c_1 \), imply

\[
\tau' = T - \frac{1}{c_2} \sqrt{\frac{2c_2 - c_1}{c_1}}.
\]

(4.77)

Now, let us suppose that there exists \( \tau'' \in [0, \tau') \) such that

\[
\lambda_1(t) > \frac{1}{c_1}, \quad \lambda_2(t) < -\frac{1}{c_2}, \quad \forall t \in (\tau'', \tau')
\]

i.e. \( \alpha = \beta = 1 \) in \((\tau'', \tau')\). The adjoint equation give

\[
\dot{\lambda}_1 = c_2 \lambda_2 \quad \text{and} \quad \dot{\lambda}_2 = c_1 \lambda_1
\]

and hence

\[
\dot{\lambda}_1 - c_1 c_2 \lambda_1 = 0 \quad \Rightarrow \quad \lambda_1 = A e^{\sqrt{c_1 c_2} t} + B e^{-\sqrt{c_1 c_2} t} \\
\Rightarrow \quad \lambda_2 = \sqrt{\frac{c_1}{c_2}} \left(A e^{\sqrt{c_1 c_2} t} - B e^{-\sqrt{c_1 c_2} t}\right)
\]

for some constants \( A \) and \( B \). Using the continuity of the multipliers in the point \( t = \tau' \) we have, taking into account (4.77),

\[
\lambda_1(t) = \left(1 - \sqrt{\frac{2c_2 - c_1}{c_2}} \right) \frac{e^{\sqrt{c_1 c_2} (t - \tau')}}{2c_1} + \left(1 + \sqrt{\frac{2c_2 - c_1}{c_2}} \right) \frac{e^{-\sqrt{c_1 c_2} (t - \tau')}}{2c_1}
\]

\[
\lambda_2(t) = \left(1 - \sqrt{\frac{2c_2 - c_1}{c_2}} \right) \frac{e^{\sqrt{c_1 c_2} (t - \tau')}}{2\sqrt{c_1 c_2}} - \left(1 + \sqrt{\frac{2c_2 - c_1}{c_2}} \right) \frac{e^{-\sqrt{c_1 c_2} (t - \tau')}}{2\sqrt{c_1 c_2}}
\]

Since \( \lambda_1 \) is a decreasing function and \( \lambda_2 \) is an increasing function, we obtain \( \tau'' = 0 \).

The pair \((\alpha^*, \beta^*)\) candidate to be a Nash equilibrium is

\[
\alpha^* = \begin{cases} 
1 & \text{if } t \in [0, \tau] \\
0 & \text{if } t \in (\tau, T] 
\end{cases} \quad \beta^* = \begin{cases} 
1 & \text{if } t \in [0, \tau'] \\
0 & \text{if } t \in (\tau', T] 
\end{cases}
\]

where \( \tau \) and \( \tau' \) is defined in (4.77) and (4.75). Since \((\alpha^*, \beta^*)\) is constant a.e., the dynamics is a.e. linear in \((x_1, x_2)\) with constant coefficients: hence there exists a unique solution \((x^*_1, x^*_2)\) of such ODE with initial data \( x_i(0) = x_{i0} \) and hence the control \((\alpha^*, \beta^*)\) is admissible.
Finally, let us note that the function \((x_1, x_2, \alpha, \beta) \mapsto H(x_1, x_2, \alpha, \beta, \lambda^*_1, \lambda^*_2)\) is not concave in \((x_1, \alpha)\) variable and convex in \((x_2, \beta)\) variable: let us use Theorem A.3 in order to guarantee some sufficient condition of optimality. First we consider the maximed Hamiltonian for the Player A:

\[
H^0_A(x_1, x_2, \lambda_1, \lambda_2) = \max_{a \in [0,1]} H(x_1, x_2, a, \beta^*, \lambda_1, \lambda_2)
\]

\[
x_2\beta^*(1 - c_1\lambda_1) + x_1 - x_2 + m_1\lambda_1 + m_2\lambda_2 + x_1 \left[ \max_{a \in [0,1]} a(-1 - c_2\lambda_2) \right]
\]

It is easy to see that, for every fixed \(t\), the function \((x_1, x_2) \mapsto H^0_A(x_1, x_2, \lambda^*_1, \lambda^*_2)\) is linear and hence concave in \((x_1, x_2)\): hence \(\alpha^*\) is really a optimal solution for the max problem of the First Player, with \(\beta^*\) fixed. A similar argument holds for the minimized Hamiltonian

\[
H^0_B(x_1, x_2, \lambda_1, \lambda_2) = \min_{b \in [0,1]} H(x_1, x_2, \alpha^*, b, \lambda_1, \lambda_2),
\]

showing that, for every fixed \(t\), the function \((x_1, x_2) \mapsto H^0_B(x_1, x_2, \lambda^*_1, \lambda^*_2)\) is linear and hence convex in \((x_1, x_2)\). Hence \((\alpha^*, \beta^*)\) is a Nash equilibrium.

## 4.2 Pursuit-evasion games

Let

\[ \mathcal{T} = \mathbb{R}^+ \times \mathcal{T}_0 \subset \mathbb{R}^+ \times \mathbb{R}^n \]

be a target set, with \(\mathcal{T}_0\) closed. Let as denote by \(\mathcal{G} \subset \mathbb{R}^+ \times \mathbb{R}^n\) the game set, i.e. the set where the trajectories lie, \((t, x(t)) \in \mathcal{G}\).

We investigate a situation in which the first player tries to maintain the state of the system as long as possible outside to a target set \(\mathcal{T}\) while the second player aims reaching \(\mathcal{T}\) as soon as possible. For this reasons, in all this section, the first player, who chooses \(u_1\), is called Pursuer, which we shall abbreviate buy \(P\); the second player, who chooses \(u_2\), is called Evader, which we shall abbreviate buy \(E\).

We consider an autonomous problem, i.e. a situation where \(f\) and \(g\) does not depend directly on \(t\). For every \(u_1\) and \(u_2\) admissible controls, let us consider the trajectory \(x\) via

\[
\dot{x} = g(x, u_1, u_2), \quad x(0) = \alpha
\]

such that \((0, \alpha) \in \mathcal{G} \setminus \mathcal{T}\). In this situation, the exit time in \((1.14)\) is

\[
T_x = \inf \{ t \geq 0 : x(t) \in \mathcal{T}_0 \};
\]

if the initial data on the trajectory \(x\) is \(x(\tau) = \xi\), with \((\tau, \xi) \in \mathcal{G} \setminus \mathcal{T}\), then the definition of its exit time is \(T_x = \inf \{ t \geq \tau : x(t) \in \mathcal{T}_0 \}\).

We are interested in the game

\[
\left\{ \begin{array}{ll}
\text{Pursuer:} & \min_{u_1} J(u_1, u_2), \\
\text{Evader:} & \max_{u_2} J(u_1, u_2) \\
\end{array} \right.
\]

\[
\begin{array}{l}
u_1(t) \in U_1, \\
u_2(t) \in U_2 \\
J(u_1, u_2) = \int_0^{T_x} f(x, u_1, u_2) \, dt + \psi(x(T_x)) \\
\dot{x} = g(x, u_1, u_2) \\
x(0) = \alpha, \\
(0, \alpha) \in \mathcal{G} \setminus \mathcal{T} \\
(T_x, x(T_x)) \in \partial \mathcal{T}
\end{array}
\]

(4.81)

Note that in the Pursuit-Evasion games the first Player (P) would like to have a min, while (E) wishes to have a max; this notation is in honor of Isaacs and it is exactly as in his book [10] (see page 201). Clearly, all the results of the previous sections hold with easy modifications.

Here we have that \(H_{DP}\) and \(H_{DP}\) do not depend on \(t\). For this type of problems we have the following properties:
Proposition 4.1. Let us consider the game \((4.81)\), with \(T_0\) closed. Then

i. the lower \(V^-\) value function does not depend explicitly on \(t\) in the game set \(G\), i.e.

\[
V^-(t, x) = V^-(x), \quad \forall (t, x) \in G;
\]

ii. the game set \(G\) for the game \((4.81)\) is

\[
G = \mathbb{R}^+ \times G_0 \subset \mathbb{R}^+ \times \mathbb{R}^n;
\]

iii. if \(V^-\) is in \(C^1(G_0 \setminus T_0)\), then the lower Isaacs’ equation \((4.11)\) is

\[
\begin{aligned}
&\left\{ 
H_{DP}(x, \nabla_x V^-(x)) = 0 \quad \text{for } x \in \text{int}(G_0 \setminus T_0) \\
&V^-(x) = \psi(x) \quad \text{for } x \in T_0
\right.
\end{aligned}
\]

Similar results in i. and iii. hold for \(V^+\).

iv. If the Isaacs’ condition is satisfied and the the value function \(V\) is in \(C^1\), then \(V\) does not depend explicitly on \(t\) and the Isaacs’ equation \((4.12)\) is

\[
\begin{aligned}
&\left\{ 
H_{DP}(x, \nabla_x V(x)) = 0 \quad \text{for } x \in \text{int}(G_0 \setminus T_0) \\
&V(x) = \psi(x) \quad \text{for } x \in T_0
\right.
\end{aligned}
\]

(4.82)

Proof. Let \((\tau, \xi) \in T\); clearly \(V^-(\tau, \xi) = \psi(\xi)\). Now, let \((\tau, \xi) \in G \setminus T\): by definition\(^2\)

\[
V^-(\tau, \xi) = \inf_{\Phi_1 \in \mathcal{S}_1(\tau)} \sup_{u_2 \in \mathcal{U}_2(\tau)} \int_0^\tau f(x, \Phi_1[u_2], u_2) \, dt + \psi(x(T_2))
\]

where \((\Phi_1[u_2], u_2)\) is such that \(x\) is the unique solution of of the ODE

\[
\begin{aligned}
&\dot{x} = g(x, \Phi_2[u_1], u_2) \quad \text{in } [\tau, T_2] \\
x(\tau) = \xi
\end{aligned}
\]

For every \(u_2 \in \mathcal{U}_2(\tau)\) and \(\Phi_1 \in \mathcal{S}_1(\tau)\), let us consider \(\tilde{u}_2 \in \mathcal{U}_2(0)\) and \(\tilde{\Phi}_1 \in \mathcal{S}_1(0)\), i.e. \(\tilde{\Phi}_1 : \mathcal{U}_2(0) \to \mathcal{U}_1(0)\), defined by

\[
\tilde{u}_2(s) = u_2(\tau + s), \quad \tilde{\Phi}_1[v_2(\cdot)](s) = \Phi_1[v_2(\cdot + \tau)](s - \tau), \quad \forall v_2 \in \mathcal{U}_2(0)
\]

Hence for every \((\Phi_1, u_2) \in \mathcal{S}_1(\tau) \times \mathcal{U}_2(\tau)\) we associate a unique \((\tilde{\Phi}_1, \tilde{u}_2) \in \mathcal{S}_1(0) \times \mathcal{U}_2(0)\): moreover such correspondence is 1 to 1. Moreover, since \(g\) does not depends on \(t\), the unique solution \(\tilde{x}\) of the ODE

\[
\begin{aligned}
&\dot{x} = g(x, \Phi_1[\tilde{u}_2], \tilde{u}_2) \\
x(0) = \xi
\end{aligned}
\]

is \(\tilde{x}(s) = x(\tau + s)\). Since \(T = \mathbb{R}^+ \times T_0\), it is easy to see that

\[
T_\tilde{x} = T_x - \tau.
\]

Clearly we obtain

\[
\int_0^{T_x} f(\tilde{x}, \tilde{\Phi}_1[\tilde{u}_2], \tilde{u}_2) \, dt + \psi(\tilde{x}(T_\tilde{x})) = \int_0^{T_x} f(x, \Phi_1[u_2], u_2) \, dt + \psi(x(T_x)),
\]

\(^2\)We recall that the First Player minimizes and the second Player maximizes, hence in the definition of \(V^+\) and \(V^-\) we have to change 1 with 2 and vice versa.
for every $u_2, \Phi_1$ as before. This implies $V^-(\tau, \xi) = V^-(0, \xi)$, for every $\tau > 0$. This proves i. and the arguments of this proof imply easily ii.

The assumption $V^- \in C^1$, gives $\frac{\partial V^-}{\partial t}(t, x) = 0$. Now, since the problem is autonomous, $H^{-}_{DP}$ does not depend explicitly by $t$ and we obtain, by the lower Isaacs’ equation (4.11),

$$\frac{\partial V^-}{\partial t}(t, x) + H^{-}_{DP}(t, x, \nabla x V^-(t, x)) = H^{-}_{DP}(x, \nabla x V^-(x)) = 0,$$

i.e. our claim in iii.

Now, let us consider a initial data $(\tau, \xi)$ for our trajectory $x$ in $T$; it is clear that $T_x = \tau$ and hence

$$V^-(\tau, \xi) = \inf_{\Phi_1 \in S_1(\tau)} \sup_{u_2 \in U_2(\tau)} \int_{\tau}^{T_x} f(x, \Phi_1[u_2], u_2) \, dt + \psi(x(T_x)) = \psi(\xi).$$

Taking into account that $V^-$ does not depend explicitly by $t$, we have ii.

Assertion iv. is an easy consequence.

Theorem 4.3 for our pursuit-evasion game has a new statement:

**Theorem 4.11.** Let us consider the game (4.81), with $T_0$ closed, and let us suppose that the Isaacs’ condition is satisfied: we recall that in this case we have

$$H^+_{DP}(x, \lambda) = \min_{v_1 \in U_1} \max_{v_2 \in U_2} \left( f(x, v_1, v_2) + \lambda \cdot g(x, v_1, v_2) \right)$$

$$= \max_{v_2 \in U_2} \min_{v_1 \in U_1} \left( f(x, v_1, v_2) + \lambda \cdot g(x, v_1, v_2) \right). \tag{4.83}$$

Let us suppose that there exists a continuous differentiable function $V : (G_0 \setminus T_0) \rightarrow \mathbb{R}$ such that

$$\begin{cases} H^+_{DP}(x, \nabla x V(x)) = 0 & \text{for } x \in \text{int}(G_0 \setminus T_0) \\ V(x) = \psi(x) & \text{for } x \in T_0 \end{cases} \tag{4.84}$$

Let $(u^*_1, u^*_2) \in A_{FB}$, where $u^* : [0, T_x] \times \mathbb{R}^n \rightarrow U_i$ and $u^*_i(t) = u^*_i(x^*(t))$, with the corresponding trajectory $x^*$ with $x(0) = \alpha$, be such that such that $(u^*_1(t), u^*_2(t))$ realizes the minmax for $H^+_{DP}$ in (4.83) along the optimal path $(x^*(t))$, i.e.

$$f(x^*(t), u^*_1(t), u^*_2(t)) + \nabla x V(x^*(t)) \cdot g(x^*(t), u^*_1(t), u^*_2(t)) = 0,$$

for every $t \in [0, T_x]$. Then $(u^*_1, u^*_2)$ is a Nash equilibrium.

### 4.2.1 The lady in the lake

The following games is in [2]. A lady ($E=$Evader) is swimming in a circular lake (of radius $R$) with a velocity $v_L(t)$ such that $v_L(t) = v_L$ is constant and $v_L < 1$; she can change the direction in which she swims instantaneously. Hence the lady controls the direction of its velocity, i.e. she controls the angular velocity $u_L$ with respect to the radius $CE$, without any restriction.

A man ($P=$Pursuer) is not a swimmer and he wishes to intercept the lady when she reaches the shore; he is in the beach of the lake and can run along the perimeter with maximum speed 1. He also can change his direction instantaneously. Clearly the velocity $u_M$ of the man is tangent to the circumference: the man controls the signed modulo $u_M$, i.e. $|u_M(t)| \leq 1$, where $u_M > 0$ ($u_M < 0$) implies that the man runs clockwise (counter-clockwise) around the lake.
We assume that the lady and the man never get tired. E doesn’t stay in the lake forever and she wishes to come out without being caught by the man; in the land, E can run faster than P. E’s goal is to maximize the pay-off, which is the angular distance θ viewed from the center C of the lake, at the time E reaches to the store. P obviously wants minimize such pay-off.

In order to describe the system, we introduce the angular distance θ = θ(t), i.e. the angle between P and E with respect to the center C in a clockwise sense (with \(-\pi \leq \theta(t) \leq \pi\)). The E’s distance with respect to the center of the lake is \(r = r(t)\). The dynamics of the game (we left to the reader the details) is

\[
\begin{align*}
\dot{\theta} &= \frac{v_L \sin u_L}{r} - \frac{u_M}{R} \\
\dot{r} &= v_L \cos u_L 
\end{align*}
\] (4.85)

The pay-off function is \(|\theta(T)|\), where \(T = T(\theta, r)\) is defined for every trajectory \((\theta, r)\), as in (4.80), by

\[T = \inf\{t \geq 0 : (\theta(t), r(t)) \in \mathcal{T}_0\},\]

where \(\mathcal{T}\) is the target set of the game, \(\mathcal{T} = \mathbb{R}^+ \times \mathcal{T}_0\) with \(\mathcal{T}_0 = \mathbb{R} \times [R, \infty)\). Proposition 4.1 implies that the game set \(\mathcal{G}\) for our problem is \(\mathcal{G} = \mathbb{R}^+ \times \mathcal{G}_0\): Let us note that for every \((r_0, \theta_0)\) with \(r_0 \geq 0\) and \(\theta_0 \in \mathbb{R}\) the pair \((u_M, u_L) = (0, 0)\) in the dynamics implies the trajectory \(r(t) = r_0 + tv_L\) and \(\theta(t) = \theta_0\) for every \(t \geq 0\); it is clear that for some \(t\) the trajectory reaches in the target set: hence \(\mathcal{G}_0 = \mathbb{R} \times [0, \infty)\).

Hence we have the pursuit-evasion game

\[
\begin{cases}
\text{Man (P): } \min_{u_M} |\theta(T)| \\
\text{Lady (E): } \max_{u_L} |\theta(T)| \\
|u_M| \leq 1
\end{cases}
\]

\[
\dot{\theta} = \frac{v_L \sin u_L}{r} - \frac{u_M}{R} \\
\dot{r} = v_L \cos u_L \\
r(0) = 0, \ r(T) = R
\]

Let us looking for a Nash equilibrium for this problem. The Hamiltonian \(H = H(\theta, r, u_M, u_L, \lambda_1, \lambda_2)\) is

\[H = \lambda_1 \left(\frac{v_L \sin u_L}{r} - \frac{u_M}{R}\right) + \lambda_2 v_L \cos u_L.\]

For the upper and lower Hamiltonians of Dynamic Programming we have

\[
H_{DP}^+(\theta, r, \lambda_1, \lambda_2) = \min_{|u_M| \leq 1} \max_{u_L} H(\theta, r, u_M, u_L, \lambda_1, \lambda_2)
\]

\[
= \min_{|u_M| \leq 1} \left\{ -\frac{\lambda_1}{R} u_M \right\} + \max_{u_L} \left\{ \frac{v_L \sin u_L}{r} \lambda_1 + \lambda_2 v_L \cos u_L \right\}
\]

\[
= \max_{u_L} \min_{|u_M| \leq 1} H(\theta, r, u_M, u_L, \lambda_1, \lambda_2)
\]

\[
H_{DP}^-(\theta, r, \lambda_1, \lambda_2)
\]

Hence the Isaacs’ condition is satisfied and we are in the position to looking for a value function \(V\) that does not depend on \(t\), i.e. \(V = V(\theta, r)\) (see Proposition 4.1): the existence of such \(V\) is not guaranteed since the
dynamics is not bounded and Lipschitz w.r.t. $r$ (see Theorem 4.10). The Isaacs’ equation (4.84) is

$$\min_{|u_M| \leq 1} \max_{u_L} \left[ \frac{v_L \sin u_L}{r} - \frac{u_M}{R} \right] \frac{\partial V}{\partial \theta}(\theta, r) + v_L \cos u_L \frac{\partial V}{\partial r}(\theta, r) = 0 \quad \text{for } (\theta, r) \in \text{int}(G_0 \setminus T_0) = \mathbb{R} \times (0, R)$$

for $\theta \in \mathbb{R}$

where the order of the min and the max is irrelevant. If $(u_M^*, u_L^*)$ is our Nash equilibrium with associated trajectory $(\theta^*, r^*)$, let us set

$$V_\theta^*(t) = \frac{\partial V}{\partial \theta}(\theta^*(t), r^*(t)), \quad V_r^*(t) = \frac{\partial V}{\partial r}(\theta^*(t), r^*(t)).$$

Let us reorganize the Isaacs’ equation taking into account that $(u_M^*, u_L^*)$ realizes the min and the max along the optimal path $(\theta^*, r^*)$,

$$0 = \min_{|u_M| \leq 1} \left( -\frac{u_M}{R} V_\theta(t) \right) + v_L \max_{u_L} \left( \sin u_L \frac{V_\theta(t)}{r^*(t)} + \cos u_L V_r^*(t) \right)$$

for every $t \in [0, T]$.

**Remark 4.4.** The previous equality guarantees that a Nash equilibrium in the family of the open-loop equilibrium does not exist since $(u_M^*(t), u_L^*(t))$ surely depends on $r^*(t)$ and $\nabla V(\theta^*(t), r^*(t))$.

However, we can apply the variational approach for the open-loop representation of the feedback Nash equilibrium (see Theorem 4.10). Taking into account that (see 4.22) $\lambda_1^* = V_\theta^*$ and $\lambda_2^* = V_r^*$ along the optimal trajectory $(\theta^*(t), r^*(t))$, the adjoint equation gives

$$\dot{\lambda}_1 = -\frac{\partial H}{\partial \theta} = 0 \quad \Rightarrow \quad V_\theta^* = k$$

$$\dot{\lambda}_2 = -\frac{\partial H}{\partial r} \quad \Rightarrow \quad \frac{d}{dt} V_r^* = V_\theta^* \frac{u_L \sin u_L^*}{(r^*)^2} = k \frac{v_L \sin u_L^*}{(r^*)^2}$$

where $k$ is a constant.

- First, let us suppose that for some time $t$ on the optimal trajectory we have $V_\theta^*(t) \neq 0$ : (4.87) implies that the optimal control $u_M^*$ is given by

$$u_M^*(t) = \text{sgn}(V_\theta^*(t)).$$

Consequently, (4.87) is

$$\max_{u_L} \left\{ \frac{\sin u_L}{r^*(t)} V_\theta^* + \cos u_L V_r^* \right\} = \frac{|V_\theta^*(t)|}{v_L R}$$

This implies that the vector $(\cos(u_L^*(t)), \sin(u_L^*(t)))$ has the same direction of the vector $\left( V_r^*(t), \frac{1}{r^*(t)} V_\theta^*(t) \right)$ and hence

$$\left| \left( V_r^*(t), \frac{1}{r^*(t)} V_\theta^*(t) \right) \right| = \frac{|V_\theta^*(t)|}{v_L R}$$

An explicit calculation of the modulo gives

$$\frac{(V_r^*(t))^2}{(r^*(t))^2} \leq (V_r^*(t))^2 + \frac{(V_\theta^*(t))^2}{(r^*(t))^2} = \frac{(V_\theta^*(t))^2}{v_L^2 R^2};$$

this last relation is true only in the case $r^*(t) \geq v_L R$.

- Let’s study the situation $r^*(t) < v_L R$: in this case, the previous calculations imply $V_\theta^*(t) = 0$; hence by (4.89) we obtain $V_r^*(t) = k_1$ constant and (4.87) becomes

$$\max_{u_L} \{ k_1 \cos u_L \} = 0.$$
Such relation gives $k_1 = 0 = V_r^*(t)$. Hence on the optimal trajectory $(\theta^*(t), r^*(t))$ inside the circumference of radius $v_L R$ we have

$$\nabla V(\theta^*(t), r^*(t)) = (V_r^*(t), V_r^*(t)) = (0, 0);$$

the value function doesn’t change if $E$ modifies her position, i.e. $V$ is constant. In this situation the Lady can achieve a large angular velocity $w_L$ (with respect to the center $C$) than the angular velocity $w_M$ of the Man $P$, and therefore she can always move herself into the position $\theta^*(t) = \pi$, i.e. to a position diametrically opposite from $P$. In fact we note that

$$w_L = \frac{v_L \sin u_L^*}{r^*}, \quad w_M = \frac{u_M^*}{R} \tag{4.93}$$

and for $|w_L| \geq |w_M|$ implies

$$\frac{v_L}{r^*} \geq \frac{|v_L \sin u_L^*|}{r^*} \geq \left| \frac{u_M^*}{R} \right| = \frac{1}{R};$$

hence $r^*(t) \leq v_L R$.

Clearly inside $r^*(t) \leq v_L R$, for every strategy $u_M^*$ of the Man, the Lady can consider a strategy $u_L^*$ in order to stay in a situation where $\theta^*(t) = \pm \pi$; hence $\theta^* = 0$ and $w_L = w_M$. Relations (4.93) give the optimal control

$$(u_M^*(t), u_L^*(t)) = \left( u_M^*(t), \arcsin \frac{u_M^*(t) \pi}{RV_L} \right)$$

and the optimal trajectory is, again by the dynamics,

$$(|\theta^*(t)|, r^*(t)) = \left( \pi, RV_L \sin \frac{u_L^*(t)}{u_M^*(t)} \right) \tag{4.94}$$

An example of the situation $r(t) < v_L R$:

Let us suppose that the Man starts at the North pole of the circumference and runs

in the clockwise sense with maximal velocity, i.e. $u_M^* = 1$. Let us denote by $M(t)$ the position of the Man at the time $t$, we have (see the blue curve in the picture)

$$M(t) = R \left( \sin \frac{t}{R}, \cos \frac{t}{R} \right).$$

Note that $|M| = 1$. Let us denote by $L(t)$ the position of the Lady at time $t$: (4.93) gives

$$r^* = RV_L \sin u_L^* \Rightarrow \dot{r}^* = RV_L \dot{u}_L^* \cos u_L^*. $$

Since the dynamics is $\dot{r}^* = v_L \cos u_L^*$

we obtain $RV_L = 1$, i.e. $u_L^*(t) = t/R + a$ with a constant. The initial condition $r^*(0) = 0$ with (4.93) give $a = 0$.

Hence we have the strategy for the Lady

$$u_L^* = \frac{t}{R}. $$

By using (4.93), we obtain (see the red curve in the picture)

$$L(t) = -RV_L \sin \frac{t}{R} \left( \sin \frac{t}{R}, \cos \frac{t}{R} \right).$$

It is easy to verify that the modulo of the velocity of the Lady is exactly $v_L$.

- Since the lady doesn’t stay in the lake forever, let us define $T_0$ as

$$T_0 = \max\{t \geq 0; \ r^*(t) = v_L R\},$$

and let us study the situation $r^*(t) \geq v_L R$. The previous argument imply that

$$|\theta^*(T_0)| = \pi, \quad r^*(T_0) = RV_L. \tag{4.95}$$
4.2. PURSUIT-EVASION GAMES

Taking into account that, by the final condition on the value function \( V(\theta, R) = |\theta| \), we have \( \frac{\partial V}{\partial \theta}(\theta^*(T), R) = sgn(\theta^*(T)) \), equation (4.88) suggests that in the final part of the optimal trajectory we have \( V^*_\theta(T) = sgn(\theta^*(T)) \). Hence, by (4.90),

\[
u^*_M(t) = sgn(\theta^*(T)), \quad t \in [T_0, T].
\]

Relation (4.91) gives

\[(\cos(u^*_L(t)), \sin(u^*_L(t))) = \frac{v_L R}{|V^*_\theta(t)|} \left( V^*_\theta(t), \frac{r^*(t)}{r^*(t)} \right).
\]

Hence

\[\sin u^*_L(t) = \frac{v_L R}{r^*(t)} \cdot sgn(\theta^*(T)).\]

The optimal control here is

\[(u^*_M(t), u^*_L(t)) = \left( sgn(\theta^*(T)), \arcsin \frac{v_L R sgn(\theta^*(T))}{r^*(t)} \right), \quad t \in [T_0, T].\]

- Let us discuss the possibility of the lady and the man obtain their respectively pay off. In \( r^*(t) \geq v_L R \), the dynamics (4.85) and the optimal control \( (u^*_M, u^*_L) \) in (4.96) and (4.97) give

\[\dot{\theta}^* = \frac{v_L \sin u^*_L}{r^*} - \frac{u^*_M}{R} = sgn(\theta^*(T)) \frac{v_L^2 R^2 - (r^*)^2}{R (r^*)^2}.
\]

Now, taking into account the dynamics (4.85) and the optimal control \( u^*_L \) in (4.97), we have

\[\dot{r}^* = v_L \cos u^*_L = \frac{v_L}{r^*} \sqrt{(r^*)^2 - v_L^2 R^2};\]

we consider only the case \( \cos u^*_L > 0 \) since the Lady cannot stay in the lake forever (see the dynamics). Hence (4.98) becomes

\[\dot{\theta}^* = -\frac{sgn(\theta^*(T)) \sqrt{(r^*)^2 - v_L^2 R^2}}{r^*} \frac{\sqrt{(r^*)^2 - v_L^2 R^2}}{r^*}\]

\[= -\frac{sgn(\theta^*(T)) \sqrt{(r^*)^2 - v_L^2 R^2}}{v_L R \frac{\sqrt{(r^*)^2 - v_L^2 R^2}}{r^*}} \dot{r}^*.
\]

Taking into account (4.85), let us put \( \theta^*(T_0) = \pi sgn(\theta^*(T)) \). Hence the last equality and (4.85) imply

\[\int_{\theta^*(T_0)}^{\theta^*(T)} d\theta = \int_{r^*(T_0)}^{r^*(T)} -\frac{sgn(\theta^*(T)) \sqrt{r^2 - v_L^2 R^2}}{r} \, dr
\]

\[\Rightarrow (\theta^*(T) - \theta^*(T_0)) sgn(\theta^*(T)) = -\frac{1}{v_L R} \int_{v_L R}^{R} \sqrt{r^2 - v_L^2 R^2} \, dr
\]

\[\Rightarrow |\theta^*(T)| = \pi - \int_{v_L}^{1} \frac{\sqrt{1 - s^2}}{s^2} \, ds \quad \text{with } s = \frac{v_L R}{r}
\]

\[= -\left[ \frac{1}{s} \sqrt{1 - s^2} \right]_{v_L}^{1} + \int_{v_L}^{1} \frac{1}{\sqrt{1 - s^2}} \, ds \quad \text{(by part)}
\]

\[= -\frac{1}{v_L \sqrt{1 - v_L^2}} + \arccos v_L
\]
Hence
\[ |\theta^n(T)| = \pi - \frac{1}{v_L} \sqrt{1 - \frac{1}{v_L^2}} + \arccos v_L. \]
A plot of the function, for \( x \in (0, 1] \),
\[ x \mapsto y(x) = \pi - \frac{1}{x} \sqrt{1 - x^2} + \arccos x, \]
comes from \( \lim_{x \to 0^+} y(x) = -\infty \), \( y(1) = \pi \) and \( y'(1) = \sqrt{\frac{1}{2}} \geq 0 \).

Hence there exists a value \( v_L^* \in (0, 1) \) such that for \( v_L \in (v_L^*, 1) \) the Lady sure will not be caught by the Man.

### 4.3 Pursuit-evasion game of kind

We consider a situation similar to section 4.2, but now the functional \( J \) takes only a finite number of values: these type of pursuit-evasion games are called games of kind. The theory of these type of games is very wide and here we would like to give some ideas, in some particular situations (see for example [12] for more details).

Let us consider a game set \( \mathcal{G} = \mathbb{R}^+ \times \mathbb{G}_0 \) and a closed target set \( \mathcal{T} = \mathbb{R}^+ \times \mathcal{T}_0 \subset \mathcal{G} \), with \( \text{int}(\mathcal{T}_0) \neq \emptyset \), such that \( \partial \mathcal{T}_0 \) is a \((n - 1)\)-dimensional surface in \( C^1 \), i.e.
\[ \partial \mathcal{T}_0 = \{ \mathbf{x} \in \mathbb{G}_0 \subset \mathbb{R}^n : h(\mathbf{x}) = 0 \}, \]
where \( h : \mathbb{G}_0 \to \mathbb{R} \) is a function in \( C^1 \). For every \( \mathbf{x} \in \partial \mathcal{T}_0 \), let us denote by \( \mathbf{n}(\mathbf{x}) \in \mathbb{R}^n \) the outward normal of \( \mathcal{T}_0 \) at \( \mathbf{x} \); clearly \( \mathbf{n}(\mathbf{x}) \parallel \nabla h(\mathbf{x}) \).

In this game, the evader (E) tries to prevent the state–trajectory from reaching into the interior of \( \mathcal{T}_0 \), whereas the pursuer (P) seeks the opposite. We assign numerical values to the outcomes \( J \) for the trajectory \( \mathbf{x} \) associated to the controls \((\mathbf{u}_1, \mathbf{u}_2)\):

- \(-1\) for termination of the game or capture, i.e. the trajectory \( \mathbf{x} \) arrives in \( \text{int}(\mathcal{T}_0) \);
- \(+1\) for no termination of the game or escape, i.e. the trajectory \( \mathbf{x} \) never arrives in \( \text{int}(\mathcal{T}_0) \).

We are interested in the game

\[
\begin{align*}
\text{Pursuer: } & \min_{\mathbf{u}_1} J(\mathbf{u}_1, \mathbf{u}_2), & \text{Evader: } & \max_{\mathbf{u}_2} J(\mathbf{u}_1, \mathbf{u}_2) \\
\mathbf{u}_1(t) \in U_1 & & \mathbf{u}_2(t) \in U_2 \\
J(\mathbf{u}_1, \mathbf{u}_2) & = \begin{cases} -1 & \text{if } \exists t \geq 0 \text{ s.t. } \mathbf{x}(t) \in \text{int}(\mathcal{T}_0) \\ +1 & \text{otherwise} \end{cases} \\
\dot{\mathbf{x}} & = g(\mathbf{x}, \mathbf{u}_1, \mathbf{u}_2) \\
\mathbf{x}(0) & = \alpha
\end{align*}
\]

with \( \alpha \in \mathbb{G}_0 \setminus \mathcal{T}_0 \) fixed. Let us suppose for this problem that the Isaacs’ condition is satisfied.

It is clear that in this problem the regularity assumption in 1. does not hold and, despite the Isaacs’ assumption holds, it is not possible to guarantee that there exists the value function \( V \). However we can define \( V^- \) and \( V^+ \) and, exactly as in i. of Proposition 4.1 we have

**Remark 4.5.** The functions \( V^- \) and \( V^+ \) do not depend on \( t \).

Since the “solution” of the game does not depend on the time, the most interesting question is to study which initial points of \( \mathbb{G}_0 \) lead to a termination of the game and which are not. In order to do that, let us classify the points of the set \( \mathbb{G}_0 \):
States of capture, states of escape in $G_0 \setminus \text{int}(T_0)$.

**Definition 4.8.** Let $x \in G_0 \setminus \text{int}(T_0)$. We say that

- $x$ is a state of termination (or to capture) if $P$ has a strategy–control such that for every acts of $E$ the trajectory can be steered to the interior of the target set: we denote by $C_{ap}$ the set of all the states of capture;
- $x$ is a state of no-termination (or to escape) if $E$ has a strategy-control such that for every acts of $P$ the trajectory can be steered outside to $\text{int}(T_0)$ forever: we denote by $E_{sc}$ the set of all the states of escape;

Let us prove the following:

**Remark 4.6.** If is $x \in C_{ap}$, then $V^{-}(x) = V^{+}(x) = -1$. If is $x \in E_{sc}$, then $V^{-}(x) = V^{+}(x) = +1$.

**Proof.** Let $\xi$ be a state of capture. Then there exists a control $\tilde{u}_1 \in U_1(0)$ such that for every $u_2 \in U_2(0)$ we have $J(\tilde{u}_1, u_2) = -1$. This implies that

$$J(\tilde{u}_1, u_2) = -1, \quad \forall u_2 \in U_2(0).$$

Hence, by (4.33) and by definition 4.3, $-1 \leq V^{-}(\xi) \leq V^{+}(\xi) = \sup_{\Phi_2 \in S_2(0)} \inf_{u_1 \in U_1(0)} J(u_1, \Phi_2[u_1]) \leq \sup_{\Phi_2 \in S_2(0)} J(\tilde{u}_1, \Phi_2[\tilde{u}_1]) = -1$

Now, let $\xi$ be a state of escape. Then there exists a control $\tilde{u}_2 \in U_2(0)$ such that for every $u_1 \in U_1(0)$ we have $J(u_1, \tilde{u}_2) = +1$. This implies that

$$J(u_1, \tilde{u}_2) = 1, \quad \forall u_1 \in U_1(0).$$

Hence, by (4.33) and by definition,

$$1 \geq V^{+}(\xi) \geq V^{-}(\xi) = \inf_{\Phi_1 \in S_1(0)} \sup_{u_2 \in U_2(0)} J(\Phi_1[u_2], u_1) \geq \inf_{\Phi_1 \in S_1(0)} J(\Phi_1[\tilde{u}_2], \tilde{u}_2) = 1.$$

Now we are in the position to define, with an abuse of language, a sort of value function

$$V : C_{ap} \cup E_{sc} \to \{-1, +1\}.$$

If $x$ is a state of neutrality we are not able to define $V$. The most interesting situation, of course, is the one in which $G_0$ contains both capture and escape states. It is clear that the value function $V$ is discontinuous and the theory of the previous sections is not useful.

**Usable part in $\partial T_0$.**

At this point a natural question is to investigate which points of the boundary of the target set are candidate to be a state of termination for the game. We have the following:

**Definition 4.9.** We define the usable part, that we will denote by $UP$, as

$$UP = \left\{ x \in \partial T_0 : \min_{u_1 \in U_1} \max_{u_2 \in U_2} n(x) \cdot g(x, u_1, u_2) = \max_{u_2 \in U_2} \min_{u_1 \in U_1} n(x) \cdot g(x, u_1, u_2) \leq 0 \right\}. \quad (4.100)$$

The points of the usable part are candidate to be termination for the game. If strict inequality holds in (4.100) for some $x$, then it is a state of termination, i.e. $x \in C_{ap}$, and it penetrates in $T_0$ to be clear, if for some controls $(u_1, u_2)$ and for some time $t$, the trajectory $x$ associated to such controls arrives at time $t$ in a point of this type, then $\dot{x}(t) = g(x(t), u_1(t), u_2(t))$ gives the direction of the trajectory in the point $x(t)$; since $n(x(t)) \cdot \dot{x}(t) < 0$, then the trajectory enters in $\text{int}(T_0)$.

The points $x$ for which equality holds in (4.100) may be only touching points.

\footnote{We recall that the First Player minimizes and the second Player maximizes, hence in the definition of $V^{+}$ and $V^{-}$ we have to change 1 with 2 and vice versa.}
The barrier and its construction.

We now are in the position to introduce the most important “object” that allows us to study our problem: the barrier. It is the set that separates the state of capture to the state of escape:

**Definition 4.10.** We define the barrier $\mathcal{B}_{\text{ar}}$ the set in $\mathcal{G}_0 \setminus \text{int}(\mathcal{T}_0)$ by

$$\mathcal{B}_{\text{ar}} = \partial \mathcal{C}_{\text{ap}} \cap \partial \mathcal{E}_{\text{ac}}.$$  

The boundary of the usable part, that we will denote by $\mathcal{BUP}$, is the set

$$\mathcal{BUP} = \mathcal{UP} \cap \mathcal{B}_{\text{ar}}.$$  

It is clear that the barrier can be a very irregular set. Let us introduce the following two assumptions:

**Assumption.** Let us assume that $\mathcal{B}_{\text{ar}}$ is non empty and

- (smoothness) the barrier is a $C^2$ surface, i.e. $\mathcal{B}_{\text{ar}} = \{ x : b(x) = 0 \}$, with $b \in C^2$;
- (naturality) the curve from which the barrier starts is $\mathcal{BUP}$, i.e. the boundary of the usable part.

For every point $x \in \mathcal{B}_{\text{ar}}$, let us denote by $p(x) \in \mathbb{R}^n$ the outward of $\mathcal{C}_{\text{ap}}$ in the point $x$ (and inward $\mathcal{E}_{\text{ac}}$): clearly $p(x) \parallel \nabla b(x)$.

*A natural barrier: for every point $x$ in $\mathcal{BUP}$, we have $p(x) = n(x)$.*

If we are able to construct the barrier, then we would also have found $\mathcal{C}_{\text{ap}}$ and $\mathcal{E}_{\text{ac}}$ and, as a result, we solve the game.

A first result in the direction to construct $\mathcal{B}_{\text{ar}}$ requires this definition

**Definition 4.11.** Let the Isaacs’ condition be satisfied. We say that a regular surface $A$ in $\mathcal{G}_0$, with

$$A = \{ x \in \mathcal{G}_0 \subset \mathbb{R}^n : a(x) = 0 \},$$

where $a : \mathcal{G}_0 \to \mathbb{R}$ is a function in $C^1$ such that $a(x) \in \mathbb{R}^n$ is the normal in the point $x$ to $A$ (clearly $a(x) \parallel \nabla a(x)$). We say that $A$ is a semipermeable surface if

$$\min_{u_1 \in U_1} \max_{u_2 \in U_2} a(x) \cdot g(x, u_1, u_2) = \max_{u_2 \in U_2} \min_{u_1 \in U_1} a(x) \cdot g(x, u_1, u_2) = 0.$$  

(4.101)

The property of the barrier is the following:

**Proposition 4.2.** If the Isaacs’ condition is satisfied, then the barrier is a semipermeable surface, i.e. for every $x \in \mathcal{B}_{\text{ar}}$ we have

$$\min_{u_1 \in U_1} \max_{u_2 \in U_2} p(x) \cdot g(x, u_1, u_2) = \max_{u_2 \in U_2} \min_{u_1 \in U_1} p(x) \cdot g(x, u_1, u_2) = 0.$$  

(4.101)
4.3. PURSUIT-EVASION GAME OF KIND

Proof. Let \( \alpha \) be the value of the previous \( \max - \min \) that is equal to the \( \min - \max \): we have to prove that \( \alpha = 0 \). Let us consider \( x_0 \in B_{ar} \) and let us suppose that at time \( t_0 \geq 0 \) the trajectory \( \tilde{x} = \tilde{x}(t) \), associated to the controls \((\tilde{u}_1, \tilde{u}_2)\), arrives in the point \( x_0 \in B_{ar} \).

Let us assume that \( \alpha < 0 \), i.e.

\[
\max_{u_2 \in U_2} \min_{u_1 \in U_1} p(x_0) \cdot g(x_0, u_1, u_2) = \alpha : \\
\]

this implies that for every point \( u_2 \in U_2 \) there exists a point \( u_1^{u_2} \in U_1 \) such that

\[
p(x_0) \cdot g(x_0, u_1^{u_2}, u_2) \leq \alpha. \tag{4.102}
\]

Now, for every point \( x \in C_{ap} \), let us denote by \( \hat{u}_1^x \) the strategy of \( P \) such that for every acts of \( E \) the trajectory can be steered from \( x \) to the target set (with exit time \( T_x \)).

\[
\]

A trajectory \( \tilde{x} \) arrives at time \( t_0 \) in the point \( x_0 \in B_{ar} \). If for every point \( u_2 \in U_2 \) there exists a point \( u_1^{u_2} \in U_1 \) such that \( \text{[4.102]} \) holds, then for every choice of the second player (E) the first player (P) have a control to move the trajectory from \( B_{ar} \) into \( C_{ap} \) following (locally) the direction \( \dot{x}(t_0) = g(x_0(t_0), u_1^{u_2}, u_2) \).

Let us pass to show how it is possible to construct the barrier: such construction is “formal”, i.e. we are not interested to give the precise assumptions that the following arguments require.

If we consider \( \varepsilon > 0 \) small. For every strategy \( u_2 \) of the second Player (E) in the time \([t_0, t_0 + \varepsilon]\), let us consider the strategy for the first Player (P)

\[
\]

This implies that \( x_0 \in C_{ap} \), which contradicts the initial assumption. Hence \( \alpha \) cannot be negative. A similar proof shows that \( \alpha \) cannot be positive.

\[
\]

The fact that \( B_{ar} \) gives the property that without P’s cooperation, E cannot make the state cross \( B_{ar} \) passing from a region where \( V = -1 \) to a region where \( V = 1 \); and vice versa, without E’s cooperation, P cannot make the state cross \( B_{ar} \) passing from a region where \( V = +1 \) to a region where \( V = -1 \). However we have to remark that the semipermeability condition in \( \text{[4.101]} \) does not exclude a “tangential” penetration.

Let us pass to show how it is possible to construct the barrier: such construction is “formal”, i.e. we are not interested to give the precise assumptions that the following arguments require.

For every \( x \in B_{ar} \), let us denote by \( \nu_1^x(x) \in U_1 \) and \( \nu_2^x(x) \in U_2 \) the points which realize the min and the max in \( \text{[4.101]} \), i.e.

\[
p(x) \cdot g(x, \nu_1^x(x), \nu_2^x(x)) = 0. \tag{4.103}
\]

Set \( p(x) = (p_1(x), \ldots, p_n(x)) \), \( u_1 = (u_{1,1}, \ldots, u_{1,k_1}) \) and \( u_2 = (u_{2,1}, \ldots, u_{2,k_2}) \). If we consider the derivative w.r.t. \( x_j \) of the previous equality, we obtain

\[
0 = \sum_{i=1}^n \frac{\partial p_i}{\partial x_j}(x)g_i(x, \nu_1^x(x), \nu_2^x(x)) + \sum_{i=1}^n p_i(x) \frac{\partial g_i}{\partial x_j}(x, \nu_1^x(x), \nu_2^x(x)) + \\
+ \sum_{i=1}^n \left[ p_i(x) \sum_{k=1}^{k_1} \frac{\partial g_i}{\partial u_{1,k}}(x, \nu_1^x(x), \nu_2^x(x)) \frac{\partial \nu_1^x}{\partial x_j}(x) \right] + \\
+ \sum_{i=1}^n \left[ p_i(x) \sum_{k=1}^{k_2} \frac{\partial g_i}{\partial u_{2,k}}(x, \nu_1^x(x), \nu_2^x(x)) \frac{\partial \nu_2^x}{\partial x_j}(x) \right] \tag{4.104}
\]
Since $B_{ar}$ is a $C^2$ surface, by Schwarz we have
\[ \frac{\partial^2 b}{\partial x_i \partial x_j}(x) = \frac{\partial^2 b}{\partial x_j \partial x_i}(x) = 0. \] (4.105)

Let us notice that the third addend in (4.104) is
\[ \sum_{i=1}^n \left[ \frac{\partial g_i}{\partial u_{1,k}}(x, \nu_1^*(x), \nu_2^*(x)) \right] \frac{\partial \nu_j^*}{\partial x_j}(x) = 0 \]
\[ = \sum_{i=1}^{k_1} \frac{\partial}{\partial u_{1,k}} \left( (p(x) \cdot g(x, \nu_1^*(x), \nu_2^*(x))) \right) \frac{\partial \nu_j^*}{\partial x_j}(x), \]
where in particular, since $\nu_j^*(x)$ realizes the min in (4.101),
\[ \frac{\partial}{\partial u_{1,k}} \left( p(x) \cdot g(x, \nu_1^*(x), \nu_2^*(x)) \right) = 0, \quad \forall k = 1, \ldots, k_1. \]

Hence the third addend in (4.104) is zero; a similar argument proves that the fourth argument in (4.104) is zero. Hence equation (4.104) becomes, using (4.105),
\[ \sum_{i=1}^n \frac{\partial p_i}{\partial x_i}(x)g_i(x, \nu_1^*(x), \nu_2^*(x)) + \sum_{i=1}^n p_i(x) \frac{\partial g_i}{\partial x_j}(x, \nu_1^*(x), \nu_2^*(x)) = 0. \] (4.106)

Let us move $x$ along the barrier $B_{ar}$, i.e. $x = x(t) \in B_{ar}$; let us note that there are several parametrizations for such curve: hence let us setting $x = x(t)$ such that
\[ \dot{x}(t) = g(x(t), \nu_1^*(x(t)), \nu_2^*(x(t))). \]

Relation (4.106) becomes
\[ 0 = \sum_{i=1}^n \frac{\partial p_i}{\partial x_i}(x(t))g_i(x(t), \nu_1^*(x(t)), \nu_2^*(x(t))) + \sum_{i=1}^n p_i(x(t)) \frac{\partial g_i}{\partial x_j}(x(t), \nu_1^*(x(t)), \nu_2^*(x(t))) \]
\[ = \dot{p}_j(x(t)) + \frac{\partial H}{\partial x_j}(x(t), \nu_1^*(x(t)), \nu_2^*(x(t)), p(x(t))) \]
since for our game the Hamiltonian is $H(x, u_1, u_2, \lambda) = \lambda \cdot g(x, u_1, u_2)$.

Now let us consider $x_0 \in BUP$: the assumption that $B_{ar}$ is natural, gives that the curve $x = x(t)$ “starts” in $x_0$, i.e. $x(t_0) = x_0$. Recalling that $BUP = UP \cap B_{ar}$, we have that $x_0 \in B_{ar}$ gives, see (4.104),
\[ \min_{u_1 \in U_1} \max_{u_2 \in U_2} \min_{u_1 \in U_1} \max_{u_2 \in U_2} p(x_0) \cdot g(x_0, u_1, u_2) = \max_{u_2 \in U_2} \min_{u_1 \in U_1} p(x_0) \cdot g(x_0, u_1, u_2) = 0, \]
while $x_0 \in UP$ gives, by definition,
\[ \min_{u_1 \in U_1} \max_{u_2 \in U_2} n(x_0) \cdot g(x_0, u_1, u_2) = \max_{u_2 \in U_2} \min_{u_1 \in U_1} n(x_0) \cdot g(x_0, u_1, u_2) \leq 0. \]

If the previous inequality is strictly, $x_0$ is a state of termination; this contradicts $x_0 \in B_{ar}$. The regularity of $\partial T_0$ and $B_{ar}$ gives the condition $p(x_0) = n(x_0)$.

The previous arguments shows that in order to construct the barrier $x = x(t)$ we have to solve the system
\[ \begin{cases} \dot{p}(x) = -\nabla x H(x, \nu_1^*(x), \nu_2^*(x), p(x)) \\ \dot{x} = g(x, \nu_1^*(x), \nu_2^*(x)) \\ p(x) \cdot g(x, \nu_1^*(x), \nu_2^*(x)) = 0 \\ p(x(t_0)) = n(x(t_0)) \end{cases} \] (4.107)
where $\nu_1^*(x) \in U_1$ and $\nu_2^*(x) \in U_2$ realize the min and the max in (4.101), $p(x) \in \mathbb{R}^n$ is the outward of $C_{ap}$ in the point $x$. 

4.3.1 Interception of a straight flying evader

When can an interceptor be successful against a faster attacking craft which travels a fixed straight course? This model is in the book of Isaacs (see section 8.6 in [10]).

Here P moves in the plane with a motion and unit speed, while E is bound to a line moves with speed \( w > 0 \) fixed, and merely can select for his strategy one of the two possible directions of travel. Capture occurs when \( |PE| \leq l \), where \( l > 0 \) fixed. In view of P’s unquestioned ability to capture when \( w < 1 \), this case is trivial (please, solve it!). Our interest is in the conditions which make possible the success of a slower pursuer with \( w > 1 \).

Let us pass to the details. The Pursuer \( P \) is free to move itself in the half-plane \( y \geq 0 \): the velocity is \( \vec{v}(t) \) with modulo \( v = 1 \), the angle of the velocity w.r.t. the \( y \)-axis is \( \psi \). The Evader \( E \), constrained on the \( x \)-axis, can only controls the direction \( \varphi \in \{ \pm 1 \} \) of the velocity is \( \vec{w}(t) \) of modulo \( w > 0 \) fixed.

The dynamics is

\[
\begin{align*}
\dot{x} &= \omega \varphi - \sin \psi \\
\dot{y} &= -\cos \psi
\end{align*}
\]

and the projection of the target set in the state is

\[
T_0 = \{(x, y) \in G_0 : y \geq 0, \quad \sqrt{x^2 + y^2} \leq l\}.
\]

It is easy to see that for every \( (x_0, y_0) \in \mathbb{R} \times \mathbb{R}^+ \) there exist a strategies \( (\psi, \varphi) \) such that the associated trajectory reaches into the interior of the target set: hence the game set is \( G = [0, \infty) \times G_0 \) such that

\[
G_0 = \{(x, y) \in \mathbb{R}^2 : y \geq 0\}.
\]

The game hence is

\[
\begin{cases}
\text{Pursuer: } \min_{\psi} J(\psi, \varphi), & \text{Evader: } \max_{\varphi \in \{-1, +1\}} J(\psi, \varphi) \\
J(\psi, \varphi) = & \begin{cases} -1 & \text{if } \exists t \geq 0 \text{ s.t. } \|(x(t), y(t))\|_2 < l \\
+1 & \text{otherwise} \end{cases} \\
\dot{x} &= \omega \varphi - \sin \psi \\
\dot{y} &= -\cos \psi \\
(x(0), y(0)) &= (x_0, y_0), \quad y_0 \geq 0
\end{cases}
\]

The Hamiltonian is \( H(x, y, \psi, \varphi, \lambda_1, \lambda_2) = \lambda_1 (\omega \varphi - \sin \psi) - \lambda_2 \cos \psi \) and it is easy to verify that the Isaacs’ condition is satisfied.

The boundary of \( T_0 \) is smooth and if we consider the point \( x = (l \sin \alpha, l \cos \alpha) \in \partial T_0 \), with \( \alpha \in \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right] \), the outward normal of \( T_0 \) in \( x \) is \( n(x) = (\sin \alpha, \cos \alpha) \). Let us looking for the usable part \( UP \), i.e.

\[
UP = \{ x = (l \sin \alpha, l \cos \alpha) \in \partial T_0 : \min_{\psi} \max_{\varphi \in \{-1, +1\}} n(x) \cdot g(x, \psi, \varphi) \leq 0 \};
\]
hence we have to find \( \alpha \in \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right] \) such that, since \( w \) is positive,

\[
\min_{\psi}(-\sin \alpha \sin \psi - \cos \alpha \cos \psi) + w \max_{\varphi \in \{-1,+1\}} \varphi \sin \alpha \leq 0;
\]

this is equivalent to \(-1 + w|\sin \alpha| \leq 0\). Hence

\[
\mathcal{U} \mathcal{P} = \left\{ \mathbf{x} = (l \sin \alpha, l \cos \alpha) \in \partial T_0 : \ |\sin \alpha| \leq \frac{1}{w} \right\}.
\]

The boundary of the usable part is \( \mathcal{B} \mathcal{U} \mathcal{P} = \{ \mathbf{x} = (l \sin \alpha^*, l \cos \alpha^*) : \ |\sin \alpha^*| = \frac{1}{w} \} \).

Let us construct the barrier \( \mathcal{B}_{ar} \), i.e. the curve \( \mathbf{x} = \mathbf{x}(t) = (x(t), y(t)) \) which is solution of the system (4.107), i.e.

\[
\begin{aligned}
\dot{p}_1(x, y) &= -\frac{\partial H}{\partial x}(x, y, \psi^*(x, y), \varphi^*(x, y), p_1(x, y), p_2(x, y)) = 0 \\
\dot{p}_2(x, y) &= -\frac{\partial H}{\partial y}(x, y, \psi^*(x, y), \varphi^*(x, y), p_1(x, y), p_2(x, y)) = 0 \\
\dot{x} &= \omega \varphi^*(x, y) - \sin \psi^*(x, y) \\
\dot{y} &= -\cos \psi^*(x, y) \\
p_1(x, y)(\omega \varphi^*(x, y) - \sin \psi^*(x, y)) - p_2(x, y) \cos \psi^*(x, y) &= 0 \\
p(x(0), y(0)) &= \mathbf{n}(x(0), y(0))
\end{aligned}
\]

(4.108)

recalling that \( p(x, y) = (p_1(x, y), p_2(x, y)) \) is the outward normal of \( \mathcal{C}_{ap} \) in \( (x, y) \in \mathcal{B}_{ar} \), \((x(0), y(0)) \in \mathcal{B} \mathcal{U} \mathcal{P} \) and denoting by \( (\psi^*(x, y), \varphi^*(x, y)) \) who realizes the min – max as follows:

\[
\begin{aligned}
\min_{\psi} \max_{\varphi \in \{-1,+1\}} p(x, y) \cdot g(x, y, \psi, \varphi) &= \min_{\psi} (-p_1(x, y) \sin \psi - p_2(x, y) \cos \psi) + \omega \max_{\varphi \in \{-1,+1\}} p_1(x, y) \varphi,
\end{aligned}
\]

i.e.

\[
(\cos \psi^*(x, y), \sin \psi^*(x, y)) = \frac{1}{\|p(x, y)\|} (p_2(x, y), p_1(x, y)), \quad \varphi^*(x, y) = \text{sgn}(p_1(x, y)).
\]

(4.109)

Let us consider \( \mathbf{x}_0^+ = l(\sin \alpha^+, \cos \alpha^+) \in \mathcal{B} \mathcal{U} \mathcal{P} \), with \( \sin \alpha^+ = \frac{1}{w} \). The first two equations of the previous system give that \( p(x, y) \) is a constant; hence the barrier is a part of a line. Since \( \mathcal{B}_{ar} \) starts from the point \( \mathbf{x}_0^+ \) and it is tangent to \( \partial T_0 \) in such point (see the last condition in the previous system), we have that

\[
(x(t), y(t)) = tk(-\cos \alpha^+, \sin \alpha^+) + l(\sin \alpha^+, \cos \alpha^+);
\]

(4.110)

for some non zero constant \( k \). Now, by noticing that \( \mathcal{B}_{ar} \) divides the escape states \( \mathcal{E}_{sc} \) to the capture states \( \mathcal{C}_{ap} \) and that \( \mathcal{U} \mathcal{P} \setminus \mathcal{B} \mathcal{U} \mathcal{P} \) is inside \( \mathcal{C}_{ap} \), in (4.110) we have only to consider \( t \geq 0 \) and \( k > 0 \).

The outward normal of \( \mathcal{C}_{ap} \) along \( \mathcal{B}_{ar} \) in the point \((x(t), y(t))\) in (4.110) is

\[
(p_1(x(t), y(t)), p_2(x(t), y(t))) = (\sin \alpha^+, \cos \alpha^+) ;
\]

(4.111)

hence in (4.109) we obtain

\[
\psi^*(x, y) = \alpha^+, \quad \varphi^*(x, y) = 1.
\]

(4.112)

Let us verify that the third, the fourth and the fifth equations in (4.108) are satisfied: using (4.110) – (4.111) we obtain that the free mentioned relations

\[
-k \cos \alpha^+ = \omega 1 - \sin \alpha^+ \\
k \sin \alpha^+ = -\cos \alpha^+ \\
\sin \alpha^+(\omega 1 - \sin \alpha^+) - \cos \alpha^+ \cos \alpha^+ = 0
\]

are true, choosing \( k = -\cotan \alpha^+ \).

A similar argument holds for \( \mathbf{x}_0^- = l(\sin \alpha^-, \cos \alpha^-) \in \mathcal{B} \mathcal{U} \mathcal{P} \), with \( \sin \alpha^- = -\frac{1}{w} \).
4.3. PURSUIT-EVASION GAME OF KIND
Appendix A

Optimal control tools

Let us consider the problem

\[ \begin{aligned}
J(u) &= \int_{t_0}^{t_1} f(t, x, u) \, dt + \psi(x(t_1)) \\
\dot{x} &= g(t, x, u) \\
x(t_0) &= \alpha \\
\max_{u \in C} J(u), \\
C &= \{ u : [t_0, t_1] \rightarrow U \subseteq \mathbb{R}^k, \ u \ \text{admissible} \} 
\end{aligned} \]  

(A.1)

where \( t_0 \) and \( t_1 \) are fixed.

A.1 Variational approach

We define the Hamiltonian function \( H : [t_0, t_1] \times \mathbb{R}^n \times \mathbb{R}^k \times \mathbb{R}^n \rightarrow \mathbb{R} \) for the problem (A.1) by

\[ H(t, x, u, \lambda) = f(t, x, u) + \lambda \cdot g(t, x, u). \]

The following result is fundamental:

**Theorem A.1** (Pontryagin). Let us consider the problem (A.1) with \( f \in C^1([t_0, t_1] \times \mathbb{R}^{n+k}) \) and \( g \in C^1([t_0, t_1] \times \mathbb{R}^{n+k}) \).

Let \( u^* \) be an optimal control and \( x^* \) be the associated trajectory.

Then there exists a continuous multiplier \( \lambda^* : [t_0, t_1] \rightarrow \mathbb{R}^n \) such that

i) (Pontryagin Maximum Principle) for all \( \tau \in [t_0, t_1] \) we have

\[ u^*(\tau) \in \arg \max_{v \in U} H(\tau, x^*(\tau), v, \lambda^*_0, \lambda^*(\tau)); \]

ii) (adjoint equation) in \([t_0, t_1]\) we have

\[ \dot{\lambda}^* = -\nabla_x H(t, x^*, u^*, \lambda^*); \]

iii) (transversality condition) \( \lambda^*(t_1) = \nabla_x \psi(x(t_1)); \)

A first sufficient condition is the following

**Theorem A.2** (Mangasarian). Let us consider the maximum problem (A.1) with \( f \in C^1 \) and \( g \in C^1 \).

Let the control set \( U \) be convex. Let \( u^* \) be a normal extremal control, \( x^* \) the associated trajectory and \( \lambda^* = (\lambda^*_1, \ldots, \lambda^*_n) \) the associated multiplier (as in theorem [A.1]).

Consider the Hamiltonian function \( H \) and let us suppose that

v) the function \( (x, u) \mapsto H(t, x, u, \lambda^*(t)) \) is, for every \( t \in [t_0, t_1] \), concave.
Then \( u^* \) is optimal.

Another and useful sufficient condition is due to Arrow.

**Theorem A.3** (Arrow). Let us consider the maximum problem \( \{A.1\} \) with \( f \in C^1 \) and \( g \in C^1 \). Let \( u^* \) be a normal extremal control, \( x^* \) be the associated trajectory and \( \lambda^* \) be the associated multiplier.

Let us suppose that exists the maximized Hamiltonian function \( H^0 : [t_0, t_1] \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R} \) by

\[
H^0(t, x, \lambda) = \max_{u \in U} H(t, x, u, \lambda),
\]

where \( H(t, x, u, \lambda) = f(t, x, u) + \lambda \cdot g(t, x, u) \) is the Hamiltonian. Let us suppose that, for every \( t \in [t_0, t_1] \times \mathbb{R}^n \), the function

\[
x \mapsto H^0(t, x, \lambda^*(t))
\]

is concave. Then \( u^* \) is optimal.

**A.1.1 Infinite horizon problems**

Let us consider the problem:

\[
\begin{align*}
\max_{u \in C} & \int_{t_0}^{\infty} f(t, x, u) \, dt \\
\dot{x} & = g(t, x, u) \\
x(t_0) & = \alpha \\
\lim_{t \to \infty} x(t) & = \beta_i, \quad \text{for } 1 \leq i \leq n' \\
\lim_{t \to \infty} x(t) & \text{ free, for } n' < i \leq n \\
C & = \{u : [t_0, \infty) \to U \subseteq \mathbb{R}^k, \ u \text{ admissible}\}
\end{align*}
\]

where \( \alpha \) and \( \beta = (\beta_1, \ldots, \beta_n) \) are fixed in \( \mathbb{R}^n \). We give a sufficient condition in the spirit of the theorem of Mangasarian:

**Theorem A.4.** Let us consider the infinite horizon maximum problem \( \{A.3\} \) with \( f \in C^1 \) and \( g \in C^1 \). Let the control set \( U \) be convex. Let \( u^* \) be a normal extremal control, \( x^* \) the associated trajectory and \( \lambda^* = (\lambda^*_1, \ldots, \lambda^*_n) \) the associated multiplier, i.e. the term \( (x^*, u^*, \lambda^*) \) satisfies the PMP and the adjoint equation.

Suppose that

\( v) \) the function \( (x, u) \mapsto H(t, x, u, \lambda^*) \) is, for every \( t \in [t_0, \infty) \), concave,

\( vi) \) for all admissible trajectory \( x \),

\[
\lim_{t \to \infty} \lambda^*(t) \cdot (x(t) - x^*(t)) \geq 0.
\]

Then \( u^* \) is optimal.

**Remark A.1.** Suppose that in the problem \( \{A.3\} \) we have only a condition of the type \( \lim_{t \to \infty} x_i(t) = \beta_i \).

Suppose that there exists a constant \( c \) such that

\[
|\lambda^*(t)| \leq c, \quad \forall t \geq \tau
\]

for some \( \tau \), then the transversality condition in \( \{A.4\} \) holds.

In many problems of economic interest, future values of income and of expenses are discounted: if \( r > 0 \) is the discount rate, we have the problem

\[
\begin{align*}
J(u) & = \int_{t_0}^{\infty} e^{-rt} f(t, x, u) \, dt \\
\dot{x} & = g(t, x, u) \\
x(t_0) & = \alpha \\
\max_{u \in C} J(u)
\end{align*}
\]

\( \{A.6\} \)
Let us define the current Hamiltonian $H^c$ as

$$H^c(t, x, u, \lambda_c) = f(t, x, u) + \lambda_c \cdot g(t, x, u),$$

where $\lambda_c$ is the current multiplier. Clearly we obtain

$$H^c = e^{rt}H,$$

$$\lambda^*_c = e^{rt}\lambda^*.$$ (A.7)

A necessary condition for the problem (A.6) is

**Remark A.2.**

$$u^* \in \arg \max_{v \in U} H^c(t, x^*, v, \lambda^*_c)$$

$$\dot{\lambda}^*_c = r\lambda^*_c - \nabla_x H^c(t, x^*, u^*, \lambda^*_c)$$

In order to use a necessary condition of optimality as in Theorem A.4, we note that (A.7) implies that the concavity of

$$(x, u) \mapsto H(t, x, u, \lambda^*(t)), \quad \forall t$$

is equivalent to the concavity

$$(x, u) \mapsto H^c(t, x, u, \lambda^*_c(t)), \quad \forall t$$

### A.2 Dynamic Programming

Let us consider the problem (A.1); we define the Hamiltonian of Dynamic Programming $H_{DP} : [t_0, t_1] \times \mathbb{R}^{2n} \to (-\infty, +\infty]$ defined by

$$H_{DP}(t, x, \lambda) = \max_{v \in U} \left( f(t, x, v) + \lambda \cdot g(t, x, v) \right)$$ (A.8)

We have the following necessary condition

**Theorem A.5.** Let us consider the problem (A.1) and let us suppose that for every $(\tau, \xi) \in [t_0, t_1] \times \mathbb{R}^n$ there exists the optimal control $u^*_{\tau, \xi}$ for the problem with initial data $x(\tau) = \xi$. Let $V$ be the value function for the problem (A.1) and let $V$ be differentiable. Then, for every $(t, x) \in [t_0, t_1] \times \mathbb{R}^n$, we have

$$\begin{cases} \frac{\partial V}{\partial t}(t, x) + H_{DP}(t, x, \nabla_x V(t, x)) = 0 & \text{for } (t, x) \in [t_0, t_1] \times \mathbb{R}^n \\ V(t_1, x) = \psi(x) & \text{for } x \in \mathbb{R}^n \end{cases}$$ (A.9)

We give a sufficient condition for a more general problem: let us consider the problem

$$\begin{cases} J(u) = \int_{t_0}^T f(t, x, u) \, dt + \psi(T, x(T)) \\ \dot{x} = g(t, x, u) \\ x(t_0) = \alpha \\ (T, x(T)) \in S \\ \max_{u \in C_{t_0, \alpha}} J(u), \end{cases}$$ (A.10)

with a control set $U \subset \mathbb{R}^k$, with the target set $S \subset (t_0, \infty) \times \mathbb{R}^n$. Let us consider the reachable set for the target set $S$ defined by

$$R(S) = \{(\tau, \xi) : C_{\tau, \xi} \neq \emptyset\},$$

i.e. as the set of the points $(\tau, \xi)$ from which it is possible to reach the terminal target set $S$ with some trajectory.
**Theorem A.6.** Let us consider the problem (A.10) with $S$ closed. Let $W : [t_0, t_1] \times \mathbb{R}^n \to \mathbb{R}$ be a $C^1$ solution of the BHJ equation
\[
\frac{\partial W}{\partial t}(t, x) + \max_{v \in U} \left( f(t, x, v) + \nabla_x W(t, x) \cdot g(t, x, v) \right) = 0,
\]
for every $(t, x)$ in the interior of the reachable set $R(S)$. Suppose that the final condition
\[
W(t, x) = \psi(t, x), \quad \forall (t, x) \in S
\]
holds. Let $(t_0, \alpha)$ be in the interior of $R(S)$ and let $u^* : [t_0, T^*] \to U$ be a control in $C_{t_0, \alpha}$ with corresponding trajectory $x^*$ such that
\[
\frac{\partial W}{\partial t}(t, x^*(t)) + f(t, x^*(t), u^*(t)) + \nabla_x W(t, x^*(t)) \cdot g(t, x^*(t), u^*(t)) = 0,
\]
for every $t \in [t_0, T^*]$. Then $u^*$ is the optimal control with exit time $T^*$.

• **Multiplier as shadow price**

**Theorem A.7.** Let $x_{t_0, \alpha}^*$ be the optimal trajectory, $\lambda_{t_0, \alpha}^*$ be the optimal multiplier and let $V$ be the value function for the problem (A.7) with initial data $x(t_0) = \alpha$. If $V$ is differentiable, then
\[
\nabla_x V(t, x_{t_0, \alpha}^*(t)) = \lambda_{t_0, \alpha}^*(t),
\]
for every $t \in [t_0, t_1]$. 
## Index

- $H^0$, 66
- $H_{DP}$, 32
- $V^+$, 30
- $V^-$, 30
- $G$, 33
- $G_0$, 30
- $H_{DP}$, 67
- $T$, 43
- $T_0$, 49
- $A_{FB}$, 3
- $A_{OL}$, 3
- $BUP$, 58
- $B_{ar}$, 58
- $UP$, 58
- $C_{ap}$, 57
- $\xi_{sc}$, 57

Affine Quadratic games, 11

control
  - admissible, 3
- current value function, 12

exit time, 33, 49

game set, 43, 49

Hamiltonian
  - lower of DP, 32
  - maximized, 66
  - of DP, 32, 67
  - of Dynamic Programming, 67
  - upper of DP, 32
  - variational approach, 65

Isaacs’ condition, 33

Isaacs’ equation, 33
  - lower, 33
  - upper, 33

Linear Quadratic problems
  - homogeneous, 11

minimax condition, 33

Nash equilibrium, 1

open-loop representation of the a feedback strategy, 37

set of best possible replies, 21

Stackelberg equilibrium, 1

state
  - of capture, 57
  - of escape, 57
  - of neutrality, 57
  - of no-termination, 57
  - of termination, 57

strategy
  - admissible, 3
  - feedback, 3
  - Markovian, 3
  - open-loop, 3
  - stationary feedback, 12

target set, 4, 33, 49

theorem
  - Arrow, 66
  - Mangasarian, 65
  - Pontryagin, 65

usable part, 58

value function, 32
  - lower, 30
  - upper, 30

viscosity
  - solution, 40
  - subsolution, 40
  - supersolution, 40
Bibliography


