Inter-Procedural Data Flow Analysis

Giovanni Denaro
giovanni.denaro@unimib.it

Agenda

Inter-procedural data flow analysis
Context sensitivity
Impact of pointers and aliases

Data flow analysis of OO programs

Scope of data flow analysis

* |Intra-procedural
— Within a single method or procedure
* as described so far
* |nter-procedural
— Across several methods (and classes) or procedures
— Uses calling relationships among procedures

* Cost/Precision trade-offs for inter-procedural analysis
are critical, and difficult
— context sensitivity
— impact of pointers and aliases

Inter-procedural analysis
Y SN

Let’s by now assume
availability of a (static)
call graph (indicates

which program points
call which procedures)

* Naive approach
— Go through data flow analysis on the INte™ProcCEG

— ICFG combines combines the call graph and the
CFGs of all procedures

(Naive) Inter-procedural analysis

Reach(n) = U ReachOut(m) | m € pred(n)

ReachOut(n) = (Reach(n) \ kill (n)) U gen(n)
1.
2.
3.
4,
5.
6.
7.

8.
9.
10.
11.
12.

int a, b, c;
main() {
a =...; //input from user
b = f(10);
a=Db;
c =f(-5);
}

f(int par) {
if(par > 0)
a=0;
return par;

}

main() {

L= |

[b = Return f(10)

[call f(-5)
|

gen(n)={v, | vdefined atn}
kill(n) ={v, | vdefined at x#n}

N\

—~—_

[c = Return f(-5)]¢

(Naive) Inter-procedural analysis

Reach(n) = U ReachOut(m) | m € pred(n) gen(n)={v, | vdefined atn}

ReachOut(n) = (Reach(n) \ kill (n)) U gen(n) kill(n) ={v, | vdefinedatx#n AND atn}

int a, b, c;
main() {
a =...; //input from user
b =f(10);
a=Db;
c =f(-5);

N ok wN e

8. f(int par) {
9. if(par>0)
10. a=0;
11. return par;
12.}

(Naive) Inter-procedural analysis

Data flow facts from a call site can “pollute” results at other call sites

(it can be worse if we consider also the defs of b and c)

1. inta, b, c;

2. main() {

3. a=..;//input from user
4. b =1(10);

5. a=b;

6. c=f(-5);

7.

}

8. f(int par) {
9. if(par>0) | Exit f [RCEACIVENCE

10. a=0; [¢ =Return f(-
11. return par; d; |NEGNEs

12.} }

(Naive) Inter-procedural analysis

Hinders call-site related optimization (e.g., by constant propagation)

1. inta, b, c;

2. main() {

3. a=..;//input from user
4. b =1(10);

5. a=b;

6. c=f(-5);

7.

}

8. f(int par) {
9. if(par>0)
10. a=0;
11. return par;
12.}

b = Ret

[a-

[c = Return f(-5

}

-

Inter-procedural analysis

In general

* Only some paths of the call graph are valid path
according to the call-return semantics of the program
— technical term: “realizable” paths

* The call graph can be not statically unavailable
— E.g., think of OO languages that provide dynamic binding

A non-realizable path

1. inta, b, c;

2. main() {

3. a=...;//inputfrom user
4. b=1(10);

5. a=b;

6. c=f(-5);

7. }

8. f(int par) {
9. if(par>0)
10. a=0;
11. return par;
12.}

Context sensitivity

Accounting for realizable paths by

preventing propagation of data flow facts along inadmissible call-
return sequences

Context sensitive analyses

— Distinguish “different” calls of the same procedure
(possibly making a finite number of copies of procedures)

— Use invocation context (the call site) information
to determine the correct propagation of data flow paths
(may include making the decision on when (not) to share a copy)

The choice on what the context information is produces different
precision-scalability tradeoffs

— A common choice: approximation of the call chains

— ...However we need to:

* Bound the combinatorial number of procedure copies to be considered
* Handle recursion

N oy ks wN e

8.
S.
10.
11.
12.

Context sensitivity by “copies”

inta, b, c;
main() {
a =...;//input from user
b = f(10);
a=Db;
¢ =f(-5);
}

f(int par) {
if(par > 0)
a=0;
return par,

}

main() {

Call f(10)

[b = Return f(10)]

oob)

[call f(-5) |
|
[c = Return f(-5)]

[return par
|

)

[Exit f]

)

[return par
[

[Exit f]

Context sensitivity

1. inta, b,c;
2. main() {

3. a=..;//input from user

4. b =1(10);

5. a=b;

6. c=f(-5);

7. }

8. f(int par) {

9. if(par>0)

10. a=0; [c = Return f

11. return par;
12.}

return par]

EX|t f]

a5, a3 propagate to the right statements only,

al0 (last) could be excluded by const-propagation, ...

Algorithm: Reps, Horwitz, Sagiv. POPL 1995

* MOP: Meet Over all-realizable Paths
— Inter-procedural analysis as a graph reachability problem

— Precise solution if
* The set of data flow facts is finite
* The dataflow propagation functions

facts entering an edge = facts propagated through edge

are distributive wrt the meet operator
* We will look into this algorithm as exercise
— based on the implementation available in IBM-WALA
— and the RHS POPL'95 paper

Algorithm: Harrold, Soffa. TOPLAS 1994

1. Intra-procedural analysis of each procedure
— Tracks propagation of formal/actual parameters to and from call sites
— Objective: express the link between local data and data at procedure calls
— Initial approximation: Definitions/uses unpreserved over procedure calls

2. Build the Inter-procedural Flow Graph + Inter-reaching edges

— IFG: An edge from each actual to formal parameters and back of each call
(call-entry and exit-return edges)

— Inter-reaching edges: edges from call-nodes to return-nodes, .
abstract which defs/uses may traverse the callee and be preserved

— The algorithm processes the IFG iteratively to compute inter-reaching edges

3. Perform data flow analysis on the IFG to obtain the

inter-procedural information
Context information

Impact of pointers and aliases

Pointers/aliases can cause subtle and complex data dependencies
— Pointer accesses shall be reconciled with the accessed variables

A POSSIBLE CLASSIFICATION
Accesses to program variables
Direct : thatis, with no pointer involved
Indirect : thatis, through a pointer deference

Indirect accesses

Single-alias : points to single memory location
Multiple-alias : points to multiple locations

Impact of pointers and aliases

Pointers/aliases can cause subtle and complex data dependencies

— Pointer accesses shall be reconciled with the accessed variables
— Aliasing with multiple variables can
* lead to further weaken the “may-ness” of data-flow analysis

* foster multiple (and non-trivially computable) callees per call-site
with programming languages that support dynamic binding

A POSSIBLE CLASSIFICATION
Accesses to program variables
Direct : thatis, with no pointer involved
Indirect : thatis, through a pointer deference

Indirect accesses

Single-alias : points to single memory location
Multiple-alias : points to multiple locations

proc(int condl, int cond2) {
intx,y, z, *p;

z=17;
x=13; finition: Sinle ali
i (cond1) { Definition: Single alias access toy
p=4&y;
*p=1z;
}
else {
f (cond2) Question: Is this a possible pair? =
p = &x;
else
p = &z;
*n=7+2; Definition: Multiple alias access to x or z
y =53;
p = &x;
}
X=X+Y+2
*p = *p + 5; Use: Direct accesstoy

y=X+y;

Classification of data dependencies
that depend on pointer accesses (i/ii)

Type of data dep.

Definition/Use Definite definition/use Direct or single-alias access
Possible definition/use Multiple alias access
Def-clear path Definite def-clear path No definite re-definition

No possible re-definition

Possible def-clear path No definite re-definition
Some possible re-definition

Definite Killing path At least a definite re-definition

proc(int condl, int cond2) {
intx,y, z, *p;

z=17;
;;?cf)?r)\;dl) { Definite definition of y
p=&y;
*p=1z;
}
else {
if (cond2)
p = &x;
else
p =&z Possible definition of x
*p=7+z Possible definition of z
y =53;
p = &;
}

X=X+Y+2
*p = *p + 5; Definite use of y
y=x+y,

proc(int condl, int cond2) {
intx,y, z, *p;
z=17;
x=13;
if (condl) {
p=&y;
*p=1z;

Definite definition of y

}

else {

if (cond?2)

p = &; Definite killing path
else

p = &z
*n=7+2z
y =53;
p = &X;

}
X=X+Yy+2Z
*p="p+5;
y=x+y;

Definite use of y

proc(int condl, int cond2) {
intx,y, z, *p;
z=17;
x=13;
if (condl) {
p=&y;
*p=1z;

Definite definition of y

}

else {
if (cond?2)
p = &; Definite def-clear path
else
p = &z
*n=7+2z
y =53;
p = &X;
}
X=X+Yy+2z;
p=7Fp+5;
y=x+y,

Definite use of y

proc(int condl, int cond2) {
intx,y, z, *p;
z=17; ~
x=13;

Definite definition of z

if (condl) {
p=&y;
*p=1z;
}
else {
if (cond?2)
p = &; Possible def-clear path
I
eise -8 (through the else of cond1)
! e’
*n=7+7«
y =53;
p = &;
}
X=X+y+7z .
*p = *p + 5; Definite use of z

y=x+y;

Classification of data dependencies
that depend on pointer accesses (ii/ii)

Data dep. Classification Type of def and use Characterization

Def-use pairs Strong DU-pair Both definite Some definite def-clear paths
No possible def-clear paths

Firm DU-pair Both definite Some definite def-clear
Some possible def-clear paths
Weak DU-pair Both definite No definite clear-path

Some possible def-clear paths

Very weak DU-pair Some possible No definite clear-path
Some possible def-clear paths
[Ostrand, Weyuker — TAV 1991]
[Orso, Sinha, Harrold — TOSEM 2004]

Can provide guidance to prioritize data dependencies

E.g., for test generation, according to the expected ease of executing them

Inter-procedural data flow analysis
of object-oriented programs

* Context sensitivity requires object sensitivity
— which object is the target of the method call?

Which m1,m2 does this program call?

aProgram(A obj){
A var =
Registry.getByName(“...”);

}

class A {
void m1(A a){
..; a.m2();
}
void m2(){...}
}

Which m1,m2 does this program call?

aProgram(A obj){
A var =
Registry.getByName(“...”);

} It depends on the
dynamic types of
lass A

Cas\s/oic}ml(A a){ the variable var and
s am2(); the parameter obj
} A.m1, A.m2() | B.m1, A.m2()
void m2(){...

) Ot A.m1, B.m2() | B.m1, B.m2()

class B extends A {
void m1(A a){
...; @.m2();

}
void m2(){...}

}

Inter-procedural data flow analysis
of object-oriented programs

* Context sensitivity requires object sensitivity
— Which object (class) is the receiver of the method call?
* In presence of dynamically dispatched messages
— Multiple callees per call site are possible

— The receiver class set at each call site is difficult to compute
precisely

(necessitating itself inter-procedural data/control flow analysis)

Note the circular dependencies among the i) the inter-procedural data-flow

analysis, ii) the program call graph and iii) receiver class sets ...=2... i)
Analysis needs to start from some initial “independent” approximation

Approaches to construct the call-graph

1. Pessimistic approach: Assume that all statically type-correct
receiver classes are possible at every call site

— Can be slightly improved by using use some form of simplified analysis
* flow insensitive may-alias analysis
* Intra-procedural data and control flow analysis

2. Refine iteratively the call graph while doing interprocedural
analysis
— Start with a call graph that contains only “main”
— Assume all sets of receiver classes are initially empty

The pessimistic approach often leads to too coarse approximations

[Grove, Chambers. TOPLAS 2001]

[Grove, Chambers. TOPLAS 2001]
Call graph — design dimensions

Terminology note

Call graph nodes are called “Contours”
Contour = Analysis time representation of a procedure

e Context-sensitive call graphs
— Arbitrary num of contours (analysis-time views) of a procedure

— The call graph edges represent, for each call site, the possible contours to
analyze the callee

e To support the analysis, a procedure contour can record (some of)
— Class sets for formal parameters, local variables, return value
— The creation site of each instance
— The class sets of the values within the propagating instances

* The design of a specific algorithm includes

— The amount of information recorded in a contour
(that must primarily allow to recognize the possible callees at a call site)

— How to select the contour to analyze each of the callees at a call site

Some call graph construction Algorithms

* 0-CFA: context insensitive algorithms Call-chain-based
— A ssingle contour to analyze each callee context sensitivity
— There can still be some support to account for dynamic binding

— Through interprocedural data flow and control flow analysis

* L-K-CFA family €

— K: Consider K enclosing calling contours at each call site to select the target
contour to analyze the callee

— L: denotes the degree of context sensitivity with respect to (the contents of)
different instance variables (according to the respective instantiation sites)

— 0-1-CFA: a single separate contour for each call-site.
— Adaptive algorithms use different levels of K/L in different call graph regions
— Unbounded (but finite): a new contour for each non-recursive call

e CPA: Cartesian Product Algorithm
— A contour for each element of the CP of the contours of the actual parameters

— Thus, callers (that are similar enough) can share the contour

[Harrold, Rothermel. FSE 1994]

OO data flow testing

At the method level, testing will target
executions of method M, according to either/both
— Intra-method def-use pairs
both def and use are in M (* ...and there is a def-clear path...)
— Inter-method def-use pairs

def and use are in different methods — either M or some method
called by M (*)

At the class level, testing will target

executions of sequences of method calls to class C

— Intra-class def-use pairs
def and use are in different methods of C called independently (*)

References

T Reps, S Horwitz, M Sagiv. Precise interprocedural dataflow analysis via
graph reachability. POPL 1995

MJ Harrold, ML Soffa. Efficient computation of interprocedural definition-
use chains. ACM TOPLAS 1994

TJ Ostrand, EJ Weyuker. Data flow-based test adequacy analysis for
languages with pointers. TAV 1991

A Orso, S Sinha, and MJ Harrold. Classifying data dependences in the
presence of pointers for program comprehension, testing, and debugging.
ACM TOSEM 2004

D Grove, C Chambers. A framework for call graph construction algorithms.
ACM TOPLAS 2001

MJ Harrold, G Rothermel. Performing data flow testing on classes. SIGSOFT
FSE 1994

Work @UniMiB/LTA

G. Denaro, A. Gorla, M. Pezze.
Contextual integration testing of classes. FASE 2008

G. Denaro, A. Gorla, M. Pezze.
DaTeC: contextual data flow testing of classes. ICSE Demo 2009

G. Denaro, M. Pezze, M. Vivanti.
On the right objectives of data flow testing. ICST 2014

G. Denaro, M. Margara, M. Pezze, M. Vivanti.
Dynamic data flow testing of object oriented systems. ICSE 2015

Do not hesitate to contact me if you would like to

check out the prototypes referred in the papers
denaro@disco.unimib.it

