Technical Information Manual

Revision n. 6 28 May 2012

MOD. N957

8K MULTICHANNEL ANALYZER

NPO: 00105/04:N957x.MUTx/06 CAEN will repair or replace any product within the guarantee period if the Guarantor declares that the product is defective due to workmanship or materials and has not been caused by mishandling, negligence on behalf of the User, accident or any abnormal conditions or operations.

CAEN declines all responsibility for damages or injuries caused by an improper use of the Modules due to negligence on behalf of the User. It is strongly recommended to read thoroughly the CAEN User's Manual before any kind of operation.

CE

CAEN reserves the right to change partially or entirely the contents of this Manual at any time and without giving any notice.

Disposal of the Product

The product must never be dumped in the Municipal Waste. Please check your local regulations for disposal of electronics products.

Revision date: 28/05/2012

Revision: 6

TABLE OF CONTENTS

1.	GE	NERAL DESCRIPTION	6
1	1.1	OVERVIEW	6
2.	TEC	CHNICAL SPECIFICATIONS	7
2	21	PACKAGING	7
2))	POWER REQUIREMENTS	7
2) <u>3</u>	FRONT AND BACK PANEL	
2	2.3	INPLIT/OUTPLIT CONNECTIONS	9
2	2.5	FRONT PANEL DISPLAYS	9
2	2.6	INTERNAL HARDWARE COMPONENTS	10
	2.6.	1 Switches	10
	2.6.2	2 Firmware jumpers	10
2	2.7	TECHNICAL SPECIFICATION TABLE	11
2	2.8	ANALOG TO DIGITAL CONVERSION	11
	2.8.	1 Analog to digital conversion timing	12
	2.8.2	2 Pile Up Rejection	14
2	2.9	DATA READOUT	15
2	2.10	SCALER AND TIMERS	16
	2.10	0.1 Scaler description	16
	2.10	0.2 Timers description	16
2	2.11	FIRMWARE UPGRADE	18
	2.11	1.1 N957Upgrade command parameters	18
3.	SOI	FTWARE INTERFACE	20
-	3.1	REGISTER MAP	20
3	3.2	STATUS REGISTER (0x00, r)	21
3	3.3	CONTROL REGISTER (0x01, R/W)	21
3	3.4	FIRMWARE REVISION REGISTER (0x02, r)	22
3	3.5	FIRMWARE DOWNLOAD REGISTER (0x03, R/W)	22
3	3.6	FLASH ENABLE REGISTER (0x04, R/W)	22
3	3.7	Pulser register (0x05, r/w)	22
3	3.8	DAC REGISTER (0x06, R/W)	22
3	3.9	BLOCK DIMENSION REGISTER (0x07, R/W)	22
3	3.10	POTENTIOMETER CONTROL REGISTER (0x08, R/W)	23

Revision date: 28/05/2012

Revision: 6

3.11	CAL	LIBRATION SET REGISTER (0x09, w)	23
3.12	CAL	IBRATION CLEAR REGISTER (0x0A, w)	23
3.13	SCR	ATCH REGISTER (0x0B, r/w)	23
3.14	BUF	FER OCCUPANCY REGISTER $(0x0C, r/w)$	23
3.15	SCA	ler Low register (0x0D, r)	23
3.16	SCA	LER HIGH REGISTER (0x0E, r)	23
3.17	Тімі	ER LOW REGISTER (0x0F, r/w)	24
3.18	Тімі	ER HIGH REGISTER (0x10, r)	24
3.19	LIVE	ETIME LOW REGISTER (0x11, r)	24
3.20	LIVE	ETIME HIGH REGISTER (0x12, r)	24
3.21	SOF	TWARE CLEAR REGISTER (0x13, w)	24
3.22	SOF	TWARE RESET REGISTER (0x14, w)	24
4. S	OFTW	ARE TOOLS	25
4.1	Corr		25
4.1	SOF	TWARE INSTALLATION: GETTING STARTED	25
4.	1.1	Software installation: Windows	25
	4.1.1.1	Software installation: Demo folder	26
	4.1.1.2	Software installation: Doc folder	26
	4.1.1.3	Software installation: LabView folder	26
	4.1.1.4	Software installation: Lib Folder	26
1	4.1.1.5	Software installation: Upgrade folder	26
4.	1.2	Driver installation	27
5. L	IBRAR	RY AND DEMO SOFTWARE OVERVIEW	29
5.1	N95	57Tool library	29
5.	1.1	N957Tool library: Overview	29
5.	1.2	N957Tool library: typical usage	30
5.2	DEM	IO SOFTWARE	30
5.	2.1	Demo software: N957Demo	30
	5.2.1.1	N957Demo: overview	30
	5.2.1.2	N957Demo: settings	30
	5.2.1.3	N957Demo: configuration file format	31
	5.2.1.4	N957Demo: output data format	32
	5.2.1.5	N957Demo: practical example	32

Revision date: 28/05/2012

Revision: 6

LIST OF FIGURES

Fig. 1.1: Mod. N957 Block Diagram	6
FIG. 3.1: MOD. N957 FRONT PANEL	8
FIG. 3.2: MOD. N957 PCB BOARDAND COMPONENT LOCATION	.10
FIG. 3.3: SIGNAL CONVERSION TIMING AUTO GATE MODE (NO PILEUP)	.13
FIG. 3.4: SIGNAL CONVERSION TIMING AUTO GATE MODE (TRAILING EDGE PILEUP)	.13
FIG. 3.5: SIGNAL CONVERSION TIMING EXTERNAL GATE MODE	.14
FIG. 3.6: PUR TIMING FOR EVENT REJECTION (AUTO GATE MODE)	.14
FIG. 3.7: MAX DATA RATE VS. DATA BLOCK SIZE SETTING	.15
Fig. 3.8: Livetime status (Control Register $<0>$ = 1 and Auto Gate mode)	.17
Fig. 3.9: Livetime status (Control Register $<0>$ = 1 and External Gate mode)	.17
FIG. 5.1: INSTALLATION FOLDER STRUCTURE	.26
FIG. 5.2: PROGRAM MENU DEMO	.27
FIG. 5.3: USB DRIVER INSTALLED.	.27
FIG. 6.1: SOFTWARE LAYERS	.29
Fig. 6.2: N957Demo prompt	.33
FIG. 6.3: N975Demo in acquisition mode	.33
FIG. 6.4: HISTOGRAM PLOT OF 60 CO SOURCE IN PROGRESS	.34
FIG. 6.5: ACQUISITION REPORT	.34

LIST OF TABLES

TABLE 2.1: POWER REQUIREMENTS	.7
TABLE 3.2: MOD. N957 TECHNICAL FEATURES	11

Revision date: 28/05/2012

Revision:

1. General description

1.1 Overview

The Mod. N957 is a 8k Multi-Channel (MCA) with USB port, housed in a 1-unit wide standard NIM module. The multichannel analyzer performs the essential function of collecting the data and producing output, in the form of converted value of input peaks.

The input pulses can be those produced by a standard spectroscopy amplifier. They can be Gaussian, semi-Gaussian or square waves, unipolar (positive) or bipolar, in a range from 0 to 10 V, with a rise time greater than 0.1 μ s.

The trigger can be made "on signal" (Auto Gate mode) or "external" (External Gate mode). In the first case a discriminator, with a settable threshold, enables the conversion. In the second case, an external gate is fed to the module, via front panel GATE In connector.

The input channel has one peak amplitude stretcher, the output of which is digitised by a 13 bit fast (0.8 μ s) ADC featuring a sliding scale technique, to improve the differential non-linearity. Converted waveforms are stored into a 64 KSamples buffer memory.

The unit hosts an USB2.0 port (also compatible with USB 1.1), which permits a simple control and data-acquisition via PC.

Software Libraries, available for both Windows and Linux platforms, are described in § 5.

Future firmware upgrade is possible via USB; only tools developed by CAEN must be used for the firmware upgrade.

Fig. 1.1: Mod. N957 Block Diagram

Revision date: 28/05/2012

Revision: 6

2. Technical specifications

2.1 Packaging

The Model N957 is housed in a single width NIM module.

2.2 Power requirements

+12 V	220 mA
-12 V	220 mA
+6 V	600 mA
-6 V	50 mA

Table 2.1: Power requirements

Revision date: 28/05/2012

Revision: 6

2.3 Front and back panel

Fig. 2.1: Mod. N957 Front panel

Revision date: R 28/05/2012 6

Revision:

2.4 Input/Output connections

IN:	Type: Input
	Function: Unipolar (positive) or bipolar in a range from 0 to +10 V, with a rise time greater than 0.1 μ s, high impedance. BNC connector (to be connected to Amplifier Analog output); negative inputs are neglected.
GATE:	Type: Input Function: Temporal window for peak detection (in External Gate mode); Signal must occur prior to and must extend for at least 0.2-µs after the peak; NIM/TTL (automatically recognised) signal, high impedance. BNC connector.
BUSY:	Type: Output Function: Provides NIM/TTL (switch selected, see § 2.6.1) standard logic level signal to indicate a conversion;. Rise Time \leq 3.5 ns. Fall Time \leq 3.5 ns. LEMO connector.
CONV:	Type: Input Function: Accepts NIM/TTL (switch selected, see § 2.6.1) signal; it is an external conversion inhibit (active high), actually it disables the on going conversions. Input impedance: 50 Ohm; LEMO connector.
PUR:	Type: Input Function: Pile-up rejection input; accepts NIM/TTL (switch selected, see § 2.6.1) signal; signal must occur before the ADC Conversion (see § 2.8.2). Input impedance: 50 Ohm; LEMO connector (to be connected to Amplifier INHIBIT Output ¹).
OUTP:	Type: Output Function: Provides NIM/TTL (switch selected, see § 2.6.1) standard logic level signal programmable via USB. (OUTP default signal: BUFFER_FULL \rightarrow data loss; it can be turned off by resetting the Full status flag, see § 3.3).
LINK:	B type USB connector; USB 2.0 compliant

2.5 Front panel displays

BUSY:	red LED; light up during the ADC conversion
PUR, OUTP:	green LEDs (1 per connector); light up as the relevant signal is active
CONV:	green LED; light up if CONVERSION ENABLE bit (see $\$ 3.3) is ON and CONV input signal is not active.
LINK ON:	green LED; lights up as USB port is powered
TX/RX:	yellow LED; signals activity on USB port

¹ Amplifier INHIBIT Output provides a logic pulse when the internal pile-up rejection logic detects a distortion of the input signal due to pile-up.

Revision date: 28/05/2012

Revision: 6

2.6 Internal hardware components

See Fig. 2.2 for their exact location on the PCB and their settings.

2.6.1 Switches

SW1

J6

Type: DIP switch.

Function: it allows the selection between NIM and TTL I/O signals (RIGHT: TTL; LEFT: NIM).

2.6.2 Firmware jumpers

Type: Jumper.

Function: it allows to select whether the "Standard" or the "Back up" firmware must be loaded at power on; (default position: STD).

Fig. 2.2: Mod. N957 PCB boardand component location

Revision date: 28/05/2012

Revision:

2.7 Technical specification table

No. of ADC channels	1
Input signals	Unipolar (positive) or bipolar, 300 mV ÷ 10 V range, rise time> 0.1 μs
Resolution	13 bit (8192 channels - 8064 valid if sliding scale enabled see 2.8)
ADC Conversion time	0.8 µs
Dead Time	4.8 μs
LSB	1.22 mV
Gate	Signal must occur prior to and must extend for at least 0.2-µs after the peak (in External Gate mode);
Maximum transfer rate	30 Mbyte/s (USB2.0); 75 Kbytes/s (USB1.1)
Differential Non-Linearity	< 1% from 5% to 95% of input FSR (500 mV ÷ 9.5 V)
Integral Non-Linearity	< 0.065% from 5% to 95% of input FSR (500 mV ÷ 9.5 V)
Gain Instability:	<+150 ppm/°C
USB port	Compatible with USB 1.1 and USB 2.0 30Mbyte/s (USB 2.0 Bulk Transaction Protocol) 3m maximum cable length (longer distance can be achieved with commercial off-the-shelf products)
I/O signals	NIM/TTL; selected via internal switch SW1 on PCB (see Fig. 2.2)
Discriminator Threshold	Software programmable, 0 mV ÷ 500 mV range, 100 steps

Table 2.2: Mod. N957 Technical Features

2.8 Analog to digital conversion

The input stage of the module is basically a linear stretcher which detects the input peak value, while the gate is active, and keeps such value until the end of conversion.

Conversion can be triggered automatically (Auto Gate mode) or externally (External Gate mode), depending on Control register setting (see § **3.3**). In the first case a discriminator, with a threshold settable via N957_SetLLD function, enables the conversion, which is active as long as the input signal is above such threshold. In the second case, an external gate is fed to the module, via front panel Gate In connector.

The output of the peak section is converted by a 13 bit Fast ADC. The ADC section supports the sliding scale technique to reduce the differential non-linearity consists in adding a known value to the analog level to be converted, thus spanning different ADC conversion regions with the same analog value. The known level is then digitally subtracted after the conversion and the final value is sent to the threshold comparator.

If the sliding scale is enabled, it reduces slightly the dynamic range of the ADC: the 13-bit digital output is valid from 0 to 8063, while the values from 8064 to 8191 are not correct.

Revision date: Re 28/05/2012 6

Revision:

2.8.1 Analog to digital conversion timing

The signal conversion timing is shown in the following figures (Fig. 2.3, Fig. 2.4, Fig. 2.5); the diagram includes five different logic states:

- Idle
- Track (acquiring data phase)
- **Settling** (Settling time before ADC conversion)
- **Digitisation** (ADC Conversion)
- **Clear** (fast capacitor discharge in the peak section)

Idle state:

- <u>Auto Gate mode:</u> the input signal after threshold starts the Track (acquiring data) phase
- <u>External Gate mode:</u> the occurrence of a GATE pulse starts the Track (acquiring data) phase

Track (acquiring data) state

- <u>Auto Gate mode:</u> in the Track state the PEAK output increases according to the input signal. When the first peak is detected starts the Settling phase (where the peak value is held by means of a capacitor)
- <u>External Gate mode</u>: in the Track state the PEAK output increases according to the input signal until the highest peak within the GATE ON is reached. When the GATE signal become inactive starts the Settling phase (where the peak value is held by means of a capacitor)

Settling (Settling time before ADC conversion)

The peak value is held by means of a capacitor until the end of the digital conversion (digitisation) The Settling state takes about 2 μ s (settling time)

Digitisation state

During this phase the output of the PEAK section is converted by a 13 bit Fast ADC (the phase takes 0.8 μsec)

Clear state

After the digital conversion, the clear phase takes place by a fast capacitor discharge (about $2 \ \mu s$) which makes the conversion logic idle again.

Revision date:

28/05/2012

Revision:

6

Fig. 2.3: Signal conversion timing Auto Gate mode (No Pileup)

Fig. 2.4: Signal conversion timing Auto Gate mode (Trailing Edge Pileup)

Revision date: Revision: 28/05/2012 6

Fig. 2.5: Signal conversion timing External Gate mode

2.8.2 Pile Up Rejection

The PUR input signal prevents the ADC to store piled up events. It accepts NIM/TTL (switch selected, see § 2.6.1) signal. To reject an event, the PUR signal must occur before the conversion logic state Digitisation (before start of BUSY pulse) and must overlap the BUSY output signal (see Fig. 2.6).

Revision date: 28/05/2012

Revision:

2.9 Data readout

Converted peaks are stored into a 64 KSamples buffer memory, available for data readout via built-in USB2.0 interface (also compatible with USB1.1). Data rate depends, besides the connected PC capabilities, on the board setting via N957_ReadData function, which allows to read a data block of programmable size; the larger the block size, the faster the transfer rate.

The average transfer rate of the system can be evaluated in the following way:

- Enable software conversion via N957_SetSwConvFlag function
- Set the ADC sampling rate via *N957_SetADCRate* function
- Readout data via *N957_ReadData* function
- Acknowledge buffer occupancy via N957_GetBufferOccupancy function

During this procedure, the OUTP LED (in default setting) must not light up to signal that buffer memory is full.

N957_ReadData function always returns the number of readout data; converted waveforms are provided in the form of raw data, which have to be processed by the User's software tools.

Fig. 2.7: Max Data Rate Vs. Data Block Size setting

Revision date: 28/05/2012

Revision:

2.10 Scaler and Timers

The board houses one 32 bit scaler and two 32 bit timers (named Timer and Livetime).

2.10.1 Scaler description

Scaler counts the ADC conversion.

The Scaler is controlled by the bit 0 of the Control Register:

- Control Register <0> = 0: Scaler status: stop
- Control Register <0> = 1: Scaler status: count

The Scaler is cleared by the following operation:

- Dummy write access Software Clear register
- Dummy write access Software Reset register

Scaler read operation description:

- 1. Dummy write access Timer Low register: this operation freeze the value of Scaler L/H registers
- 2. Read the Scaler Low register: Scaler<15..0>
- 3. Read the Scaler High register: Scaler<31..16>

2.10.2 Timers description

Timer and Livetime input clock: 1 KHz

Timer is controlled by the bit 0 of the Control Register:

- Control Register <0> = 0: Timer status: stop
- Control Register <0> = 1: Timer status: count

Livetime is controlled by the bit 0 and 6 of the Control Register:

- Control Register <0> = 0: Livetime status: stop
- Control Register <0> = 1: Livetime status: enabled count
 - in Auto Gate mode (see Fig. 2.8):
 - Idle and Track status: count (if board is not full)
 - Settling, Digitisation and Clear status: stop
 - in External Gate mode (see Fig. 2.9):
 - Track and Settling status: count (if board is not full)
 - Idle, Digitisation and Clear status: stop

Revision date:

28/05/2012

Revision:

6

Fig. 2.8: Livetime status (Control Register <0> = 1 and Auto Gate mode)

Revision date: 28/05/2012

Revision:

Timer and Livetime are cleared by the following operation:

- Dummy write access Software Clear register
- Dummy write access Software Reset register

Timer and Livetime read operation description:

- 1. Dummy write access Timer Low register: this operation freeze the value of Timer and Livetime L/H registers
- 2. Read the Timer Low register: Timer<15..0>
- 3. Read the Timer High register: Timer<31..16>
- 4. Read the Livetime Low register: Livetime <15..0>
- 5. Read the Livetime High register: Livetime <31..16>

2.11 Firmware upgrade

The board can store two firmware versions, called STD and BKP respectively; at Power On, a microcontroller reads the Flash Memory and programs the module with the firmware version selected via the J6 jumper (see § 2.6.2), which can be placed either on the STD position, or in the BKP position. It is possible to upgrade the board firmware via USB, by writing the Flash: for this purpose, download the firmware package available at: http://www.caen.it/csite/CaenProd.jsp?parent=12&idmod=466.

The package includes the new firmware release file:

N957CTL_revXY.rbf

For upgrading the firmware, utilize the upgrade program situated in the folder described in paragraph in § 4.1.1.5; open a DOS Shell, then launch:

N957Upgrade -Ifilename (filename= upgrade input file).

N.B.: it is strongly suggested to upgrade ONLY one of the stored firmware revisions (generally the STD one): if both revision are simultaneously updated, and a failure occurs, it will not be possible to upload the firmware via VME again!

2.11.1 N957Upgrade command parameters

N957Upgrade can be configured via command line through a set of parameters, described in the following.

The parameters format is as follows:

-param_id[param_value]

where:

- *param_id*: a character which identifies the parameter.
- param_value: value of the parameter, if foreseen by the parameter itself.

Revision date: 28/05/2012

Revision: 6

Notes about the parameters usage:

- If one parameter is not assigned, default value is assumed.
- The presentation order of the parameter is arbitrary:
- Each not recognised parameter is ignored
- Each parameter must be separated from the others via one or more spaces.

List of available parameters with relevant default value and usage example: params_list:

• -ifilename | -Ifilename

filename= upgrade input file. If not specified 'N957.rbf' will be assumed.

example: N957Upgrade -i"N957_new.rbf"

N957Upgrade -lupgrade.dat

- -s | -S upgrade standard flash page. Default flash page value is 'standard'.
 example: N957Upgrade -s
- -b | -B upgrade backup flash page. Default flash page value is 'standard'.
 example: N957Upgrade -b
- -h | -H show the help screen

example: N957Upgrade -h

Revision date: 28/05/2012

Revision: 6

3. Software interface

The module can be operated via a set of software accessible registers, whose description is reported in the subsequent sections.

3.1 Register map

REGISTER NAME	ADDRESS	MODE	FUNCTION
STATUS	0x00	R	Status register
CONTROL	0x01	R/W	Control register
FWREV	0x02	R	FPGA firmware revision
FWDWLND	0x03	R/W	R/W configuration rom data
FLENA	0x04	R/W	Flash enable
PULSER	0x05	R/W	SW pulse duration
DAC	0x06	R/W	DAC value setting
BLDIM	0x07	R/W	Data transfer block size
POTCTRL	0x08	R/W	Digital pot control register
CAL_SET	0x09	W	Digital pot bit set register
CAL_CLEAR	0x0A	W	Digital pot bit clear register
SCRATCH	0x0B	R/W	Scratch
BUFFER OCCUPANCY	0x0C	R	Buffer occupancy
SCALER_L	0x0D	R	Scaler (16 LSB)
SCALER_H	0x0E	R	Scaler (16 MSB)
TIMER_L	0x0F	R/W	Timer (16 LSB)
TIMER_H	0x10	R	Timer (16 MSB)
LIVETIME_L	0x11	R	Live Timer (16 LSB)
LIVETIME_H	0x12	R	Live Timer (16 MSB)
SW CLEAR	0x13	W	Software Clear
SW RESET	0x134	w	Software Reset

Revision date: 28/05/2012

Revision: 6

3.2 Status register (0x00, r)

Bit	Name	Function
3	FLASH BUSY FLAG	0 = Flash ready 1 = Flash busy
2	MEMORY FULL	0 = Data Memory is not full 1 = Data Memory has been filled (can be reset via SWR_RESET or FLAG CLEAR bit of CONTROL REGISTER)
1	MEMORY EMPTY	0 = Data Memory is not Empty 1 = Data Memory is Empty
0	USB TYPE	0 = Full Speed (USB 1.1) 1 = High Speed (USB 2.0)

3.3 Control register (0x01, r/w)

Bit	Name	Function	Default Value	
15	OUTP LEMO LOGIC LEVEL	sets the OUTP logic level when OUTP MODE is "PROGRAMMABLE LEVEL"	0	
13,14	OUTP LEMO MODE CONFIG	selects the signal to present on OUTP front panel connector 00 = MEMORY FULL (active high); default 01 = PEAK DETECT (active high when stretcher detects one peak) 10 = PROGRAMMABLE LEVEL (Logic level set by OUTP LEMO LOGIC LEVEL bit) 11 = PULSE MODE (Programmable width active high pulse when PULSER register is written)		
12	SLIDING SCALE MODE SELECT	selects sliding scale type: 0 = Random mode (default) 1 = RAMP mode	0	
11	DAC TEST MODE ENABLE	 0 = DAC test mode disabled 1 = DAC test mode enabled. Sliding scale disabled and and the sliding scale DAC is set with the DAC register value (see 0) – only for test purpose 		
10	RESERVED			
9	ACQUISITION MODE	0 = External Gate mode 1 = Auto Gate mode (on discriminator threshold)		
8	PUR INPUT ENABLE	0 = PUR input sensing disabled 1:= PUR input sensing enabled		
7	SOFTWARE CONVERSION MODE ENABLE	0 = Software conversion mode disabled 1 = Software conversion mode enabled (the control FPGA auto generates conversion requests at a fixed periodic rate – only for test purpose)		
6	CONVERSION ENABLE	enables ADC data storage into memory buffer for readout 0 = ADC data storage disabled 1 = ADC data storage enabled		
5	FLAG CLEAR	0= Rearms Memory Full Flag 1= Forces Memory Full Flag Clear (see § 3.2)		
4	SLIDING SCALE ENABLE	0 = Sliding Scale disabled 1 = Sliding Scale enabled		
31	ADC SWR RATE	Selects ADC Conversion Rate when ADC Software Conversion is enabled 0 = 600 S/s 1 = 70 KS/s 2 = 140 KS/s 3 = 250 KS/s 4 = 420 KS/s 5 = 635 KS/s 6 = 850 KS/s 7 = 1 MS/s	7	
0	Timers/scaler enable FLAG	0 = Scaler/Timers disabled 1 = Scaler/Timers enabled	0	

Revision date: 28/05/2012

Revision:

3.4 Firmware revision register (0x02, r)

Bit	Name	Function
158	х	FPGA firmware revision (x.y)
70	у	FPGA firmware revision (x.y)

3.5 Firmware download register (0x03, r/w)

Bit	Name	Function
150	FLDATA	Allows to read/write words from/to the on-board flash memory. Must be accessed only through software library API calls.

Register default value = 0x0000.

3.6 Flash Enable register (0x04, r/w)

Bit	Name	Function
0	FLENA	Allows to enable the flash access for read/write operation. Should be accessed only through software library API calls

Register default value = 0.

3.7 Pulser register (0x05, r/w)

Bit	Name	Function
150	Pulse width	A write access to this register enables a PULSER signal on the board whose duration is equal to the value written. (1.6 μ s * register value)

Register default value = 0x0000.

3.8 DAC register (0x06, r/w)

Bit	Name	Function
150	DAC value	Sets DAC value when module is in DAC TEST MODE (see § 3.3)

Register default value = 0x0000.

3.9 Block Dimension register (0x07, r/w)

Bit	Name	Function
150	BLDIM	Dimension of the next data block to read; write to BLDIM the number of samples that the User want to convert/read (through the USB port)

Register default value = 0x0020. (64 byte packet)

Revision date: 28/05/2012

Revision: 6

3.10 Potentiometer Control register (0x08, r/w)

Bit	Name	Function
70	POTCTRL	On board digital trimmer control register. Must be accessed only through software library API calls.

Register default value = 0x03.

3.11 Calibration Set register (0x09, w)

Bit	Name	Function
150	CAL SET	bit X : if 1, sets corresponding bit in Potentiometer Control register. Must be accessed only through software library API calls.

3.12 Calibration Clear register (0x0A, w)

Bit	Name	Function
150	CAL CLEAR	bit X : if 1, clears corresponding bit in Potentiometer Control register. Must be accessed only through software library API calls.

3.13 Scratch register (0x0B, r/w)

Bit	Name	Function
150	Scratch	Scratch register for test read/write accesses

Register default value = 0xAAAA...

3.14 Buffer Occupancy register (0x0C, r/w)

Bit	Name	Function
150	BUF_OCC	Occupancy level of the samples buffer (0-65535)

3.15 Scaler Low register (0x0D, r)

Bit	Name	Function
150	SCALER_L	Counter (bits 150) of performed conversions; enabled via Timers/scaler enable FLAG (see § 3.3)

3.16 Scaler High register (0x0E, r)

Bit	Name	Function
150	SCALER_H	Counter (bits 3116) of performed convertions; enabled via Timers/scaler enable FLAG (see § 3.3)

3.17 Timer Low register (0x0F, r/w)

Bit	Name	Function
150	TIMER_L	Acquisition Real Time(bits 150); LSB=1ms. Enabled via Timers/scaler enable FLAG (see § 3.3). A write access to this register allows to freeze the values of Scaler L/H, Timer and Livetime L/H registers.

3.18 Timer High register (0x10, r)

Bit	Name	Function
150	TIMER _H	Acquisition Real Time (bits 3116); LSB=1ms; enabled via Timers/scaler enable FLAG (see § 3.3).

3.19 Livetime Low register (0x11, r)

Bit	Name	Function	
150	LIVETIME _L	Acquisition Live Time (bits 150) ; LSB=1ms; enabled via Timers/scaler enable FLAG (see § 3.3). Auto Gate mode: counts only if board is not full and Conversion logic state is Idle or Track. External Gate mode: counts only if board is not full and Conversion logic state is Track or Settling.	

3.20 Livetime High register (0x12, r)

Bit	Name	Function	
150	LIVETIME_H	Acquisition Live Time (bits 3116) ; LSB=1ms; enabled via Timers/scaler enable FLAG (see § 3.3). Auto Gate mode: counts only if board is not full and Conversion logic state is Idle or Track. External Gate mode: counts only if board is not full and Conversion logic state is Track or Settling.	

3.21 Software Clear register (0x13, w)

Bit	Name	Function
150	SW CLEAR	Any value written to this register generates a software clear which erases the buffer, timers and scalers

3.22 Software Reset register (0x14, w)

Bit	Name	Function	
150	SW RESET	Any value written to this register generates a software reset which erases the buffer, timers and scalers; moreover it resets the FLAG CLEAR and reset Control FPGA state, see § 3.3	

Revision date: 28/05/2012

Revision:

4. Software Tools

This section describes the CAEN Software package available at CAEN WEB site (**login required before to download**):

http://www.caen.it/csite/CaenProd.jsp?parent=12&idmod=466

The software package is provided for Windows and Linux (32 and 64-bit) and mainly includes:

- A library for board configuration and raw data acquisition.
- A demo program to demonstrate the usage of the library.
- A program for firmware update.

The package for Windows contains also a set of LabView8.2 VIs (in the "LabView" folder) to allow for the module's control.

WARNING

For Windows Users and software tool releases < 2.03 (only 32-bit compliant): Device driver for N957 board is automatically installed by the setup procedure. The host PC should automatically load N957 drivers when connecting USB cable to a powered board. Anyway, if driver files (n957.inf, n957.sys) are requested during installation, they can be found into the following directories: n957.inf :C:\Windows\inf n957.sys: C:\Windows\Systems32\drivers

For Windows Users and software tool releases ≥ 2.03 : Device driver for N957 board are separately provided and available on the website.

For Linux Users:

Device driver for N957 board are provided within the software package in the folder "Driver".

In case of any driver installation issue, please contact support.computing@caen.it

4.1 Software installation: Getting started

The following paragraphs will help through the module installation.

4.1.1 Software installation: Windows

- 1. Download the software package compliant to your operative system in the Firmware/Software table at the N957 web page.
- 2. Unzip the package on your computer; this will create a folder called "N957Tool" and several subfolders with files.

As installation is completed, the structure of the created folders will be as follows:

 Revision date:
 Revision:

 28/05/2012
 6

Fig. 4.1: Installation folder structure

4.1.1.1 Software installation: Demo folder

This folder provides demo application of the library: N957Demo

- src: provides the sources of the N957Demo application; it provides the compiled library file (.lib) of N957Tool library and the Visual C++ project file (.vcproj) of N957Demo.
- *include*: provides all the functions necessary to the operation and recompiling of the N957Demo application

4.1.1.2 Software installation: Doc folder

The Doc folder provides miscellaneous documentation on the N957Tool library

4.1.1.3 Software installation: LabView folder

The LabView folder contains a set of LabView8.2 VIs for the module's control

4.1.1.4 Software installation: Lib Folder

The Lib Folder contains the library N957lib.lib.

4.1.1.5 Software installation: Upgrade folder

This folder provides a console application for the firmware upgrade of the N957 module.

The structure of the applications menu appears as follows:

Revision date: 28/05/2012

Revision:

Fig. 4.2: Program menu demo

It is possible to read the release notes, the readme file, the documentation on the N957Tool library and the N957Demo application.

4.1.2 Driver installation

NOTE: It is recommended to install the driver before to connect the hardware.

- 1. Download the USB driver compliant to your operating system in the Firmware/Software table at the N957 web page.
- 2. Unzip the package on your computer; the "N957Drv-X.Y.Z-x86_KK" will be generated (X.Y.Z is the driver release, while KK is 32 or 64).
- 3. Connect the USB cable's A-type connector to an available USB port on your PC.
- 4. Connect the USB cable's B-type connector to the USB port on your N957
- 5. Turn ON the NIM crate.
- 6. Windows will try to find drivers giving back a failure message; use the Window procedure to manually install the drivers and point to the driver folder on your computer. When the driver is properly installed, you will see it in the USB devices list of the Device Manager.

7. Now the N957 is ready for operation.

Revision date: 28/05/2012

Revision: 6

Once installed, the USB driver is reloaded every time the USB cable connects the N957 board to the computer.

Revision date: 28/05/2012

Revision:

5. Library and Demo Software overview

5.1 N957Tool library

5.1.1 N957Tool library: Overview

N957Tool library is a C-language implemented software tool, which allows the Users to develop applications for operating the N957 board.

Fig. 5.1: Software layers

The library includes a set of functions grouped by purpose and hardware level

- Board handling APIs: allow the management of the board handler.
- *Miscellaneous APIs*: include miscellaneous functions (error decoding, library version etc.).
- *Level 0 APIs:* include lower level functions; allow to access directly the board registers, directly via their physical address.
- Level 1 APIs: include middle level functions; allow to access specified board functions, regardless the User's knowledge of the used registers addresses. Furthermore they provide memory flash read/write capabilities.
- *Level 2 APIs:* include higher level functions; allow to execute macro functions, such as data acquisition management, firmware upgrade, etc.

A set of files includes (*N957Lib.h, N957oslib.h, N957types.h*) all the APIs prototypes, declarations depending on the operating system, and data type required in order to develop applications based on the library.

Revision date: R 28/05/2012 6

Revision:

5.1.2 N957Tool library: typical usage

The typical APIs usage is as follows:

- Obtain a valid board handle (N957_Init).
- Use the library APIs: N957_####_... all the APIs will use as input parameter, the board handle obtained in the previous step
- Release the board handle (N957_End).

5.2 Demo software

Demo software are N957Tool based applications developed for demonstrative purposes.

5.2.1 Demo software: N957Demo

5.2.1.1 <u>N957Demo: overview</u>

N957Demo is a command line application which shows the N957 operation using the APIs displayed by N957Lib.

Demo configures the board according to the parameters provided by the configuration files and executes readout cycles from the board itself. The result of readout (acquired measures) may be issued (if enabled by configuration files) on file in text format and hexadecimal representation. The acquired values are displayed in the form of histogram by applying external GnuPlot (rev \geq 4.2).

Results of executed operations are displayed on video (with either ok or specific error message).

A special setting allows the board to produce samples for test and debug purposes.

5.2.1.2 N957Demo: settings

N957Demo can be configured via command line through a set of parameters, described in the following.

The parameters format is as follows:

-param_id[param_value]

where:

- *param_id*: a character which identifies the parameter.
- param_value: value of the parameter, if foreseen by the parameter itself.

Notes about the parameters usage:

- If one parameter is not assigned, default value is assumed.
- The presentation order of the parameter is arbitrary:
- Each not recognised parameter is ignored
- Each parameter must be separated from the others via one or more spaces.
- The case of the parameters (id and value) is ignored.
- Do not type spaces between the parameter id and its value (example: s100 OK, -s 100 WRONG)

Revision date: 28/05/2012

Revision:

- If the parameter value includes spaces (example: fiel names), these must be written between quotation marks without spaces after the parameter id (example: f" my config.conf")
- When the application is launched with parameter -h, it is displayed in the list of the available parameters.

List of available parameters with relevant default value and usage example: f" my config.conf")-ffilename: output filename. If not specified 'N957Demo.conf' will be assumed.

Example:

- N957Demo -f"N957Demo.conf "
- N957Demo -FN957Demo.conf

-h: shows the help screen. Example:

•

•

• N957Demo -h

5.2.1.3 <u>N957Demo: configuration file format</u>

The N957Demo configuration file allows setting the significant parameters. The file format is text type, structured in separate lines. For each line, initial spacing characters (spaces, tabs, etc.) are ignored.

param_id [param_value]

If the first character line is #, the line is considered Commentary and all content is ignored.

The valid lines (not comment) are structured as follows. where:

- param_id: a keyword that specifies the parameter.
 - param_value: the value of the parameter, if provided by the same parameter.

param_id and param_value must be separated by at least a tab Below is reported an example of configuration files, from which it is possible to obtain a list of defined parameters, their meaning and default value:

> # N957Demo Configuration File # Lines starting with # (first column) are comments # # The board number 0 BOARD NUM # # path to the executable file of gnuplot GNUPLOT PATH # # Save readout data into the Output File (0=don't save) LOG TO FILE 0 # # Readout data Output Filename (meaningful only for LOG TO FILE!= 0) LOG FILENAME "data.log" # # Maximum number of samples to acquire (-1 means no limit)

Revision date: 28/05/2012

Revision: 6

MAX_NUM_SAMPLES -1

Data Block dimension [1..65536] DATA_BLOCK_DIM 32768

Debug mode (0= debug disabled) DEBUG 0

Acquisition mode: (0= Ext Gate 1= Auto) ACQ_MODE 1

Gnu plot refresh rate (msec) GNU_PLOT_REFRESH 500

Gnu plot X scale factor GNU_PLOT_X_SCALE 0.3

5.2.1.4 <u>N957Demo: output data format</u>

This is a text format output file; on each row it provides data readout from the board in hexadecimal format. The file is generated only if the parameter configuration file LOG_TO_FILE is set to 1: the output filename is specified by the configuration file parameter LOG_FILENAME. Example:

07c8 07c9 07ca 07c9 07c9 07c9

5.2.1.5 <u>N957Demo: practical example</u>

In the Demo folder, the N957Demo.exe file is a simple practical example of controlling the N957 board. Here follows a step-by-step procedure (Windows) to use it for acquiring, plotting and saving data from an hardware set-up consisting in:

Nal detector + PMT + N914 + N968 + N957

where:

N914 is CAEN Analog Pulse Processor. N968 is CAEN Spectroscopy Amplifier.

- 1. Customize the N957Demo.conf file: e.g. enable data saving (LOG_TO_FILE 1); set the output filename (LOG_FILENAME "output.log").
- 2. Save the configuration file settings.

Revision date: 28/05/2012

Revision:

6

3. Double click on the N957Demo.exe file:

Fig. 5.2: N957Demo prompt

4. Type 's' on your keyboard to start the acquisition:

C:\Program Files\CAEN\N957Tool\Demo\N957Demo.exe	*	
	 - rev.02.02 -	- H
Reading Configuration File N957Demo.conf		
Hit 's' to start acquisition mode , any ot	her to quit	
Time (ms) : 0 Live Time (ms) : 0 N957 Start Acquisition mode 1 : Ok Acquisition running		
Hit 'r' to reset histogram, any other to g Hit 'p' to pause/resume, any other to quit Any other to quit	uit	
		*

Fig. 5.3: N975Demo in acquisition mode

Together with the acquisition, also the histogram plotting starts:

Revision date: R 28/05/2012 6

Revision:

Fig. 5.4: Histogram plot of ⁶⁰Co source in progress

Type 'r' key to reset the histogram and the 'p' key to pause/resume the acquisition.

5. Type 's' key to stop the acquisition session:

mo.exe	
0 -	*
rev.02.02 -	=
.conf	
any other to quit	
er to quit	
το ημπτ	
	-
	mo.exe 0 rev.02.02 - .conf any other to quit er to quit co quit

Fig. 5.5: Acquisition report

The acquisition report is displayed, with the number of the input signal samples (ADC Conversions Number) and the contents of the two board's 32-bit timers (Timer and Live Time).

6. Type any key to quit the program.

Raw data (i.e. the samples of the digitized input signal) are saved into the *output.log* file, according to the configuration file. The histogram data are saved into the *hist.dat* file.

Revision date: 28/05/2012

Revision: 6

Note that, in the src folder, the sources of the N957Demo application are provided as reference to those users who want to develop their own control software basing on this demo.