
Alloy
Pietro Braione

University of Milano-Bicocca
pietro.braione@unimib.it

What is Alloy?

• A formal notation for specifying models of systems and of software
• With a tool to simulate and verify the documents written in it
• Available at http://alloytools.org

http://alloytools.org/

The Alloy language

Features of the language

• Declarative language based on relational algebra and first-order logic
• Allows to define complex structures as you would do in an OO

language or in UML
• Allows to define complex relations between states as, e.g., state

transitions
• What can be described with this language? E.g.
• The heap memory of an OO program
• Databases in E-R format
• Configurations in a web application
• Topologies of a network
• …

Running example

• There are persons and birthday books
• Each person has:
• 1 name
• 0..1 spouse
• 0..n parents
• 1 birthday book

• Each birthday book:
• Contains a list of people
• For each, it reports his/her birthday

In UML

+name : Name

Person

parent

*
+date : Date

BirthdayBook
*

spouse

0..1

friend

An Alloy document
module birthday_book Modules : organize Alloy specifications

An Alloy document
module birthday_book

sig Date { }

sig Person {
name: String,
spouse: lone Person,
parents: set Person,
birthdayBook: Person -> Date

}

Modules : organize Alloy specifications

Signature definitions:
Define entities and relations

Meaning of Alloy documents

• It’s quite similar to the meaning of E-R or UML diagrams:
• There are entities (atoms in Alloy parlance)…
• …and relations over them

• Atoms are featureless, indivisible and immutable: all their features
come from relations
• Relations are, as usual, sets of ordered tuples of atoms, and they are

always finite
• An Alloy world is composed by atoms and relations
• A world that satisfies an Alloy specification is a model of it

Signatures (1)

• Signatures define the “types” (“classes”) of an Alloy specification
• For instance, sig Date {} means that there must exist a set of

atoms, where each atom stands for a date
• It does not say anything else on these atoms: Which are their

attributes, how many of them exist…
• Also, the signature defines a unary relation (a set), with name Date,

that contains all the atoms with that type
• Similarly, sig Person { … } states that there are some other

atoms, the persons, distinct from the dates, and implicitly defines the
set Person of all these atoms

Signatures (2)

• Signatures are also used to define relations
• Relations definitions are enclosed in curly braces after the sig

declaration

sig Person {
name: String,
spouse: lone Person,
parents: set Person,
birthdayBook: Person -> Date

}

Each person has a name, and the name is
a String

There is a binary relation between the
atoms of type Person and the atoms of
type String

Multiplicity constraints
sig Person {

name: String,
spouse: lone Person,
parents: set Person,
…

}

Each person has…

Multiplicity constraints

Exactly one name
Each person has…sig Person {

name: String,
spouse: lone Person,
parents: set Person,
…

}

Multiplicity constraints

Exactly one name
Each person has…

One or no spouse

sig Person {
name: String,
spouse: lone Person,
parents: set Person,
…

}

Multiplicity constraints

Exactly one name
Each person has…

One or no spouse
Zero, one or more than one parent

sig Person {
name: String,
spouse: lone Person,
parents: set Person,
…

}

Multiplicity constraints

Exactly one name
Each person has…

One or no spouse
Zero, one or more than one parent

More kinds of constraints:
• one : exactly one (can be omitted)
• some : one or more
• no : exactly zero

sig Person {
name: String,
spouse: lone Person,
parents: set Person,
…

}

Non-binary relations
sig Person {

…
birthdayBook: Person -> Date

}
There is a ternary relation between
Person, Person and Date

A possible model

P1 P4
P2 P3

Person <: spouse

P1 ANN
…

Person <: name

P4 P2
P4 P3

Person <: parents

D1
D2

Date

P1
P2
P3
P4
P5

Person

ANN
BILL

JOHN
LISA
PAM

String

P1 P3 D1
P1 P4 D2
P3 P2 D1

Person <: birthdayBook

Example of facts
• No person is married with a sibling

Example of facts
• No person is married with a sibling fact {

no p: Person |
some (p.spouse.parents & p.parents)

Example of facts
• No person is married with a sibling

• Each person is in the birthday book of
one of the people in his/her birthday
book

fact {
no p: Person |
some (p.spouse.parents & p.parents)

Example of facts
• No person is married with a sibling

• Each person is in the birthday book of
one of the people in his/her birthday
book

fact {
no p: Person |
some (p.spouse.parents & p.parents)

all p: Person |
some q: p.birthdayBook.Date |
p in q.birthdayBook.Date

}

Let’s consider the first fact…
• No person is married with a sibling fact {

no p: Person |
some (p.spouse.parents & p.parents)

For no atom p of type Person

Let’s consider the first fact…
• No person is married with a sibling fact {

no p: Person |
some (p.spouse.parents & p.parents)

For no atom p of type Person exists an atom

Let’s consider the first fact…
• No person is married with a sibling fact {

no p: Person |
some (p.spouse.parents & p.parents)

For no atom p of type Person exists an atom in the intersection

Let’s consider the first fact…
• No person is married with a sibling fact {

no p: Person |
some (p.spouse.parents & p.parents)

For no atom p of type Person exists an atom in the intersection of p’s parents

Let’s consider the first fact…
• No person is married with a sibling fact {

no p: Person |
some (p.spouse.parents & p.parents)

For no atom p of type Person exists an atom in the intersection of p’s parents
and the parents of p’s spouse

Expressions

• Logical
• Relational
• Numeric (integer)

Logical operators

• and (&&), or (||), not (!)
• implication (=>), if-then-else (F => G else H), inverse implication

(<=), logical equivalence (<=>)
• Quantifiers (all, some, no, lone, one)
• Subset: in and =
• r in s is true iff r is a subset of s (relation inclusion)
• r = s equivalent to (r in s && s in r)

Relational operators

• Set-theoretic operators
• Union (+), intersection (&), difference (-)
• Remember! Sets are actually unary relations

• Relational operators, binary
• Join (. , []), cartesian product (->), domain restriction (<:), range

restriction (:>)

• Relational operators, unary
• transpose (~), transitive closure (^), transitive and reflexive closure (*)

The join operator

• The join operator (.) is used to “navigate” through relations
• Its definition is quite similar to that of natural join used in database

theory’s relational algebra, with the following differences:
• The common columns are the last one of the left operand and the first one of

the right operand
• The common columns are projected away

• Note that in Alloy all variables are considered sets with just one
element
• This allows to do the join of a variable with another

Example of join operator

• Let us consider p = {P1}
• What is p.spouse.parents?

P1

p

P1 P4
P2 P3

Person <: spouse

Example of join operator

• Let us consider p = {P1}
• What is p.spouse.parents?

P1 P4
P2 P3

Person <: spouse

P1

p

Example of join operator

• Let us consider p = {P1}
• What is p.spouse.parents?

P1 P4
P2 P3

Person <: spousep

P1

Example of join operator

• Let us consider p = {P1}
• What is p.spouse.parents?

P1 P4

Person <: spousep

P1

Example of join operator

• Let us consider p = {P1}
• What is p.spouse.parents?

p.spouse

P4

Example of join operator

• Let us consider p = {P1}
• What is p.spouse.parents?

p.spouse

P4 P2
P4 P3

Person <: parents

P4

Example of join operator

• Let us consider p = {P1}
• What is p.spouse.parents?

p.spouse

P4 P2
P4 P3

Person <: parents

P4

Example of join operator

• Let us consider p = {P1}
• What is p.spouse.parents?

P2
P3

p.spouse.parents

Another example

• Does our example world comply with the second fact?
• We will consider only p = {P1}

all p: Person | some q: p.birthdayBook.Date |
p in q.birthdayBook.Date

Another example

• Does our example world comply with the second fact?
• We will consider only p = {P1}

all p: Person | some q: p.birthdayBook.Date |
p in q.birthdayBook.Date

P1 P3 D1
P1 P4 D2
P3 P2 D1

birthdayBook

P1

p

Another example

• Does our example world comply with the second fact?
• We will consider only p = {P1}

all p: Person | some q: p.birthdayBook.Date |
p in q.birthdayBook.Date

P1 P3 D1
P1 P4 D2
P3 P2 D1

birthdayBook

P1

p

Another example

• Does our example world comply with the second fact?
• We will consider only p = {P1}

all p: Person | some q: p.birthdayBook.Date |
p in q.birthdayBook.Date

P3 D1
P4 D2

p.birthdayBook

Another example

• Does our example world comply with the second fact?
• We will consider only p = {P1}

all p: Person | some q: p.birthdayBook.Date |
p in q.birthdayBook.Date

P3 D1
P4 D2

p.birthdayBook

D1
D2

Date

Another example

• Does our example world comply with the second fact?
• We will consider only p = {P1}

all p: Person | some q: p.birthdayBook.Date |
p in q.birthdayBook.Date

P3 D1
P4 D2

p.birthdayBook

D1
D2

Date

Another example

• Does our example world comply with the second fact?
• We will consider only p = {P1}

all p: Person | some q: p.birthdayBook.Date |
p in q.birthdayBook.Date

P3
P4

p.birthdayBook.Date

Another example

• Does our example world comply with the second fact?
• We will consider only p = {P1}

all p: Person |
p in p.birthdayBook.Date.birthdayBook.Date

P3
P4

p.birthdayBook.Date

P1 P3 D1
P1 P4 D2
P3 P2 D1

birthdayBook

Another example

• Does our example world comply with the second fact?
• We will consider only p = {P1}

all p: Person |
p in p.birthdayBook.Date.birthdayBook.Date

P3
P4

p.birthdayBook.Date

P1 P3 D1
P1 P4 D2
P3 P2 D1

birthdayBook

Another example

• Does our example world comply with the second fact?
• We will consider only p = {P1}

all p: Person |
p in p.birthdayBook.Date.birthdayBook.Date

P2 D1

p.birthdayBook.Date.birthdayBook D1
D2

Date

Another example

• Does our example world comply with the second fact?
• We will consider only p = {P1}

all p: Person |
p in p.birthdayBook.Date.birthdayBook.Date

P2 D1

p.birthdayBook.Date.birthdayBook D1
D2

Date

Another example

• Does our example world comply with the second fact?
• We will consider only p = {P1}

all p: Person |
p in p.birthdayBook.Date.birthdayBook.Date

P2

p.birthdayBook.Date.birthdayBook.Date

Another example

• Does our example world comply with the second fact?
• We will consider only p = {P1}

all p: Person |
p in p.birthdayBook.Date.birthdayBook.Date

P2

p.birthdayBook.Date.birthdayBook.Date

NO!

Functions and predicates

• Parametric expressions (predicates are logical, functions are not)
• Can be used to simplify expressions / give name to expressions

fun commonParents[x: Person, y: Person]: set Person {
x.parents & y.parents

}

pred areSiblings[x: Person, y: Person] {
some commonParents[x, y]

}

fact {
no p: Person | areSiblings[p, p.spouse]
…

}

The Alloy Analyzer

The Alloy Analyzer

• An environment for editing and analyzing Alloy documents
• Two possible analyses:
• Checking: given an assertion (a predicate), does a model exist that falsifies

the assertion?
• Simulation: given a predicate, does a model exist that satisfies the predicate?
• (note that they actually are equivalent)

• The analysis is bounded

Structure of an Alloy document

• Module declaration
• Predicates/functions: reusable expressions
• How the worlds must be structured:
• Signatures: define types and relationships
• Facts: further constraints

• Which properties should be true for a model:
• Assertions: desired properties of the resulting models
• Commands: instruct the Alloy Analyzer how to check assertions

Facts and assertions

• Note the difference!
• Facts express how the models of the document are:
• They describe the domain properties, i.e., the properties of the environment

(e.g., reagent X explodes above some temperature)
• They also describe the specification, i.e., how the machine must behave

according to its design (e.g., under which conditions the system activates the
cooling of the reagents tank)

• Assertions express how we would like the models to be:
• They describe the requirements that we would like to be true (e.g., the

chemical plant will never explode)
• A good specification always ensures the requirements

In Jackson-Zave parlance…

Domain properties
Requirements Specification

The domain properties and the specification must imply the requirements

The facts must imply the assertions

= environment phenomena = machine phenomena

Writing assertions and commands

• An assertion is a (closed) predicate with the assert keyword
• The commands are:
• check : takes an assertion and performs checking
• run : takes a predicate or function and performs simulation

• Commands accept a list of scopes (i.e., the maximum sizes) for sets of
atoms
• If checking fails it produces a counterexample
• If simulation succeeds it produces an example

Examples of commands
assert noParentReflexivity { no x: Person | x in x.parents }
check noParentReflexivity for 2 but exactly 1 String

pred personWithoutParents[x: Person] { no x.parents }
run personWithoutParents for 1 but exactly 1 String

fun personParents[x: Person]: set Person { x.parents }
run personParents for 1 Date, exactly 1 String, exactly 2 Person

“Bounded analysis” means…

• If checking does not find a counterexample, the assertion does not
necessarily hold
• This because the counterexample could exist in a greater scope
• In general, if the scope is “big enough” it is likely the case that the

assertion holds
• In some cases a finite scope exists allowing to perform a complete

analysis (e.g., a Firewire bus has at most 63 devices)
• It is possible to perform bounded temporal analysis, not real temporal

logic model checking

The unbalance

If checking fails the assertion is
surely false…

…but if it succeeds, we cannot
draw any conclusion

If simulation succeeds the Alloy
document is surely consistent…

…but if it fails, we cannot draw any
conclusion

Case study: Elevator scheduling

The elevator scheduling problem

• A classic problem in software engineering
• See, e.g., Ghezzi, Jazayeri, Mandrioli, “Fundamentals of Software

Engineering”, 2nd ed.

Informal description (1)

• A system with n elevators must be installed in a building with m floors
• Each floor has two buttons, one to request an elevator going up, and

one to request an elevator going down (the first and last floors are
the obvious exceptions)
• These buttons have lights that switch on when they are pressed and

switch off when
• The elevator stops at the floor and
• Either is moving in the required direction or has no outstanding request

• In this last case, if both buttons at the floor were pressed, the
elevator must decide which direction to serve (and which button light
to switch off) so to minimize the wait time for both requests

Informal description (2)

• An elevator’s cabin has one button for each floor, to request the cabin to
stop at that floor
• When a button in a cabin is pressed, a light switches on
• The light of a cabin’s button is switched off when the cabin stops at the

corresponding floor
• All the requests from floors must be eventually serviced, with all floors

given equal priority
• All the requests from cabins must be eventually serviced, with floors

serviced sequentially in the direction of the cabin’s travel
• If the elevator has no request to serve, the cabins remain at their final

destinations, waiting for further requests
• Objective: design the elevator’s movement scheduler

Assumptions and modeling decisions

• We will consider the one cabin case for the sake of simplicity
• We drop the (hard? Infeasible?) requirement of minimizing the

waiting time for both requests
• We do not consider real time, just transitions between different

states of the system
• We model the status of buttons just with the status of the associated

pending request (on, off), abstracting away pressure, lighting…
• We only consider the states where the cabin is at a floor, and abstract

away the fact that the cabin might be cruising between two floors
• We do not model opening/closing of the doors

Modelling

• Directions
• Up and down

• Floors
• Have an order (from the ground up to the last one)

• Cabin
• Has a position (the current floor)
• Moves according to the directives of the scheduler

• Scheduler:
• Stores all the requests
• Decides which is the next floor that the cabin must serve

Movement and floors

module elevator

open util/ordering[Floor] as floors

sig Floor { }

abstract sig Move { }
one sig Up extends Move { }
one sig Down extends Move { }

Polymorphic module : defines a set of
signatures/facts/etc. over another signature

Subsignatures : all atoms of a subsignature are also
atoms of the signature it extends

Abstract signatures : have no atoms (inherit
those of their subsignatures)

Multiplicity constraint

The system (cabin + scheduler)

sig System {
curFloor: Floor,
curDirection: Move,
intRequests: set Floor,
extRequests: Floor -> Move,
nextFloor: lone Floor

}
{
…

}
Signature facts : simplify writing a set of facts inherent to a signature’s atoms

The system (cabin + scheduler)

sig System {
curFloor: Floor,
curDirection: Move,
intRequests: set Floor,
extRequests: Floor -> Move,
nextFloor: lone Floor

}
facts {
all this: System |
…

}

Representation invariant

• We need to enforce the representation invariants to exclude
meaningless states
• The only invariant is disallowing “go down” requests from the ground

floor and “go up” requests from the last floor (these buttons do not
exist!)

The system (cabin + scheduler)

…
open util/ordering[Floor] as floors
…
sig System {
curFloor: Floor,
curDirection: Move,
intRequests: set Floor,
extRequests: Floor -> Move,
destFloor: lone Floor

}
{
//The first and last floor have only one request button
Down !in extRequests[floors/first[]]
Up !in extRequests[floors/last[]]
…

}

The util/ordering module

• The util/ordering[Sig] module defines signatures/facts to
impose a total order on Sig
• It also defines many functions and predicates:
• first[], last[]: the first / last element of Sig
• prev[s: Sig], next[s: Sig] : the previous / next element of s
• prevs[s: Sig], nexts[s: Sig] : all the predecessors / successors of
s
• lt[s1, s2: Sig], gt[s1, s2: Sig] : does s1 come before / after
s2?
• lte, gte : before or equal / after or equal

The scheduler (1)

• We do not define a specific (imperative?) algorithm for the scheduler
• We exploit the power of logic to define a set of constraints that any

sensible scheduling algorithm should have
• However, these constraints should not be too abstract that they

cannot be considered “implementable”
• In Jackson-Zeve terms, we are writing a specification for scheduling

The scheduler (2)

• The shared phenomena between the scheduler (machine) and the
elevator (environment) are
• The pending requests: s.intRequests, s.extRequests
• The destination floor: s.destFloor

• Therefore, the specification for the scheduler must tell:
• When a pending request is considered served and removed from the list of

pending requests
• How the destination floor is calculated

Calculation of destination floor

• Idea: divide the pending requests in three sets with different priority
• Top priority: requests that can be served without switching the direction of

the cabin movement
• Mid priority: requests that can be served by switching the direction of the

cabin movement once
• Low priority: requests that can be served by switching the direction of the

cabin movement twice

• The destination floor is picked with some criterion from the
nonempty set with highest priority

Definition of priority sets

• If the cabin’s current direction is up:
• Top priority:

• Cabin requests to floors above the current one, and
• Requests coming from floors above the current one for going up

• Mid priority:
• Cabin requests to floors below the current one, and
• Request coming from floors for going down

• Low priority:
• Requests coming from floors below the current one for going up

• Dual if the cabin’s current direction is down

Definition of priority sets, example

Current floor Current direction: U

0

1

2

3

4

5

6 D

U

I, D

D

I, U

U

Floors Requests

TOP: ≥ && (I || U)
MID: (< && I) || D
LOW: < && U

D

Next floor

I = internal (cabin) request
D = external (floor) request for going down
U = external (floor) request for going up

Picking the destination floor

• Once selected the right priority set, which floor shall we pick from it
as the destination one?
• Idea: pick the one that maintains the minimal number of movements
• More precisely: pick the floor that, if served, will allow to serve the

other floors in the same priority class without switching direction
(assuming that no other requests arrive)

Picking the destination floor, example (1)

Current floor

0

1

2

3

4

5

6

U

I

Floors Requests

Dest floor

Current direction: U

I = internal (cabin) request
D = external (floor) request for going down
U = external (floor) request for going up

Dest floor = closest in the current direction

Picking the destination floor, example (2)

Current floor

0

1

2

3

4

5

6

Floors Requests

Dest floor

Current direction: U

D

D

D

I

D

Dest floor = farthest in the current direction

I = internal (cabin) request
D = external (floor) request for going down
U = external (floor) request for going up

Picking the next floor, example (3)

Current floor

0

1

2

3

4

5

6

Floors Requests

Dest floor

Current direction: U

Dest floor = farthest in the opposite direction

U

U I = internal (cabin) request
D = external (floor) request for going down
U = external (floor) request for going up

Scheduler, calculation of destination floor (1)
fun priTopUp[s: System]: set Floor {
{ f: Floor | floors/gte[f, s.curFloor] &&

(f in s.intRequests || Up in s.extRequests[f]) }
}

Set comprehension : defines a set of atoms

Alternative join notation, equivalent to f.(s.extRequests)

Scheduler, calculation of destination floor (2)
fun priTopUp[s: System]: set Floor {
{ f: Floor | floors/gte[f, s.curFloor] &&

(f in s.intRequests || Up in s.extRequests[f]) }
}

fun priMidUp[s: System]: set Floor {
{ f: Floor | (floors/lt[f, s.curFloor] && f in s.intRequests) ||

Down in s.extRequests[f]
}

fun priLowUp[s: System: set Floor {
{ f: Floor | floors/lt[f, s.curFloor] && Up in s.extRequests[f] }

}

//Dual if current direction is down

Scheduler, calculation of destination floor (3)
pred minFloor[f: Floor, fs: set Floor] {
f in fs && (no f’: Floor | f’ in fs && floors/lt[f’, f])

}

pred maxFloor[f: Floor, fs: set Floor] {
f in fs && (no f’: Floor | f’ in fs && floors/lt[f, f’])

}

Scheduler, calculation of destination floor (4)

sig System {
…

}
{
…
//calculates the destination floor
curDirection = Up => (
(some priTopUp[this] &&
some destFloor && minFloor[destFloor, priTopUp[this]]) ||

(no priTopUp[this] && some priMidUp[this] &&
some destFloor && maxFloor[destFloor, priMidUp[this]]) ||

(no priTopUp[this] && no priMidUp[this] && some PriLowUp[this] &&
some destFloor && minFloor[destFloor, priLowUp[this]]) ||

(no priTopUp[this] && no priMidUp[this] && no priLowUp[this] &&
no destFloor)

//Dual if curDirection = Down
}

Calculation of the served requests

• As the cabin arrives at the destination floor, the scheduler must
remove all the requests that it considers served
• Note that not all the requests for the current floor are considered

served by the scheduler:
• If there is a pending cabin request, this is always considered served
• If there is a pending floor request for a given direction, this is considered

served only if the scheduler will move the cabin in the right direction

• Result: at most one cabin request and one floor request are
considered served each time a cabin arrives at a floor

A complication

• As a request is considered served, the scheduler should recalculate the
next direction to move the cabin
• But at the same time, to calculate the next direction it must know which

requests have been served
• We will solve this circularity by representing calculation of served requests

with state transitions (actions):
• The system transitions to a state where the internal request (if present) is removed,

and the schedule recalculated
• If the system is stuck at the same floor, it transitions to a state where the “best”

external request (if present) is removed, and the schedule recalculated again
• If the system is still stuck at the same floor, the last external request is removed

Served requests, example

Current floor Current direction: U3

4

5

6

I, U, D

Floors Requests

Dest floor

I = internal (cabin) request
D = external (floor) request for going down
U = external (floor) request for going up

2 D

Served requests, example

Current floor = dest floor

3

4

5

6

I, U, D

Floors Requests

Request served: I

2 D

Current direction: U

I = internal (cabin) request
D = external (floor) request for going down
U = external (floor) request for going up

Served requests, example

Current floor = dest floor

3

4

5

6

U, D

Floors Requests

2 D

Current direction: U

I = internal (cabin) request
D = external (floor) request for going down
U = external (floor) request for going up

Served requests, example

3

4

5

6

U, D

Floors Requests

Hypotetic dest floor 2 D

Current direction: U

I = internal (cabin) request
D = external (floor) request for going down
U = external (floor) request for going up

Current floor = dest floor

Served requests, example

3

4

5

6

U, D

Floors Requests

Request served: D

2 D

Current direction: U

I = internal (cabin) request
D = external (floor) request for going down
U = external (floor) request for going up

Current floor = dest floor

Hypotetic dest floor

Served requests, example

3

4

5

6

U

Floors Requests

2 D

Current direction: U

I = internal (cabin) request
D = external (floor) request for going down
U = external (floor) request for going up

Current floor = dest floor

Served requests, example

3

4

5

6

U

Floors Requests

2 D

Current direction: U

I = internal (cabin) request
D = external (floor) request for going down
U = external (floor) request for going up

Current floor = dest floor

Still stuck: delete U

Served requests, example

3

4

5

6

Floors Requests

2 D

Current direction: U

I = internal (cabin) request
D = external (floor) request for going down
U = external (floor) request for going up

Current floor

Dest floor

Served requests, example

Current floor 3

4

5

6

Floors Requests

2 D

Current direction: D

I = internal (cabin) request
D = external (floor) request for going down
U = external (floor) request for going up

Dest floor

Some refactoring

• We need to do some refactoring to avoid repeating the same
formulas more than once
• We put the calculation of the destination floor in a predicate, so it can

be used to calculate the hypothetic destination floor
• For the same reason we also need to change the parameters of the

auxiliary functions that define the priority sets

Calculation of destination floor, refactored (1)
fun priTopUp[curFloor: Floor, intRequests: set Floor, extRequests: Floor -> Move]:
set Floor {
{ f: Floor | floors/gte[f, curFloor] &&

(f in intRequests || Up in extRequests[f]) }
}

//Similarly for the other functions

Calculation of destination floor, refactored (2)
pred isTheDestFloor[destFloor: lone Floor, curDirection: Move, curFloor: Floor,

intRequests: set Floor, extRequests: Floor -> Move] {
curDirection = Up => (
(some priTopUp[curFloor, intRequests, extRequests] &&
some destFloor && minFloor[destFloor, priTopUp[…]]) ||

(no priTopUp[…] && some priMidUp[…] &&
some destFloor && maxFloor[destFloor, priMidUp[…]]) ||

(no priTopUp[…] && no priMidUp[…] && some PriLowUp[…] &&
some destFloor && minFloor[destFloor, priLowUp[…]]) ||

(no priTopUp[…] && no priMidUp[…] && no priLowUp[…] &&
no destFloor)

//Dual if curDirection = Down
}

fun theDestFloor[curDirection: Move, curFloor: Floor, intRequest: set Floor,
extRequest: Floor -> Move]: lone Floor {

{ destFloor: Floor |
isTheDestFloor[destFloor, curDirection, curFloor, intRequest, extRequest] }

}

Calculation of destination floor, refactored (3)
sig System {
…

}
{
…
//calculates the destination floor
destFloor = theDestFloor[curDirection, curFloor, intRequests, extRequests]

}

State transitions

• We need to represent state transitions:
• Triggered by inputs
• Or spontaneous

• In a noble tradition we model state transitions with predicates that
relate the pre-state to the post-state
• If the transition has inputs/outputs, we add them as parameters of

the predicate
• We call actions these kind of predicates

Actions

• Each action may have a precondition and has a postcondition
• Precondition: sub-predicate identifying the pre-states in which the

action may fire
• Postcondition: sub-predicate relating the post-state to the pre-state

InternalPush, ExternalPush

• The action that correspond to the fact that someone pushed a cabin
button or a floor button
• InternalPush has as parameter the destination floor
• ExternalPush has as parameters the floor where the button is,

and the required direction
• The effect of the actions is just to add an item to the pending

requests

InternalPush

//someone pushes the button in the cabin to floor f
pred InternalPush[s, s': System, f: Floor] {
//Precondition:
f !in s.intRequest //no stutter

//Postcondition:
s'.curFloor = s.curFloor
s'.curDirection = s.curDirection
s'.intRequest = s.intRequest + f
s'.extRequest = s.extRequest

}

ExternalPush

//someone pushes the button at floor f for direction m
pred ExternalPush[s, s': System, f: Floor, m: Move] {
//Precondition:
(f -> m) !in s.extRequest //no stutter

//Postcondition:
s'.curFloor = s.curFloor
s'.curDirection = s.curDirection
s'.intRequest = s.intRequest
s'.extRequest = s.extRequest + (f -> m)

}

MoveToNextFloor

• This action activates spontaneously (i.e., no input) when the current
floor is different from the next floor calculated by the scheduler
• The effect is to update the current floor (i.e., to move the cabin), and

nothing else: Other actions calculate the new pending requests
• Note that it moves one floor at a time!

MoveToNextFloor

pred MoveToNextFloor[s, s': System] {
//Precondition
some s.destFloor //otherwise, the cabin must stand still
s.curFloor != s.destFloor //same

//Postcondition:
floors/lt[s.destFloor, s.curFloor] =>
(s'.curFloor = floors/prev[s.curFloor] && s'.curDirection = Down)

else
(s'.curFloor = floors/next[s.curFloor] && s'.curDirection = Up)

s'.intRequest = s.intRequest
s'.extRequest = s.extRequest

}

Calculation of the served requests

• The calculation of the served requests is performed by three actions:
• ServeIntRequest is triggered when the cabin is at the destination floor, if

there is an internal request for the floor, and removes it
• ServeExtRequestHypotheticalDir is triggered after
ServeIntRequest, if the cabin is still at the destination floor, and
removes the external request in the hypothetical direction
• ServeExtRequestStuck is triggered after
ServeExtRequestHypotheticalDir, if the cabin is still at the
destination floor, and removes the remaining external request (after it, the
scheduler will calculate a different destination floor).

ServeIntReq

pred ServeIntReq[s, s': System] {
//Precondition
s.curFloor = s.destFloor
s.curFloor in s.intRequests //no stutter

//Postcondition
s'.curFloor = s.curFloor
s'.curDirection = s.curDirection
s'.intRequest = s.intRequest - s.curFloor
s'.extRequest = s.extRequest

}

Calculation of hypothetical direction

fun hypotheticalDestFloor[s: System]: lone Floor {
theDestFloor[s.curDirection, s.curFloor, s.intRequests,

s.extRequests – (s.curFloor -> Move)]
}

fun hypotheticalDir[s: System]: lone Move {
some hypotheticalDestFloor[s] => (
floors/lt[s.curFloor, hypotheticalDestFloor[s]] =>
Up

else
Down)

else
none

}

ServeExtRequestHypotheticalDir

pred ServeExtRequestHypotheticalDir[s, s': System] {
//Precondition
s.curFloor = s.destFloor
s.curFloor !in s.intRequest //already served internal requests
some hypotheticalDir[s]
hypotheticalDir[s] in s.extRequests[s.curFloor]

//Postcondition
s'.curFloor = s.curFloor
s'.curDirection = s.curDirection
s'.intRequest = s.intRequest
s'.extRequest = s.extRequest – (s.curFloor -> hypotheticalDir[s])

}

ServeExtRequestStuck

pred ServeExtRequestStuck[s, s': System] {
//Precondition
s.curFloor = s.destFloor
s.curFloor !in s.intRequest
no hypotheticalDir[s] ||
hypotheticalDir[s] !in s.extRequests[s.curFloor]
//already served external request in the hypothetical direction

//Postcondition
s'.curFloor = s.curFloor
s'.curDirection = s.curDirection
s'.intRequest = s.intRequest
s'.extRequest = s.extRequest – (s.curFloor -> Move)

}

Assertions

• Is the (complex) scheduler we designed a good scheduler?
• To answer the question, we need to identify a set of requirements

that define what a “good scheduler” is, and then verify that they hold
• In other words, we need to write a set of assertions capturing these

requirements

Bounded temporal analysis

• What if we want to write assertions on computations?
• We need to precisely define with a predicate what a “computation” is:
• A sequence of states such that
• The first state in the sequence is a suitable initialization state, and
• Each subsequent pair of states in the sequence is related by an action (for

some input)

• We can further refine the concept and write predicate for particular
kinds of computations

Bounded temporal analysis (1)

…
open util/ordering[System] as systems
…
pred Init[s: System] {
//Postcondition
s.curFloor = floors/first[]
s.curDirection = Up
no s.intRequest
no s.extRequest
no s.destFloor

}

Bounded temporal analysis (2)

pred Step[s, s': System] {
(some f: Floor | InternalPush[s, s', f]) ||
(some f: Floor, m: Move | ExternalPush[s, s', f, m]) ||
MoveToNextFloor[s, s'] ||
ServeIntRequest[s, s'] ||
ServeExtRequestHypotheticalDir[s, s'] ||
ServeExtRequestStuck[s, s']

}

//A computation starting from an arbitrary state
pred ComputeFromAny[] {
all s, s': System | s' = systems/next[s] => Step[s, s’]

}

Bounded temporal analysis (3)

//An unconstrained computation
pred Compute[] {
Init[systems/first[]]
ComputeFromAny[]

}

//A computation without additional requests
pred ComputeFromAnyNoReq[] {
ComputeFromAny[]

//No additional requests
all s, s': System | s' = systems/next[s] =>
no f: Floor, m: Move |
(InternalPush[s, s', f] || ExternalPush[s, s', f, m])

}

Some possible requirements (“static”)

• System is consistent: There is at least one System that satisfies all
the constraints
• The destination floor is requested: The scheduler always selects the

destination floor among the pending requests
• No destination implies no request: If the scheduler does not select

any destination floor, there is no pending request
• The scheduler is deterministic: The destination floor univocally

depends on the current floor, the current direction, and the pending
requests

Some possible requirements (“dynamic”)

• System has computations: At least one computation must exist
• A request stays scheduled until is served: The destination floor does

not change until the initial request is initially served, if no additional
requests are issued in the meantime
• The cabin does not get stuck at the destination floor: After the cabin

arrives at the destination floor, if there are other pending requests at
different floors, then eventually the scheduler will select a new,
different destination floor

Liveness

• Does the designed elevator system progress, i.e., is every request
eventually served?
• We have two flavors of liveness that we may want to check:
• (easy) An issued request is eventually served, if after it is issued no other

request is issued
• (hard) An issued request is eventually served, unconditionally

• The Alloy Analyzer cannot help us prove neither, but can help us
gaining some confidence that the easy one holds

Extra

(Non)determinism

• Our Alloy document is very likely to be nondeterministic
• Deterministic = at most one result, nondeterministic = more than one
• Nondeterminism is due to at least these factors:
• Arbitrary inputs (underspecified environment)
• Arbitrary choice of next action (actions have overlapping preconditions)
• Nonfunctional actions (intrinsically nondeterministic)

• But there is another, more subtle factor…

Example (1)

sig Element { }

abstract sig List { }
one sig EmptyList extends List { }
sig NonemptyList extends List {
elt: Element,
next: List

}

fact acyclic { all p: List | p !in p.^next }

pred cons(ls, ls’: List, elt: Element) {
ls’.elt = elt && ls’.next = ls

}

//Can you spot the nondeterminism of cons?

Example (2)

L3

E3

L2

E2

L1

E1

L0

L4 L5

E4

elt elt elt

next next next
= LIST

= ELT

Example (2)

L3

E3

L2

E2

L1

E1

L0

L4 L5

E4

elt elt elt

next next next
= LIST

= ELT

elt

next

Example (2)

L3

E3

L2

E2

L1

E1

L0

L4 L5

E4

elt elt elt

next next next
= LIST

= ELT

elt

next

Avoiding nondeterminism

• To make an Alloy document deterministic, you need to add suitable
facts to it
• Constrain the environment to specify the sequence of inputs
• Refine actions so that their preconditions do not overlap and their

postconditions are deterministic

• Avoiding the last form of nondeterminism (presence of isomorphic
worlds) is not in general possible

Stuttering

• We took special care in avoiding stuttering when defining actions
• We say that we have stuttering when it is possible that an action does

not yield a post-state different from the pre-state
• In other word, for some action act, there are systems/inputs such

that act[s, s', inputs] and s.curFloor =
s'.curFloor, s.curDirection = s'.curDirection, …
• Stuttering yields computations that do not progress, which turn to be

unduly counterexamples to assertions of the kind “eventually
something happens”

Bibliography

• For Alloy:
• Daniel Jackson, Software Abstractions: Logic, language, and analysis. Revised

edition. MIT Press.

• For requirements engineering:
• Michael Jackson, The world and the machine. In Proceedings of ICSE’95. ACM

Press.
• Pamela Zave, Michael Jackson. Four dark corners of requirement engineering.

ACM TOSEM, 6(1), January 1997.

