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Dependence and Data Flow Models 
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Why Data Flow Models? 

•  Many models emphasize control 
•  Control flow graph, call graph, finite state machines 

•  We also need to reason about data dependence 
•  Where does this value of x come from? 
•  What would be affected by changing this?  
•  ...  

•  Many program analyses and test design 
techniques use data flow information 
–  Often in combination with control flow 

•  Example:  “Taint” analysis to prevent SQL injection attacks 
•  Example:  Dataflow test criteria (Ch.13) 
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Learning objectives 

•  Understand basics of data-flow models and the 
related concepts (def-use pairs, dominators…) 

•  Understand some analyses that can be 
performed with the data-flow model of a 
program 
–  The data flow analyses to build models 
–  Analyses that use the data flow models 

•  Understand basic trade-offs in modeling data 
flow 
–  variations and limitations of data-flow models and 

analyses, differing in precision and cost 
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Def-Use Pairs (1) 

•  A def-use (du) pair associates a point in a program 
where a value is produced with a point where it is used 

•  Definition: where a variable gets a value 
–  Variable declaration  (often the special value “uninitialized”) 
–  Variable initialization 
–  Assignment 
–  Values received by a parameter  

•  Use: extraction of a value from a variable 
–  Expressions 
–  Conditional statements 
–  Parameter passing 
–  Returns 
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Def-Use Pairs 

... 
if (...) { 
     x = ... ;  
...  
} 
y = ... + x + ... ;  

x = ...   

if (...) { 

...  

y = ... + x + ... 

...  

...  

Definition: 
x gets a 
value 

Use: the value 
of x is 

extracted Def-Use 
path 
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Def-Use Pairs (2) 

/**  Euclid's algorithm */ 
public class GCD  
{  
public int gcd(int x, int y) { 

 int tmp;               // A: def x, y, tmp               
 while (y != 0) {     // B: use y 
     tmp = x % y;     // C: def tmp; use x, y 
     x = y;               // D: def x; use y 
     y = tmp;           // E: def y; use tmp 
 } 
 return x;              // F: use x 

    } 

Figure 6.2, page 79 
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     x = ...     // A: def x 
     q = ...   
     x = y;     //  B: def x 
     z = ...  
     y = f(x);  // C: use x 

What are the def-use pairs 
involving x in this program 
fragment?  

Question for class 
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Def-Use Pairs (3) 

•  A definition-clear path is a path along the CFG 
from a definition to a use of the same variable 
without*  another definition of the variable 
between 
–  If, instead, another definition is present on the path, 

then the latter definition kills the former 

•  A def-use pair is formed if and only if there is a 
definition-clear path between the definition 
and the use 

*There is an over-simplification 
here, which we will repair later. 
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Definition-Clear or Killing 

     x = ...     // A: def x 
     q = ...   
     x = y;     //  B: kill x, def x 
     z = ...  
     y = f(x);  // C: use x 

x = ...   

...  

...  
Definition: x 
gets a value 

Use: the value 
of x is 

extracted 

A 

x = y   

Definition: x gets 
a new value, old 

value is killed 

...  

y = f(x) 

B 

C 

Path B..C is  
definition-clear 

Path A..C is  
not definition-clear 
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(Direct) Data Dependence Graph 
•  A direct data dependence graph is: 

–  Nodes: as in the control flow graph (CFG) 
–  Edges: def-use (du) pairs, labelled with the variable name 

(Figure 6.3, page 80) 

Dependence 
edges show this 
x value could be 
the unchanged 
parameter or 

could be set at 
line D 
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Control dependence (1) 
•  Data dependence: Where did these values come from? 
•  Control dependence: Which statement controls whether 

this statement executes?  
–  Nodes: as in the CFG 
–  Edges: unlabelled, from entry/branching points to controlled 

blocks 
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Dominators 
•  Pre-dominators in a rooted, directed graph can be 

used to make this intuitive notion of “controlling 
decision” precise. 

•  Node M dominates node N if every path from the root 
to N passes through M.  
–  A node will typically have many dominators, but except for the 

root, there is a unique immediate dominator of node N which 
is closest to N on any path from the root, and which is in turn 
dominated by all the other dominators of N.  

–  Because each node (except the root) has a unique immediate 
dominator, the immediate dominator relation forms a tree. 

•  Post-dominators: Calculated in the reverse of the 
control flow graph, using a special “exit” node as the 
root. 
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Dominators (example) 

A 

B 

C 

D 

E 

F 

G 

•  A pre-dominates all 
nodes; G post-dominates 
all nodes 

•  F and G post-dominate E 
•  G is the immediate post-

dominator of B 
–  C does not post-dominate B 

•  B is the immediate pre-
dominator of G 
–  F does not pre-dominate G 
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Control dependence (2) 

•  We can use post-dominators to give a more precise 
definition of control dependence: 
–  Consider again a node N that is reached on some but not all 

execution paths. 
–  There must be some node C with the following property:  

•  C has at least two successors in the control flow graph (i.e., it 
represents a control flow decision);  

•  C is not post-dominated by N  
•  there is a successor of C in the control flow graph that is post-

dominated by N.   

–  When these conditions are true, we say node N is control-
dependent on node C. 

•  Intuitively: C was the last decision that controlled whether N 
executed 



(c) 2007 Mauro Pezzè & Michal Young  Ch 6, slide 15 

Control Dependence 

A 

B 

C 

D 

E 

F 

G F is control-dependent on B, 
the last point at which its 

execution was not inevitable 

Execution of F is  
not inevitable at B 

Execution of F is  
inevitable at E 
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Data Flow Analysis 

Computing data flow information 
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Calculating def-use pairs 

•  Definition-use pairs can be defined in terms of paths in the 
program control flow graph: 
–  There is an association (d,u) between a definition of variable v at d 

and a use of variable v at u iff  
•  there is at least one control flow path from d to u  
•  with no intervening definition of v.  

–  vd reaches u (vd is a reaching definition at u).   
–  If a control flow path passes through another definition e of the same 

variable v, ve kills vd at that point. 

•  Even if we consider only loop-free paths, the number of paths in a 
graph can be exponentially larger than the number of nodes and 
edges.  

•  Practical algorithms therefore do not search every individual path. 
Instead, they summarize the reaching definitions at a node over all 
the paths reaching that node. 
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Exponential paths  
(even without loops) 

A B C D E F G V 

2 paths from A to B 

4 from A to C 

8 from A to D 

16 from A to E 

... 

128 paths from A to V 

Tracing each path is 
not efficient, and we 
can do much better. 
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DF Algorithm 

•  An efficient algorithm for computing reaching 
definitions (and several other properties) is based on 
the way reaching definitions at one node are related to 
the reaching definitions at an adjacent node.   

•  Suppose we are calculating the reaching definitions of 
node n, and there is an edge (p,n) from an immediate 
predecessor node p.   
–  If the predecessor node p can assign a value to variable v, then  

the definition vp reaches n.  We say the definition vp is 
generated at p. 

–  If a definition vp of variable v reaches a predecessor node p, 
and if v is not redefined at that node (in which case we say the 
vp is killed at that point), then the definition is propagated on 
from p to n. 
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Equations of node E (y = tmp) 

Reach(E) = ReachOut(D) 
ReachOut(E) = (Reach(E) \ {yA}) ∪ {yE} 

public class GCD  {  
public int gcd(int x, int y) { 

 int tmp;               // A: def x, y, tmp               
 while (y != 0) {     // B: use y 
     tmp = x % y;     // C: def tmp; use x, y 
     x = y;               // D: def x; use y 
     y = tmp;           // E: def y; use tmp 
 } 
 return x;              // F: use x 

    } 

Calculate reaching 
definitions at E in 
terms of its 
immediate 
predecessor D 
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Equations of node B (while (y != 0)) 

•  Reach(B) = ReachOut(A) ∪ ReachOut(E) 
•  ReachOut(A) = gen(A) = {xA, yA, tmpA} 
•  ReachOut(E) = (Reach(E) \ {yA}) ∪ {yE} 

public class GCD  {  
public int gcd(int x, int y) { 

 int tmp;               // A: def x, y, tmp               
 while (y != 0) {     // B: use y 
     tmp = x % y;     // C: def tmp; use x, y 
     x = y;               // D: def x; use y 
     y = tmp;           // E: def y; use tmp 
 } 
 return x;              // F: use x 

    } 

This line has two 
predecessors:  
Before the loop, 
end of the loop 
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General equations for Reach analysis 

Reach(n) =  ∪  ReachOut(m) 
             m∈pred(n) 

ReachOut(n) = (Reach(n) \ kill (n)) ∪ gen(n) 

gen(n) = { vn | v is defined or modified at n } 

kill(n) = { vx |  v is defined or modified at x, x≠n 
        AND v is defined or modified at n } 
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Avail equations 

Avail (n) =  ∩ AvailOut(m)  
             m∈pred(n) 

AvailOut(n) = (Avail (n) \ kill (n)) ∪ gen(n) 

gen(n) = { exp | exp is computed at n } 
kill(n) = { exp | exp has variables assigned at n } 
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Live variable equations 

Live(n) = ∪ LiveOut(m)  

            m∈succ(n) 

LiveOut(n) = (Live(n) \ kill (n)) ∪ gen(n) 

gen(n) = { v | v is used at n } 
kill(n) = { v | v is modified at n } 
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Classification of analyses 

•  Forward/backward: a node’s set depends on that of its 
predecessors/successors 

•  Any-path/all-path: a node’s set contains a value iff it is 
coming from any/all of its inputs 

Any-path (∪) All-paths (∩) 

Forward (pred) Reach Avail 

Backward (succ) Live “inevitable” 
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Iterative Solution of Dataflow Equations 

•  Initialize values (first estimate of answer) 
–  For “any path” problems, first guess is “nothing” (empty set) at 

each node 
–  For “all paths” problems, first guess is “everything” (set of all 

possible values = union of all “gen” sets) 

•  Repeat until nothing changes 
–  Pick some node and recalculate (new estimate) 

This will converge on a “fixed point” solution where 
every new calculation produces the same value as the 
previous guess. 

[G. KilDall, POPL’73] 
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Worklist Algorithm for Data Flow 

See figures 6.6, 6.7 on pages 84, 86 of Pezzè & Young 
One way to iterate to a fixed point solution. 
General idea:  
•  Initially all nodes are on the work list, and have default values  

–  Default for “any-path” problem is the empty set, default for “all-
path” problem is the set of all possibilities (union of all gen sets) 

•  While the work list is not empty 
–  Pick any node n on work list; remove it from the list 
–  Apply the data flow equations for that node to get new values 
–  If the new value is changed (from the old value at that node), then  

•  Add successors (for forward analysis) or predecessors (for backward 
analysis) on the work list 

•  Eventually the work list will be empty (because new computed 
values = old values for each node) and the algorithm stops.  
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Cooking your own: From Execution to  
Conservative Flow Analysis 

•  We can use the same data flow algorithms to 
approximate other dynamic properties 
–  Gen set will be “facts that become true here” 
–  Kill set will be “facts that are no longer true here” 
–  Flow equations will describe propagation 

•  Example:  Taintedness (in web form processing) 
–  “Taint”:  a user-supplied value (e.g., from web 

form) that has not been validated 
–  Gen: we get this value from an untrusted source 

here 
–  Kill:  we validated to make sure the value is proper 
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Cooking your own analysis (2) 

•  Flow equations must be 
monotonic 
–  Initialize to the bottom 

element of a lattice of 
approximations 

–  Each new value that 
changes must move up the 
lattice 

•  Typically: Powerset 
lattice 
–  Bottom is empty set, top is 

universe 
–  Or empty at top for all-

paths analysis 

Monotonic: y > x implies f(y) ≥ f(x) 

(where f is application of the flow 
equations on values from successor 
or predecessor nodes, and “>” is 
movement up the lattice) 
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Data flow analysis with arrays and pointers 

•  Arrays and pointers introduce uncertainty:  
Do different expressions access the same 
storage? 
–  a[i] same as a[k] when i = k 
–  a[i] same as b[i] when a = b (aliasing) 

•  The uncertainty is accomodated depending to 
the kind of analysis 
–  Any-path: gen sets should include all potential 

aliases and kill set should include only what is 
definitely modified 

–  All-path: vice versa 
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Scope of Data Flow Analysis 

•  Intraprocedural 
–  Within a single method or procedure 

•  as described so far 

•  Interprocedural 
–  Across several methods (and classes) or procedures 

•  Cost/Precision trade-offs for interprocedural 
analysis are critical, and difficult 
–  context sensitivity 
–  flow-sensitivity 
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Context Sensitivity 

sub() sub() 

bar() { 

} 

sub() { 
foo() { 

} 

} 

(call) 

(return) 

(call) 

(return) 

A context-sensitive (interprocedural) analysis 
distinguishes sub() called from foo() 
from sub() called from bar(); 
A context-insensitive (interprocedural) analysis 
does not separate them, as if foo() could call sub() 
and sub() could then return to bar() 
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Flow Sensitivity 

•  Reach, Avail, etc. were flow-sensitive, 
intraprocedural analyses 
–  They considered ordering and control flow decisions 
–  Within a single procedure or method, this is (fairly) 

cheap — O(n3) for n CFG nodes 

•  Many interprocedural flow analyses are flow-
insensitive 
–  O(n3) would not be acceptable for all the statements 

in a program! 
•  Though O(n3) on each individual procedure might be ok 

–  Often flow-insensitive analysis is good enough ... 
consider type checking as an example 
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Summary 

•  Data flow models detect patterns on CFGs: 
–  Nodes initiating the pattern 
–  Nodes terminating it 
–  Nodes that may interrupt it 

•  Often, but not always, about flow of information 
(dependence) 

•  Pros: 
–  Can be implemented by efficient iterative algorithms 
–  Widely applicable (not just for classic “data flow” properties) 

•  Limitations: 
–  Unable to distinguish feasible from infeasible paths 
–  Analyses spanning whole programs (e.g., alias analysis) must 

trade off precision against computational cost 
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Data flow testing 
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Motivation 

•  Middle ground in structural testing 
–  Node and edge coverage don’t test interactions 
–  Path-based criteria require impractical number of 

test cases 
•  And only a few paths uncover additional faults, anyway 

–  Need to distinguish “important” paths 

•  Intuition: Statements interact through data 
flow 
–  Value computed in one statement, used in another 
–  Bad value computation revealed only when it is used 
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Data flow concept 

x = ....  

if ....  

x = ....  

... 

....  

y = x + ...  

4 

1 

6 

•  Value of x at 6 could be 
computed at 1 or at 4 

•  Bad computation at 1 or 
4 could be revealed only 
if they are used at 6 

•  (1,6) and (4,6) are 
def-use (DU) pairs 
–  defs at 1,4 
–  use at 6 

2 

3 

5 
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Adequacy criteria 

•  All DU pairs: Each DU pair is exercised by at 
least one test case 

•  All DU paths: Each simple (non looping) DU path 
is exercised by at least one test case 

•  All definitions: For each definition, there is at 
least one test case which exercises a DU pair 
containing it 
–  (Every computed value is used somewhere) 

Corresponding coverage fractions can also be 
defined 
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Difficult cases 

•  x[i] = ... ; ... ; y = x[j] 
–  DU pair (only) if i==j 

•  p = &x ; ... ; *p = 99 ; ... ; q = x 
–  *p is an alias of x 

•  m.putFoo(...); ... ; y=n.getFoo(...);  
–  Are m and n the same object? 
–  Do m and n share a “foo” field?  

•  Problem of aliases: Which references are 
(always or sometimes) the same?  
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Data flow coverage with complex structures 

•  Arrays and pointers are critical for data flow analysis 
–  Under-estimation of aliases may fail to include some DU pairs 
–  Over-estimation, on the other hand, may introduce unfeasible 

test obligations 

•  For testing, it may be preferrable to accept under-
estimation of alias set rather than over-estimation or 
expensive analysis 
–  Controversial: In other applications (e.g., compilers), a 

conservative over-estimation of aliases is usually required 
–  Alias analysis may rely on external guidance or other global 

analysis to calculate good estimates 
–  Undisciplined use of dynamic storage, pointer arithmetic, etc. 

may make the whole analysis infeasible 
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Infeasibility 

•  Suppose cond has not 
changed between 1 and 5 

•  Or the conditions could be 
different, but the first 
implies the second 

•  Then (3,5) is not a 
(feasible) DU pair 

•  But it is difficult or 
impossible to determine 
which pairs are infeasible 

•  Infeasible test 
obligations are a problem 

•  No test case can cover 
them 

if (cond) 

x = ....  

... 

....  

y = x + ...  

3 

1 

2 

4 

if (cond) 

....  6 

5 

7 
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Infeasibility 

•  The path-oriented nature of data flow analysis 
makes the infeasibility problem especially 
relevant 
–  Combinations of elements matter! 
–  Impossible to (infallibly) distinguish feasible from 

infeasible paths. More paths = more work to check 
manually. 

•  In practice, reasonable coverage is (often, not 
always) achievable 
–  Number of paths is exponential in worst case, but 

often linear 
–  All DU paths is more often impractical  


