
(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 1

Dependence and Data Flow Models

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 2

Why Data Flow Models?

•  Many models emphasize control
•  Control flow graph, call graph, finite state machines

•  We also need to reason about data dependence
•  Where does this value of x come from?
•  What would be affected by changing this?
•  ...

•  Many program analyses and test design
techniques use data flow information
–  Often in combination with control flow

•  Example: “Taint” analysis to prevent SQL injection attacks
•  Example: Dataflow test criteria (Ch.13)

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 3

Learning objectives

•  Understand basics of data-flow models and the
related concepts (def-use pairs, dominators…)

•  Understand some analyses that can be
performed with the data-flow model of a
program
–  The data flow analyses to build models
–  Analyses that use the data flow models

•  Understand basic trade-offs in modeling data
flow
–  variations and limitations of data-flow models and

analyses, differing in precision and cost

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 4

Def-Use Pairs (1)

•  A def-use (du) pair associates a point in a program
where a value is produced with a point where it is used

•  Definition: where a variable gets a value
–  Variable declaration (often the special value “uninitialized”)
–  Variable initialization
–  Assignment
–  Values received by a parameter

•  Use: extraction of a value from a variable
–  Expressions
–  Conditional statements
–  Parameter passing
–  Returns

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 5

Def-Use Pairs

...
if (...) {
 x = ... ;
...
}
y = ... + x + ... ;

x = ...

if (...) {

...

y = ... + x + ...

...

...

Definition:
x gets a
value

Use: the value
of x is

extracted Def-Use
path

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 6

Def-Use Pairs (2)

/** Euclid's algorithm */
public class GCD
{
public int gcd(int x, int y) {

 int tmp; // A: def x, y, tmp
 while (y != 0) { // B: use y
 tmp = x % y; // C: def tmp; use x, y
 x = y; // D: def x; use y
 y = tmp; // E: def y; use tmp
 }
 return x; // F: use x

 }

Figure 6.2, page 79

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 7

 x = ... // A: def x
 q = ...
 x = y; // B: def x
 z = ...
 y = f(x); // C: use x

What are the def-use pairs
involving x in this program
fragment?

Question for class

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 8

Def-Use Pairs (3)

•  A definition-clear path is a path along the CFG
from a definition to a use of the same variable
without* another definition of the variable
between
–  If, instead, another definition is present on the path,

then the latter definition kills the former

•  A def-use pair is formed if and only if there is a
definition-clear path between the definition
and the use

*There is an over-simplification
here, which we will repair later.

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 9

Definition-Clear or Killing

 x = ... // A: def x
 q = ...
 x = y; // B: kill x, def x
 z = ...
 y = f(x); // C: use x

x = ...

...

...
Definition: x
gets a value

Use: the value
of x is

extracted

A

x = y

Definition: x gets
a new value, old

value is killed

...

y = f(x)

B

C

Path B..C is
definition-clear

Path A..C is
not definition-clear

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 10

(Direct) Data Dependence Graph
•  A direct data dependence graph is:

–  Nodes: as in the control flow graph (CFG)
–  Edges: def-use (du) pairs, labelled with the variable name

(Figure 6.3, page 80)

Dependence
edges show this
x value could be
the unchanged
parameter or

could be set at
line D

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 11

Control dependence (1)
•  Data dependence: Where did these values come from?
•  Control dependence: Which statement controls whether

this statement executes?
–  Nodes: as in the CFG
–  Edges: unlabelled, from entry/branching points to controlled

blocks

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 12

Dominators
•  Pre-dominators in a rooted, directed graph can be

used to make this intuitive notion of “controlling
decision” precise.

•  Node M dominates node N if every path from the root
to N passes through M.
–  A node will typically have many dominators, but except for the

root, there is a unique immediate dominator of node N which
is closest to N on any path from the root, and which is in turn
dominated by all the other dominators of N.

–  Because each node (except the root) has a unique immediate
dominator, the immediate dominator relation forms a tree.

•  Post-dominators: Calculated in the reverse of the
control flow graph, using a special “exit” node as the
root.

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 13

Dominators (example)

A

B

C

D

E

F

G

•  A pre-dominates all
nodes; G post-dominates
all nodes

•  F and G post-dominate E
•  G is the immediate post-

dominator of B
–  C does not post-dominate B

•  B is the immediate pre-
dominator of G
–  F does not pre-dominate G

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 14

Control dependence (2)

•  We can use post-dominators to give a more precise
definition of control dependence:
–  Consider again a node N that is reached on some but not all

execution paths.
–  There must be some node C with the following property:

•  C has at least two successors in the control flow graph (i.e., it
represents a control flow decision);

•  C is not post-dominated by N
•  there is a successor of C in the control flow graph that is post-

dominated by N.

–  When these conditions are true, we say node N is control-
dependent on node C.

•  Intuitively: C was the last decision that controlled whether N
executed

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 15

Control Dependence

A

B

C

D

E

F

G F is control-dependent on B,
the last point at which its

execution was not inevitable

Execution of F is
not inevitable at B

Execution of F is
inevitable at E

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 16

Data Flow Analysis

Computing data flow information

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 17

Calculating def-use pairs

•  Definition-use pairs can be defined in terms of paths in the
program control flow graph:
–  There is an association (d,u) between a definition of variable v at d

and a use of variable v at u iff
•  there is at least one control flow path from d to u
•  with no intervening definition of v.

–  vd reaches u (vd is a reaching definition at u).
–  If a control flow path passes through another definition e of the same

variable v, ve kills vd at that point.

•  Even if we consider only loop-free paths, the number of paths in a
graph can be exponentially larger than the number of nodes and
edges.

•  Practical algorithms therefore do not search every individual path.
Instead, they summarize the reaching definitions at a node over all
the paths reaching that node.

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 18

Exponential paths
(even without loops)

A B C D E F G V

2 paths from A to B

4 from A to C

8 from A to D

16 from A to E

...

128 paths from A to V

Tracing each path is
not efficient, and we
can do much better.

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 19

DF Algorithm

•  An efficient algorithm for computing reaching
definitions (and several other properties) is based on
the way reaching definitions at one node are related to
the reaching definitions at an adjacent node.

•  Suppose we are calculating the reaching definitions of
node n, and there is an edge (p,n) from an immediate
predecessor node p.
–  If the predecessor node p can assign a value to variable v, then

the definition vp reaches n. We say the definition vp is
generated at p.

–  If a definition vp of variable v reaches a predecessor node p,
and if v is not redefined at that node (in which case we say the
vp is killed at that point), then the definition is propagated on
from p to n.

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 20

Equations of node E (y = tmp)

Reach(E) = ReachOut(D)
ReachOut(E) = (Reach(E) \ {yA}) ∪ {yE}

public class GCD {
public int gcd(int x, int y) {

 int tmp; // A: def x, y, tmp
 while (y != 0) { // B: use y
 tmp = x % y; // C: def tmp; use x, y
 x = y; // D: def x; use y
 y = tmp; // E: def y; use tmp
 }
 return x; // F: use x

 }

Calculate reaching
definitions at E in
terms of its
immediate
predecessor D

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 21

Equations of node B (while (y != 0))

•  Reach(B) = ReachOut(A) ∪ ReachOut(E)
•  ReachOut(A) = gen(A) = {xA, yA, tmpA}
•  ReachOut(E) = (Reach(E) \ {yA}) ∪ {yE}

public class GCD {
public int gcd(int x, int y) {

 int tmp; // A: def x, y, tmp
 while (y != 0) { // B: use y
 tmp = x % y; // C: def tmp; use x, y
 x = y; // D: def x; use y
 y = tmp; // E: def y; use tmp
 }
 return x; // F: use x

 }

This line has two
predecessors:
Before the loop,
end of the loop

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 22

General equations for Reach analysis

Reach(n) = ∪ ReachOut(m)
 m∈pred(n)

ReachOut(n) = (Reach(n) \ kill (n)) ∪ gen(n)

gen(n) = { vn | v is defined or modified at n }

kill(n) = { vx | v is defined or modified at x, x≠n
 AND v is defined or modified at n }

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 23

Avail equations

Avail (n) = ∩ AvailOut(m)
 m∈pred(n)

AvailOut(n) = (Avail (n) \ kill (n)) ∪ gen(n)

gen(n) = { exp | exp is computed at n }
kill(n) = { exp | exp has variables assigned at n }

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 24

Live variable equations

Live(n) = ∪ LiveOut(m)

 m∈succ(n)

LiveOut(n) = (Live(n) \ kill (n)) ∪ gen(n)

gen(n) = { v | v is used at n }
kill(n) = { v | v is modified at n }

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 25

Classification of analyses

•  Forward/backward: a node’s set depends on that of its
predecessors/successors

•  Any-path/all-path: a node’s set contains a value iff it is
coming from any/all of its inputs

Any-path (∪) All-paths (∩)

Forward (pred) Reach Avail

Backward (succ) Live “inevitable”

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 26

Iterative Solution of Dataflow Equations

•  Initialize values (first estimate of answer)
–  For “any path” problems, first guess is “nothing” (empty set) at

each node
–  For “all paths” problems, first guess is “everything” (set of all

possible values = union of all “gen” sets)

•  Repeat until nothing changes
–  Pick some node and recalculate (new estimate)

This will converge on a “fixed point” solution where
every new calculation produces the same value as the
previous guess.

[G. KilDall, POPL’73]

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 27

Worklist Algorithm for Data Flow

See figures 6.6, 6.7 on pages 84, 86 of Pezzè & Young
One way to iterate to a fixed point solution.
General idea:
•  Initially all nodes are on the work list, and have default values

–  Default for “any-path” problem is the empty set, default for “all-
path” problem is the set of all possibilities (union of all gen sets)

•  While the work list is not empty
–  Pick any node n on work list; remove it from the list
–  Apply the data flow equations for that node to get new values
–  If the new value is changed (from the old value at that node), then

•  Add successors (for forward analysis) or predecessors (for backward
analysis) on the work list

•  Eventually the work list will be empty (because new computed
values = old values for each node) and the algorithm stops.

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 28

Cooking your own: From Execution to
Conservative Flow Analysis

•  We can use the same data flow algorithms to
approximate other dynamic properties
–  Gen set will be “facts that become true here”
–  Kill set will be “facts that are no longer true here”
–  Flow equations will describe propagation

•  Example: Taintedness (in web form processing)
–  “Taint”: a user-supplied value (e.g., from web

form) that has not been validated
–  Gen: we get this value from an untrusted source

here
–  Kill: we validated to make sure the value is proper

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 29

Cooking your own analysis (2)

•  Flow equations must be
monotonic
–  Initialize to the bottom

element of a lattice of
approximations

–  Each new value that
changes must move up the
lattice

•  Typically: Powerset
lattice
–  Bottom is empty set, top is

universe
–  Or empty at top for all-

paths analysis

Monotonic: y > x implies f(y) ≥ f(x)

(where f is application of the flow
equations on values from successor
or predecessor nodes, and “>” is
movement up the lattice)

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 30

Data flow analysis with arrays and pointers

•  Arrays and pointers introduce uncertainty:
Do different expressions access the same
storage?
–  a[i] same as a[k] when i = k
–  a[i] same as b[i] when a = b (aliasing)

•  The uncertainty is accomodated depending to
the kind of analysis
–  Any-path: gen sets should include all potential

aliases and kill set should include only what is
definitely modified

–  All-path: vice versa

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 31

Scope of Data Flow Analysis

•  Intraprocedural
–  Within a single method or procedure

•  as described so far

•  Interprocedural
–  Across several methods (and classes) or procedures

•  Cost/Precision trade-offs for interprocedural
analysis are critical, and difficult
–  context sensitivity
–  flow-sensitivity

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 32

Context Sensitivity

sub() sub()

bar() {

}

sub() {
foo() {

}

}

(call)

(return)

(call)

(return)

A context-sensitive (interprocedural) analysis
distinguishes sub() called from foo()
from sub() called from bar();
A context-insensitive (interprocedural) analysis
does not separate them, as if foo() could call sub()
and sub() could then return to bar()

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 33

Flow Sensitivity

•  Reach, Avail, etc. were flow-sensitive,
intraprocedural analyses
–  They considered ordering and control flow decisions
–  Within a single procedure or method, this is (fairly)

cheap — O(n3) for n CFG nodes

•  Many interprocedural flow analyses are flow-
insensitive
–  O(n3) would not be acceptable for all the statements

in a program!
•  Though O(n3) on each individual procedure might be ok

–  Often flow-insensitive analysis is good enough ...
consider type checking as an example

(c) 2007 Mauro Pezzè & Michal Young Ch 6, slide 34

Summary

•  Data flow models detect patterns on CFGs:
–  Nodes initiating the pattern
–  Nodes terminating it
–  Nodes that may interrupt it

•  Often, but not always, about flow of information
(dependence)

•  Pros:
–  Can be implemented by efficient iterative algorithms
–  Widely applicable (not just for classic “data flow” properties)

•  Limitations:
–  Unable to distinguish feasible from infeasible paths
–  Analyses spanning whole programs (e.g., alias analysis) must

trade off precision against computational cost

(c) 2007 Mauro Pezzè & Michal Young Ch 13, slide 35

Data flow testing

(c) 2007 Mauro Pezzè & Michal Young Ch 13, slide 36

Motivation

•  Middle ground in structural testing
–  Node and edge coverage don’t test interactions
–  Path-based criteria require impractical number of

test cases
•  And only a few paths uncover additional faults, anyway

–  Need to distinguish “important” paths

•  Intuition: Statements interact through data
flow
–  Value computed in one statement, used in another
–  Bad value computation revealed only when it is used

(c) 2007 Mauro Pezzè & Michal Young Ch 13, slide 37

Data flow concept

x =

if

x =

...

....

y = x + ...

4

1

6

•  Value of x at 6 could be
computed at 1 or at 4

•  Bad computation at 1 or
4 could be revealed only
if they are used at 6

•  (1,6) and (4,6) are
def-use (DU) pairs
–  defs at 1,4
–  use at 6

2

3

5

(c) 2007 Mauro Pezzè & Michal Young Ch 13, slide 38

Adequacy criteria

•  All DU pairs: Each DU pair is exercised by at
least one test case

•  All DU paths: Each simple (non looping) DU path
is exercised by at least one test case

•  All definitions: For each definition, there is at
least one test case which exercises a DU pair
containing it
–  (Every computed value is used somewhere)

Corresponding coverage fractions can also be
defined

(c) 2007 Mauro Pezzè & Michal Young Ch 13, slide 39

Difficult cases

•  x[i] = ... ; ... ; y = x[j]
–  DU pair (only) if i==j

•  p = &x ; ... ; *p = 99 ; ... ; q = x
–  *p is an alias of x

•  m.putFoo(...); ... ; y=n.getFoo(...);
–  Are m and n the same object?
–  Do m and n share a “foo” field?

•  Problem of aliases: Which references are
(always or sometimes) the same?

(c) 2007 Mauro Pezzè & Michal Young Ch 13, slide 40

Data flow coverage with complex structures

•  Arrays and pointers are critical for data flow analysis
–  Under-estimation of aliases may fail to include some DU pairs
–  Over-estimation, on the other hand, may introduce unfeasible

test obligations

•  For testing, it may be preferrable to accept under-
estimation of alias set rather than over-estimation or
expensive analysis
–  Controversial: In other applications (e.g., compilers), a

conservative over-estimation of aliases is usually required
–  Alias analysis may rely on external guidance or other global

analysis to calculate good estimates
–  Undisciplined use of dynamic storage, pointer arithmetic, etc.

may make the whole analysis infeasible

(c) 2007 Mauro Pezzè & Michal Young Ch 13, slide 41

Infeasibility

•  Suppose cond has not
changed between 1 and 5

•  Or the conditions could be
different, but the first
implies the second

•  Then (3,5) is not a
(feasible) DU pair

•  But it is difficult or
impossible to determine
which pairs are infeasible

•  Infeasible test
obligations are a problem

•  No test case can cover
them

if (cond)

x =

...

....

y = x + ...

3

1

2

4

if (cond)

.... 6

5

7

(c) 2007 Mauro Pezzè & Michal Young Ch 13, slide 42

Infeasibility

•  The path-oriented nature of data flow analysis
makes the infeasibility problem especially
relevant
–  Combinations of elements matter!
–  Impossible to (infallibly) distinguish feasible from

infeasible paths. More paths = more work to check
manually.

•  In practice, reasonable coverage is (often, not
always) achievable
–  Number of paths is exponential in worst case, but

often linear
–  All DU paths is more often impractical

