
Inter-Procedural	Data	Flow	Analysis	

Giovanni	Denaro	
giovanni.denaro@unimib.it	

Agenda	

•  Inter-procedural	data	flow	analysis	
•  Context	sensiAvity	
•  Impact	of	pointers	and	aliases	

•  Data	flow	analysis	of	OO	programs	

(c)	2007	Mauro	Pezzè	&	Michal	
Young	 	Ch	6,	slide	3	

Scope	of	data	flow	analysis	

•  Intra-procedural	
– Within	a	single	method	or	procedure	

•  as	described	so	far	
•  Inter-procedural	
–  Across	several	methods	(and	classes)	or	procedures	
–  Uses	calling	relaAonships	among	procedures	

•  Cost/Precision	trade-offs	for	inter-procedural	analysis	
are	criAcal,	and	difficult	
–  context	sensiAvity	
–  impact	of	pointers	and	aliases	

Inter-procedural	analysis		

•  Naive	approach	
– Go	through	data	flow	analysis	on	the	InterprocCFG	
–  ICFG	combines	combines	the	call	graph	and	the	
CFGs	of	all	procedures	

Let’s	by	now	assume	
availability	of	a	(staAc)	
call	graph	(indicates	
which	program	points	
call	which	procedures)	

(Naive)	Inter-procedural	analysis	

1.  int	a,	b,	c;	
2.  main()	{	

3.  	 a	=	…	;	//input	from	user	
4.  	 b	=	f(10);	

5.  	 a	=	b;	

6.  	 c	=	f(-5);	

7.  }	

8.  f(int	par)	{	
9.  	 if(par	>	0)	

10.  	 	a	=	0;	

11.  	 return	par;	
12.  }	

a	=	…	

Call	f(10)	

b	=	Return	f(10)	

main()	{	

a	=	b	

Call	f(-5)	

c	=	Return	f(-5)	

Enter	f	

par	>	0	

a	=	0	

return	par	

Exit	f	

Reach(n)	=		∪		ReachOut(m)	|	m	∈	pred(n)	
ReachOut(n)	=	(Reach(n)	\	kill	(n))	∪	gen(n)	

gen(n)	=	{	vn	|	v	defined	at	n	}	
kill(n)	=	{	vx	|		v	defined	at	x≠n}	

(Naive)	Inter-procedural	analysis	

1.  int	a,	b,	c;	
2.  main()	{	

3.  	 a	=	…	;	//input	from	user	
4.  	 b	=	f(10);	

5.  	 a	=	b;	

6.  	 c	=	f(-5);	

7.  }	

8.  f(int	par)	{	
9.  	 if(par	>	0)	

10.  	 	a	=	0;	

11.  	 return	par;	
12.  }	

a	=	…	

Call	f(10)	

b	=	Return	f(10)	

main()	{	

a	=	b	

Call	f(-5)	

c	=	Return	f(-5)	

Enter	f	

par	>	0	

a	=	0	

return	par	

Exit	f	

Reach(n)	=		∪		ReachOut(m)	|	m	∈	pred(n)	
ReachOut(n)	=	(Reach(n)	\	kill	(n))	∪	gen(n)	

a3	

a3	

a3	

a3	

a10	

a3,	a10	

a3,	a10	

a5	
a5	

a5	

a5	

a5	

a5	

gen(n)	=	{	vn	|	v	defined	at	n	}	
kill(n)	=	{	vx	|		v	defined	at	x≠n	AND	at	n	}	

a3,	a10	 a5	

a3,	a10	 a5	

(Naive)	Inter-procedural	analysis	

1.  int	a,	b,	c;	
2.  main()	{	

3.  	 a	=	…	;	//input	from	user	
4.  	 b	=	f(10);	

5.  	 a	=	b;	

6.  	 c	=	f(-5);	

7.  }	

8.  f(int	par)	{	
9.  	 if(par	>	0)	

10.  	 	a	=	0;	

11.  	 return	par;	
12.  }	

a	=	…	

Call	f(10)	

b	=	Return	f(10)	

}	

main()	{	

a	=	b	

Call	f(-5)	

c	=	Return	f(-5)	

Enter	f	

par	>	0	

a	=	0	

return	par	

Exit	f	

Data	flow	facts	from	a	call	site	can	“pollute”	results	at	other	call	sites	
(it	can	be	worse	if	we	consider	also	the	defs	of	b	and	c)	

a3	

a3	

a3	

a3	

a10	

a3,	a10	

a3,	a10	

a5	
a5	

a5	

a5	

a5	

a5	

a3,	a10	 a5	

a3	 a10,	a5	

(Naive)	Inter-procedural	analysis	

1.  int	a,	b,	c;	
2.  main()	{	

3.  	 a	=	…	;	//input	from	user	
4.  	 b	=	f(10);	

5.  	 a	=	b;	

6.  	 c	=	f(-5);	

7.  }	

8.  f(int	par)	{	
9.  	 if(par	>	0)	

10.  	 	a	=	0;	

11.  	 return	par;	
12.  }	

a	=	…	

Call	f(10)	

b	=	Return	f(10)	

}	

main()	{	

a	=	b	

Call	f(-5)	

c	=	Return	f(-5)	

Enter	f	

par	>	0	

a	=	0	

return	par	

Exit	f	

Hinders	call-site	related	opAmizaAon	(e.g.,	by	constant	propagaAon)	

a3	

a3	

a3	

a3	

a10	

a5	
a5	

a5	

a5	

a5	

	a10	 a5	a3	

	a10	a3	

a5		a10	a3	

a5		a10	a3	

Inter-procedural	analysis		

In	general	

•  Only	some	paths	of	the	call	graph	are	valid	path	
according	to	the	call-return	semanAcs	of	the	program	
–  technical	term:	“realizable”	paths	

•  The	call	graph	can	be	not	staAcally	unavailable		
–  E.g.,	think	of	OO	languages	that	provide	dynamic	binding	

A	non-realizable	path	

1.  int	a,	b,	c;	
2.  main()	{	

3.  	 a	=	…	;	//input	from	user	
4.  	 b	=	f(10);	

5.  	 a	=	b;	

6.  	 c	=	f(-5);	

7.  }	

8.  f(int	par)	{	
9.  	 if(par	>	0)	

10.  	 	a	=	0;	

11.  	 return	par;	
12.  }	

a	=	…	

Call	f(10)	

b	=	Return	f(10)	

}	

main()	{	

a	=	b	

Call	f(-5)	

c	=	Return	f(-5)	

Enter	f	

par	>	0	

a	=	0	

return	par	

Exit	f	

Context	sensiAvity	

•  AccounAng	for	realizable	paths	by	
prevenAng	propagaAon	of	data	flow	facts	along	inadmissible	call-
return	sequences	

•  Context	sensiAve	analyses		
–  DisAnguish	“different”	calls	of	the	same	procedure	

(possibly	making	a	finite	number	of	copies	of	procedures)	
–  Use	invocaAon	context	(the	call	site)	informaAon		

to	determine	the	correct	propagaAon	of	data	flow	paths	
(may	include	making	the	decision	on	when	(not)	to	share	a	copy)	

•  The	choice	on	what	the	context	informaAon	is	produces	different	
precision-scalability	tradeoffs	
–  A	common	choice:	approximaAon	of	the	call	chains	
–  …However	we	need	to:	

•  Bound	the	combinatorial	number	of	procedure	copies	to	be	considered	
•  Handle	recursion	

Context	sensiAvity	by	“copies”		
1.  int	a,	b,	c;	
2.  main()	{	

3.  	 a	=	…	;	//input	from	user	
4.  	 b	=	f(10);	

5.  	 a	=	b;	

6.  	 c	=	f(-5);	

7.  }	

8.  f(int	par)	{	
9.  	 if(par	>	0)	

10.  	 	a	=	0;	

11.  	 return	par;	
12.  }	

a	=	…	

Call	f(10)	

b	=	Return	f(10)	

main()	{	

a	=	b	

Call	f(-5)	

c	=	Return	f(-5)	

Enter	f	

par	>	0	

a	=	0	

return	par	

Exit	f	

Enter	f	

par	>	0	

a	=	0	

return	par	

Exit	f	

Context	sensiAvity	
1.  int	a,	b,	c;	
2.  main()	{	

3.  	 a	=	…	;	//input	from	user	
4.  	 b	=	f(10);	

5.  	 a	=	b;	

6.  	 c	=	f(-5);	

7.  }	

8.  f(int	par)	{	
9.  	 if(par	>	0)	

10.  	 	a	=	0;	

11.  	 return	par;	
12.  }	

Enter	f	

par	>	0	

a	=	0	

return	par	

Exit	f	

Enter	f	

par	>	0	

a	=	0	

return	par	

Exit	f	

a	=	…	

Call	f(10)	

b	=	Return	f(10)	

main()	{	

a	=	b	

Call	f(-5)	

c	=	Return	f(-5)	

a3	

a3	

a5	
a5	

a3,	a10	 a5	

a3,	a10	 a5	a3	

Now:	 	a5,	a3	propagate	to	the	right	statements	only,		
	 	a10	(last)	could	be	excluded	by	const-propagaAon,	…	

Algorithm:	Reps,	Horwitz,	Sagiv.	POPL	1995	

•  MOP:	Meet	Over	all-realizable	Paths	
–  Inter-procedural	analysis	as	a	graph	reachability	problem	
–  Precise	soluAon	if	

•  The	set	of	data	flow	facts	is	finite	
•  The	dataflow	propagaAon	funcAons		

	facts	entering	an	edge	!	facts	propagated	through	edge	

are	distribuAve	wrt	the	meet	operator	

•  We	will	look	into	this	algorithm	as	exercise	
–  based	on	the	implementaAon	available	in	IBM-WALA		
–  and	the	RHS	POPL’95	paper	

Algorithm:	Harrold,	Soffa.	TOPLAS	1994	

1.  Intra-procedural	analysis	of	each	procedure	
–  Tracks	propagaAon	of	formal/actual	parameters	to	and	from	call	sites	

–  ObjecAve:	express	the	link	between	local	data	and	data	at	procedure	calls	

–  IniAal	approximaAon:	DefiniAons/uses	unpreserved	over	procedure	calls	

2.  Build	the	Inter-procedural	Flow	Graph	+	Inter-reaching	edges	
–  IFG:	An	edge	from	each	actual	to	formal	parameters	and	back	of	each	call		

(call-entry	and	exit-return	edges)	

–  Inter-reaching	edges:	edges		from	call-nodes	to	return-nodes,	
abstract	which	defs/uses	may	traverse	the	callee	and	be	preserved	

–  The	algorithm	processes	the	IFG	iteraAvely	to	compute	inter-reaching	edges	

3.  Perform	data	flow	analysis	on	the	IFG	to	obtain	the		
inter-procedural	informaAon	

Context	informaAon	

Impact	of	pointers	and	aliases	
Pointers/aliases	can	cause	subtle	and	complex	data	dependencies	
–  Pointer	accesses	shall	be	reconciled	with	the	accessed	variables		

A	POSSIBLE	CLASSIFICATION	
Accesses	to	program	variables	
Direct	 	: 	that	is,	with	no	pointer	involved	
Indirect		:	 	that	is,	through	a	pointer	deference	

Indirect	accesses		
Single-alias 			:	 	points	to	single	memory	locaAon		
MulAple-alias		: 	points	to	mulAple	locaAons	

Impact	of	pointers	and	aliases	
Pointers/aliases	can	cause	subtle	and	complex	data	dependencies	

–  Pointer	accesses	shall	be	reconciled	with	the	accessed	variables		
–  Aliasing	with	mulAple	variables	can	

•  lead	to	further	weaken	the	“may-ness”	of	data-flow	analysis	

•  foster	mulAple	(and	non-trivially	computable)	callees	per	call-site		
with	programming	languages	that	support	dynamic	binding	

A	POSSIBLE	CLASSIFICATION	
Accesses	to	program	variables	
Direct	 	: 	that	is,	with	no	pointer	involved	
Indirect		:	 	that	is,	through	a	pointer	deference	

Indirect	accesses		
Single-alias 			:	 	points	to	single	memory	locaAon		
MulAple-alias		: 	points	to	mulAple	locaAons	

proc(int	cond1,	int	cond2)	{	
	int	x,	y,	z,	*p;		
	z	=	17;		
	x	=	13;	
	if	(cond1)	{	
	 	p	=	&y;	
	 	*p	=	z;	
	}	
	else	{	
	 	if	(cond2)	
	 	 	p	=	&x;	
	 	else	
	 	 	p	=	&z;	
	 	*p	=	7	+	z;	
	 	y	=	53;		
	 	p	=	&x;	
	}	
	x	=	x	+	y	+	z;	
	*p	=	*p	+	5;	
	y	=	x	+	y;	
	…	

DefiniAon:	Single	alias	access	to	y	

DefiniAon:	MulAple	alias	access	to	x	or	z		

Use:	Direct	access	to	y	

Ques+on:	Is	this	a	possible	pair?	!	

ClassificaAon	of	data	dependencies	
that	depend	on	pointer	accesses	(i/ii)	

Type	of	data	dep.	 Classifica+on	 Characteriza+on	

Defini+on/Use	 Definite	definiAon/use	 Direct	or	single-alias	access	

Possible	definiAon/use	 MulAple	alias	access	

Def-clear	path	 Definite	def-clear	path	 No	definite	re-definiAon	
No	possible	re-definiAon	

Possible	def-clear	path	 No	definite	re-definiAon	
Some	possible	re-definiAon	

Definite	Killing	path	 At	least	a	definite	re-definiAon	

proc(int	cond1,	int	cond2)	{	
	int	x,	y,	z,	*p;		
	z	=	17;		
	x	=	13;	
	if	(cond1)	{	
	 	p	=	&y;	
	 	*p	=	z;	
	}	
	else	{	
	 	if	(cond2)	
	 	 	p	=	&x;	
	 	else	
	 	 	p	=	&z;	
	 	*p	=	7	+	z;	
	 	y	=	53;		
	 	p	=	&x;	
	}	
	x	=	x	+	y	+	z;	
	*p	=	*p	+	5;	
	y	=	x	+	y;	
	…	

Definite	definiAon	of	y	

Possible	definiAon	of	x	
Possible	definiAon	of	z	

Definite	use	of	y	

proc(int	cond1,	int	cond2)	{	
	int	x,	y,	z,	*p;		
	z	=	17;		
	x	=	13;	
	if	(cond1)	{	
	 	p	=	&y;	
	 	*p	=	z;	
	}	
	else	{	
	 	if	(cond2)	
	 	 	p	=	&x;	
	 	else	
	 	 	p	=	&z;	
	 	*p	=	7	+	z;	
	 	y	=	53;		
	 	p	=	&x;	
	}	
	x	=	x	+	y	+	z;	
	*p	=	*p	+	5;	
	y	=	x	+	y;	
	…	

Definite	definiAon	of	y	

Definite	use	of	y	

Definite	killing	path	

proc(int	cond1,	int	cond2)	{	
	int	x,	y,	z,	*p;		
	z	=	17;		
	x	=	13;	
	if	(cond1)	{	
	 	p	=	&y;	
	 	*p	=	z;	
	}	
	else	{	
	 	if	(cond2)	
	 	 	p	=	&x;	
	 	else	
	 	 	p	=	&z;	
	 	*p	=	7	+	z;	
	 	y	=	53;		
	 	p	=	&x;	
	}	
	x	=	x	+	y	+	z;	
	*p	=	*p	+	5;	
	y	=	x	+	y;	
	…	

Definite	definiAon	of	y	

Definite	use	of	y	

Definite	def-clear	path	

proc(int	cond1,	int	cond2)	{	
	int	x,	y,	z,	*p;		
	z	=	17;		
	x	=	13;	
	if	(cond1)	{	
	 	p	=	&y;	
	 	*p	=	z;	
	}	
	else	{	
	 	if	(cond2)	
	 	 	p	=	&x;	
	 	else	
	 	 	p	=	&z;	
	 	*p	=	7	+	z;	
	 	y	=	53;		
	 	p	=	&x;	
	}	
	x	=	x	+	y	+	z;	
	*p	=	*p	+	5;	
	y	=	x	+	y;	
	…	

Definite	definiAon	of	z	

Definite	use	of	z	

Possible	def-clear	path	
(through	the	else	of	cond1)	

ClassificaAon	of	data	dependencies	
that	depend	on	pointer	accesses	(ii/ii)	

Can	provide	guidance	to	prioriAze	data	dependencies	
E.g.,	for	test	generaAon,	according	to	the	expected	ease	of	execuAng	them		

Data	dep.	 Classifica+on	 Type	of	def	and	use	 Characteriza+on	

Def-use	pairs	 Strong	DU-pair	 Both	definite	 Some	definite	def-clear	paths	
No	possible	def-clear	paths	

Firm	DU-pair	 Both	definite	 Some	definite	def-clear	
Some	possible	def-clear	paths	

Weak	DU-pair	 Both	definite	 No	definite	clear-path	
Some	possible	def-clear	paths	

Very	weak	DU-pair	 Some	possible	 No	definite	clear-path	
Some	possible	def-clear	paths	

[Ostrand,	Weyuker	–	TAV	1991]	

[Orso,	Sinha,	Harrold	–	TOSEM	2004]	

Inter-procedural	data	flow	analysis	
of	object-oriented	programs	

•  Context	sensiAvity	requires	object	sensiAvity		
–  which	object	is	the	target	of	the	method	call?	

Which	m1,m2	does	this	program	call?	

aProgram(A	obj){	
	A	var	=		
	 	Registry.getByName(“…”);	
	var.m1(obj);	//?????	

}	

class	A	{	
	void	m1(A	a){	
		…;	a.m2();	
	}	
	void	m2(){…}	

}	
class	B	extends	A	{	

	void	m1(A	a){	
		…;	a.m2();	
	}	
	void	m2(){…}	

}	

Which	m1,m2	does	this	program	call?	

aProgram(A	obj){	
	A	var	=		
	 	Registry.getByName(“…”);	
	var.m1(obj);	//?????	

}	

class	A	{	
	void	m1(A	a){	
		…;	a.m2();	
	}	
	void	m2(){…}	

}	
class	B	extends	A	{	

	void	m1(A	a){	
		…;	a.m2();	
	}	
	void	m2(){…}	

}	

It	depends	on	the	
dynamic	types	of	
the	variable	var	and	
the	parameter	obj	

var	

A	 B	

obj	
A	 A.m1,	A.m2()	 B.m1,	A.m2()	

B	 A.m1,	B.m2()	 B.m1,	B.m2()	

Inter-procedural	data	flow	analysis	
of	object-oriented	programs	

•  Context	sensiAvity	requires	object	sensiAvity		
– Which	object	(class)	is	the	receiver	of	the	method	call?	

•  In	presence	of	dynamically	dispatched	messages	
– MulAple	callees	per	call	site	are	possible	

–  The	receiver	class	set	at	each	call	site	is	difficult	to	compute	
precisely	
	(necessitaAng	itself	inter-procedural	data/control	flow	analysis)	

Note	the	circular	dependencies	among	the	i)	the	inter-procedural	data-flow	
analysis,	ii)	the	program	call	graph	and	iii)	receiver	class	sets	…!…	i)		

Analysis	needs	to	start	from	some	iniAal	“independent”	approximaAon		

Approaches	to	construct	the	call-graph	

1.  PessimisAc	approach:	Assume	that	all	staAcally	type-correct	
receiver	classes	are	possible	at	every	call	site	
–  Can	be	slightly	improved	by	using	use	some	form	of	simplified	analysis	

•  flow	insensiAve	may-alias	analysis	

•  Intra-procedural	data	and	control	flow	analysis	

2.  Refine	iteraAvely	the	call	graph	while	doing	interprocedural	
analysis	
–  Start	with	a	call	graph	that	contains	only	“main”	
–  Assume	all	sets	of	receiver	classes	are	iniAally	empty	

The	pessimisAc	approach	o}en	leads	to	too	coarse	approximaAons	

[Grove,	Chambers.	TOPLAS	2001]	

Call	graph	–	design	dimensions	

•  Context-sensiAve	call	graphs	
–  Arbitrary	num	of	contours	(analysis-Ame	views)	of	a	procedure	

–  The	call	graph	edges	represent,	for	each	call	site,	the	possible	contours	to	
analyze	the	callee	

•  To	support	the	analysis,	a	procedure	contour	can	record	(some	of)	
–  Class	sets	for	formal	parameters,	local	variables,	return	value	

–  The	creaAon	site	of	each	instance	
–  The	class	sets	of	the	values	within	the	propagaAng	instances	

•  The	design	of	a	specific	algorithm	includes		
–  The	amount	of	informaAon	recorded	in	a	contour		

(that	must	primarily	allow	to	recognize	the	possible	callees	at	a	call	site)		
–  How	to	select	the	contour	to	analyze	each	of	the	callees	at	a	call	site	

Terminology	note	
Call	graph	nodes	are	called	“Contours”	
Contour	=	Analysis	Ame	representaAon	of	a	procedure	

[Grove,	Chambers.	TOPLAS	2001]		

Some	call	graph	construcAon	Algorithms	

•  0-CFA:	context	insensiAve	algorithms	
–  A	single	contour	to	analyze	each	callee	
–  There	can	sAll	be	some	support	to	account	for	dynamic	binding		

–  Through	interprocedural	data	flow	and	control	flow	analysis	
•  L-K-CFA	family	

–  K:	Consider	K	enclosing	calling	contours	at	each	call	site	to	select	the	target	
contour	to	analyze	the	callee	

–  L:	denotes	the	degree	of	context	sensiAvity	with	respect	to	(the	contents	of)	
different	instance	variables	(according	to	the	respecAve	instanAaAon	sites)	

–  0-1-CFA:	a	single	separate	contour	for	each	call-site.	
–  AdapAve	algorithms	use	different	levels	of	K/L	in	different	call	graph	regions	
–  Unbounded	(but	finite):	a	new	contour	for	each	non-recursive	call	

•  CPA:	Cartesian	Product	Algorithm	
–  A	contour	for	each	element	of	the	CP	of	the	contours	of	the	actual	parameters	

–  Thus,	callers	(that	are	similar	enough)	can	share	the	contour	

Call-chain-based	
context	sensiAvity	

OO	data	flow	tesAng	

•  At	the	method	level,	tesAng	will	target	
execuAons	of	method	M,	according	to	either/both	
–  Intra-method	def-use	pairs	
	both	def	and	use	are	in	M	(*	…and	there	is	a	def-clear	path…)	

–  Inter-method	def-use	pairs	

	def	and	use	are	in	different	methods	–	either	M	or	some	method	
called	by	M	(*)	

•  At	the	class	level,	tesAng	will	target	
	execuAons	of	sequences	of	method	calls	to	class	C	
–  Intra-class	def-use	pairs	

def	and	use	are	in	different	methods	of	C	called	independently	(*)	

[Harrold,	Rothermel.	FSE	1994]		

References	

•  T	Reps,	S	Horwitz,	M	Sagiv.	Precise	interprocedural	dataflow	analysis	via	
graph	reachability.	POPL	1995	

•  MJ	Harrold,	ML	Soffa.	Efficient	computaAon	of	interprocedural	definiAon-
use	chains.	ACM	TOPLAS	1994	

•  TJ	Ostrand,	EJ	Weyuker.	Data	flow-based	test	adequacy	analysis	for	
languages	with	pointers.	TAV	1991	

•  A	Orso,	S	Sinha,	and	MJ	Harrold.	Classifying	data	dependences	in	the	
presence	of	pointers	for	program	comprehension,	tesAng,	and	debugging.	
ACM	TOSEM	2004	

•  D	Grove,	C	Chambers.	A	framework	for	call	graph	construcAon	algorithms.	
ACM	TOPLAS	2001	

•  MJ	Harrold,	G	Rothermel.	Performing	data	flow	tesAng	on	classes.	SIGSOFT	
FSE	1994	

Work	@UniMiB/LTA	

•  G.	Denaro,	A.	Gorla,	M.	Pezzè.		
Contextual	integraAon	tesAng	of	classes.	FASE	2008	

•  G.	Denaro,	A.	Gorla,	M.	Pezzè.	
DaTeC:	contextual	data	flow	tesAng	of	classes.	ICSE	Demo	2009	

•  G.	Denaro,	M.	Pezzè,	M.	VivanA.		
On	the	right	objecAves	of	data	flow	tesAng.	ICST	2014	

•  G.	Denaro,	M.	Margara,	M.	Pezzè,	M.	VivanA.		
Dynamic	data	flow	tesAng	of	object	oriented	systems.	ICSE	2015	

Do	not	hesitate	to	contact	me	if	you	would	like	to		
check	out	the	prototypes	referred	in	the	papers	

denaro@disco.unimib.it	

