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What is Alloy?

• A formal notation for specifying models of systems and of software
• With a tool to simulate and verify the documents written in it
• Available at http://alloytools.org

http://alloytools.org/


The Alloy language



Features of the language

• Declarative language based on relational algebra and first-order logic
• Allows to define complex structures as you would do in an OO 

language or in UML
• Allows to define complex relations between states as, e.g., state 

transitions
• What can be described with this language? E.g.
• The heap memory of an OO program
• Databases in E-R format
• Configurations in a web application
• Topologies of a network
• …



Running example

• There are persons and birthday books
• Each person has:
• 1 name
• 0..1 spouse
• 0..n parents
• 1 birthday book

• Each birthday book:
• Contains a list of people
• For each, it reports his/her birthday



In UML

+name : Name

Person

parent

*
+date : Date

BirthdayBook
*

spouse

0..1

friend



An Alloy document
module birthday_book Modules : organize Alloy specifications



An Alloy document
module birthday_book

sig Date { }

sig Person {
name: String,
spouse: lone Person,
parents: set Person,
birthdayBook: Person -> Date

}

Modules : organize Alloy specifications

Signature definitions: 
Define entities and relations



Meaning of Alloy documents

• It’s quite similar to the meaning of E-R or UML diagrams:
• There are entities (atoms in Alloy parlance)…
• …and relations over them

• Atoms are featureless, indivisible and immutable: all their features 
come from relations
• Relations are, as usual, sets of ordered tuples of atoms, and they are 

always finite
• An Alloy world is composed by atoms and relations
• A world that satisfies an Alloy specification is a model of it



Signatures (1)

• Signatures define the “types” (“classes”) of an Alloy specification
• For instance, sig Date {} means that there must exist a set of 

atoms, where each atom stands for a date
• It does not say anything else on these atoms: Which are their 

attributes, how many of them exist…
• Also, the signature defines a unary relation (a set), with name Date, 

that contains all the atoms with that type
• Similarly, sig Person { … } states that there are some other 

atoms, the persons, distinct from the dates, and implicitly defines the 
set Person of all these atoms



Signatures (2)

• Signatures are also used to define relations
• Relations definitions are enclosed in curly braces after the sig

declaration

sig Person {
name: String,
spouse: lone Person,
parents: set Person,
birthdayBook: Person -> Date

}

Each person has a name, and the name is
a String

There is a binary relation between the 
atoms of type Person and the atoms of 
type String



Multiplicity constraints
sig Person {

name: String,
spouse: lone Person,
parents: set Person,
…

}

Each person has…



Multiplicity constraints

Exactly one name
Each person has…sig Person {

name: String,
spouse: lone Person,
parents: set Person,
…

}



Multiplicity constraints

Exactly one name
Each person has…

One or no spouse

sig Person {
name: String,
spouse: lone Person,
parents: set Person,
…

}



Multiplicity constraints

Exactly one name
Each person has…

One or no spouse
Zero, one or more than one parent

sig Person {
name: String,
spouse: lone Person,
parents: set Person,
…

}



Multiplicity constraints

Exactly one name
Each person has…

One or no spouse
Zero, one or more than one parent

More kinds of constraints:
• one : exactly one (can be omitted)
• some : one or more
• no : exactly zero

sig Person {
name: String,
spouse: lone Person,
parents: set Person,
…

}



Non-binary relations
sig Person {

…
birthdayBook: Person -> Date

}
There is a ternary relation between
Person, Person and Date



A possible model

P1 P4
P2 P3

Person <: spouse

P1 ANN
…

Person <: name

P4 P2
P4 P3

Person <: parents

D1
D2

Date

P1
P2
P3
P4
P5

Person

ANN
BILL

JOHN
LISA
PAM

String

P1 P3 D1
P1 P4 D2
P3 P2 D1

Person <: birthdayBook



Example of facts
• No person is married with a sibling



Example of facts
• No person is married with a sibling fact {

no p: Person | 
some (p.spouse.parents & p.parents)



Example of facts
• No person is married with a sibling

• Each person is in the birthday book of 
one of the people in his/her birthday 
book

fact {
no p: Person | 
some (p.spouse.parents & p.parents)



Example of facts
• No person is married with a sibling

• Each person is in the birthday book of 
one of the people in his/her birthday 
book

fact {
no p: Person | 
some (p.spouse.parents & p.parents)

all p: Person | 
some q: p.birthdayBook.Date |
p in q.birthdayBook.Date

}



Let’s consider the first fact…
• No person is married with a sibling fact {

no p: Person | 
some (p.spouse.parents & p.parents)

For no atom p of type Person



Let’s consider the first fact…
• No person is married with a sibling fact {

no p: Person | 
some (p.spouse.parents & p.parents)

For no atom p of type Person exists an atom



Let’s consider the first fact…
• No person is married with a sibling fact {

no p: Person | 
some (p.spouse.parents & p.parents)

For no atom p of type Person exists an atom in the intersection



Let’s consider the first fact…
• No person is married with a sibling fact {

no p: Person | 
some (p.spouse.parents & p.parents)

For no atom p of type Person exists an atom in the intersection of p’s parents



Let’s consider the first fact…
• No person is married with a sibling fact {

no p: Person | 
some (p.spouse.parents & p.parents)

For no atom p of type Person exists an atom in the intersection of p’s parents
and the parents of p’s spouse



Expressions

• Logical
• Relational
• Numeric (integer)



Logical operators

• and (&&), or (||), not (!)
• implication (=>), if-then-else (F => G else H), inverse implication

(<=), logical equivalence (<=>)
• Quantifiers (all, some, no, lone, one)
• Subset: in and =
• r in s is true iff r is a subset of s (relation inclusion)
• r = s equivalent to (r in s && s in r)



Relational operators

• Set-theoretic operators
• Union (+), intersection (&), difference (-) 
• Remember! Sets are actually unary relations

• Relational operators, binary
• Join (. , []), cartesian product (->), domain restriction (<:), range

restriction (:>)

• Relational operators, unary
• transpose (~), transitive closure (^), transitive and reflexive closure (*)



The join operator

• The join operator (.) is used to “navigate” through relations
• Its definition is quite similar to that of natural join used in database 

theory’s relational algebra, with the following differences:
• The common columns are the last one of the left operand and the first one of 

the right operand
• The common columns are projected away

• Note that in Alloy all variables are considered sets with just one 
element
• This allows to do the join of a variable with another



Example of join operator

• Let us consider p = {P1}
• What is p.spouse.parents?

P1

p

P1 P4
P2 P3

Person <: spouse



Example of join operator

• Let us consider p = {P1}
• What is p.spouse.parents?

P1 P4
P2 P3

Person <: spouse

P1

p



Example of join operator

• Let us consider p = {P1}
• What is p.spouse.parents?

P1 P4
P2 P3

Person <: spousep

P1



Example of join operator

• Let us consider p = {P1}
• What is p.spouse.parents?

P1 P4

Person <: spousep

P1



Example of join operator

• Let us consider p = {P1}
• What is p.spouse.parents?

p.spouse

P4



Example of join operator

• Let us consider p = {P1}
• What is p.spouse.parents?

p.spouse

P4 P2
P4 P3

Person <: parents

P4



Example of join operator

• Let us consider p = {P1}
• What is p.spouse.parents?

p.spouse

P4 P2
P4 P3

Person <: parents

P4



Example of join operator

• Let us consider p = {P1}
• What is p.spouse.parents?

P2
P3

p.spouse.parents



Another example

• Does our example world comply with the second fact?
• We will consider only p = {P1}

all p: Person | some q: p.birthdayBook.Date | 
p in q.birthdayBook.Date



Another example

• Does our example world comply with the second fact?
• We will consider only p = {P1}

all p: Person | some q: p.birthdayBook.Date | 
p in q.birthdayBook.Date

P1 P3 D1
P1 P4 D2
P3 P2 D1

birthdayBook

P1

p



Another example

• Does our example world comply with the second fact?
• We will consider only p = {P1}

all p: Person | some q: p.birthdayBook.Date | 
p in q.birthdayBook.Date

P1 P3 D1
P1 P4 D2
P3 P2 D1

birthdayBook

P1

p



Another example

• Does our example world comply with the second fact?
• We will consider only p = {P1}

all p: Person | some q: p.birthdayBook.Date | 
p in q.birthdayBook.Date

P3 D1
P4 D2

p.birthdayBook



Another example

• Does our example world comply with the second fact?
• We will consider only p = {P1}

all p: Person | some q: p.birthdayBook.Date | 
p in q.birthdayBook.Date

P3 D1
P4 D2

p.birthdayBook

D1
D2

Date



Another example

• Does our example world comply with the second fact?
• We will consider only p = {P1}

all p: Person | some q: p.birthdayBook.Date | 
p in q.birthdayBook.Date

P3 D1
P4 D2

p.birthdayBook

D1
D2

Date



Another example

• Does our example world comply with the second fact?
• We will consider only p = {P1}

all p: Person | some q: p.birthdayBook.Date | 
p in q.birthdayBook.Date

P3
P4

p.birthdayBook.Date



Another example

• Does our example world comply with the second fact?
• We will consider only p = {P1}

all p: Person | 
p in p.birthdayBook.Date.birthdayBook.Date

P3
P4

p.birthdayBook.Date

P1 P3 D1
P1 P4 D2
P3 P2 D1

birthdayBook



Another example

• Does our example world comply with the second fact?
• We will consider only p = {P1}

all p: Person | 
p in p.birthdayBook.Date.birthdayBook.Date

P3
P4

p.birthdayBook.Date

P1 P3 D1
P1 P4 D2
P3 P2 D1

birthdayBook



Another example

• Does our example world comply with the second fact?
• We will consider only p = {P1}

all p: Person | 
p in p.birthdayBook.Date.birthdayBook.Date

P2 D1

p.birthdayBook.Date.birthdayBook D1
D2

Date



Another example

• Does our example world comply with the second fact?
• We will consider only p = {P1}

all p: Person | 
p in p.birthdayBook.Date.birthdayBook.Date

P2 D1

p.birthdayBook.Date.birthdayBook D1
D2

Date



Another example

• Does our example world comply with the second fact?
• We will consider only p = {P1}

all p: Person | 
p in p.birthdayBook.Date.birthdayBook.Date

P2

p.birthdayBook.Date.birthdayBook.Date



Another example

• Does our example world comply with the second fact?
• We will consider only p = {P1}

all p: Person | 
p in p.birthdayBook.Date.birthdayBook.Date

P2

p.birthdayBook.Date.birthdayBook.Date

NO!



Functions and predicates

• Parametric expressions (predicates are logical, functions are not)
• Can be used to simplify expressions / give name to expressions

fun commonParents[x: Person, y: Person]: set Person {
x.parents & y.parents

}

pred areSiblings[x: Person, y: Person] { 
some commonParents[x, y] 

}

fact { 
no p: Person | areSiblings[p, p.spouse]
…

}



The Alloy Analyzer



The Alloy Analyzer

• An environment for editing and analyzing Alloy documents
• Two possible analyses:
• Checking: given an assertion (a predicate), does a model exist that falsifies 

the assertion?
• Simulation: given a predicate, does a model exist that satisfies the predicate?
• (note that they actually are equivalent)

• The analysis is bounded



Structure of an Alloy document

• Module declaration
• Predicates/functions: reusable expressions
• How the worlds must be structured:
• Signatures: define types and relationships
• Facts: further constraints

• Which properties should be true for a model:
• Assertions: desired properties of the resulting models
• Commands: instruct the Alloy Analyzer how to check assertions



Facts and assertions

• Note the difference!
• Facts express how the models of the document are:
• They describe the domain properties, i.e., the properties of the environment 

(e.g., reagent X explodes above some temperature)
• They also describe the specification, i.e., how the machine must behave 

according to its design (e.g., under which conditions the system activates the 
cooling of the reagents tank)

• Assertions express how we would like the models to be:
• They describe the requirements that we would like to be true (e.g., the 

chemical plant will never explode)
• A good specification always ensures the requirements



In Jackson-Zave parlance…

Domain properties
Requirements Specification

The domain properties and the specification must imply the requirements

The facts must imply the assertions

= environment phenomena = machine phenomena



Writing assertions and commands

• An assertion is a (closed) predicate with the assert keyword
• The commands are:
• check : takes an assertion and performs checking
• run : takes a predicate or function and performs simulation

• Commands accept a list of scopes (i.e., the maximum sizes) for sets of 
atoms
• If checking fails it produces a counterexample
• If simulation succeeds it produces an example



Examples of commands
assert noParentReflexivity { no x: Person | x in x.parents }
check noParentReflexivity for 2 but exactly 1 String

pred personWithoutParents[x: Person] { no x.parents }
run personWithoutParents for 1 but exactly 1 String

fun personParents[x: Person]: set Person { x.parents }
run personParents for 1 Date, exactly 1 String, exactly 2 Person



“Bounded analysis” means…

• If checking does not find a counterexample, the assertion does not 
necessarily hold
• This because the counterexample could exist in a greater scope
• In general, if the scope is “big enough” it is likely the case that the 

assertion holds
• In some cases a finite scope exists allowing to perform a complete 

analysis (e.g., a Firewire bus has at most 63 devices)
• It is possible to perform bounded temporal analysis, not real temporal 

logic model checking



The unbalance

If checking fails the assertion is 
surely false…

…but if it succeeds, we cannot 
draw any conclusion

If simulation succeeds the Alloy 
document is surely consistent…

…but if it fails, we cannot draw any 
conclusion



Case study: Elevator scheduling



The elevator scheduling problem

• A classic problem in software engineering
• See, e.g., Ghezzi, Jazayeri, Mandrioli, “Fundamentals of Software 

Engineering”, 2nd ed.



Informal description (1)

• A system with n elevators must be installed in a building with m floors
• Each floor has two buttons, one to request an elevator going up, and 

one to request an elevator going down (the first and last floors are 
the obvious exceptions)
• These buttons have lights that switch on when they are pressed and 

switch off when
• The elevator stops at the floor and
• Either is moving in the required direction or has no outstanding request

• In this last case, if both buttons at the floor were pressed, the 
elevator must decide which direction to serve (and which button light 
to switch off) so to minimize the wait time for both requests



Informal description (2)

• An elevator’s cabin has one button for each floor, to request the cabin to 
stop at that floor
• When a button in a cabin is pressed, a light switches on
• The light of a cabin’s button is switched off when the cabin stops at the 

corresponding floor
• All the requests from floors must be eventually serviced, with all floors 

given equal priority
• All the requests from cabins must be eventually serviced, with floors 

serviced sequentially in the direction of the cabin’s travel
• If the elevator has no request to serve, the cabins remain at their final 

destinations, waiting for further requests
• Objective: design the elevator’s movement scheduler



Assumptions and modeling decisions

• We will consider the one cabin case for the sake of simplicity
• We drop the (hard? Infeasible?) requirement of minimizing the 

waiting time for both requests
• We do not consider real time, just transitions between different 

states of the system
• We model the status of buttons just with the status of the associated 

pending request (on, off), abstracting away pressure, lighting…
• We only consider the states where the cabin is at a floor, and abstract 

away the fact that the cabin might be cruising between two floors
• We do not model opening/closing of the doors



Modelling

• Directions
• Up and down

• Floors
• Have an order (from the ground up to the last one)

• Cabin
• Has a position (the current floor)
• Moves according to the directives of the scheduler

• Scheduler: 
• Stores all the requests
• Decides which is the next floor that the cabin must serve



Movement and floors

module elevator

open util/ordering[Floor] as floors

sig Floor { }

abstract sig Move { }
one sig Up extends Move { }
one sig Down extends Move { }

Polymorphic module : defines a set of 
signatures/facts/etc. over another signature

Subsignatures : all atoms of a subsignature are also
atoms of the signature it extends

Abstract signatures : have no atoms (inherit
those of their subsignatures)

Multiplicity constraint



The system (cabin + scheduler)

sig System {
curFloor: Floor,
curDirection: Move,
intRequests: set Floor,
extRequests: Floor -> Move,
nextFloor: lone Floor

}
{
…

}
Signature facts : simplify writing a set of facts inherent to a signature’s atoms



The system (cabin + scheduler)

sig System {
curFloor: Floor,
curDirection: Move,
intRequests: set Floor,
extRequests: Floor -> Move,
nextFloor: lone Floor

}
facts {
all this: System |
…

}



Representation invariant

• We need to enforce the representation invariants to exclude 
meaningless states
• The only invariant is disallowing “go down” requests from the ground 

floor and “go up” requests from the last floor (these buttons do not 
exist!)



The system (cabin + scheduler)

…
open util/ordering[Floor] as floors
…
sig System {
curFloor: Floor,
curDirection: Move,
intRequests: set Floor,
extRequests: Floor -> Move,
destFloor: lone Floor

}
{
//The first and last floor have only one request button
Down !in extRequests[floors/first[]]
Up !in extRequests[floors/last[]]
…

}



The util/ordering module

• The util/ordering[Sig] module defines signatures/facts to 
impose a total order on Sig
• It also defines many functions and predicates:
• first[], last[]: the first / last element of Sig
• prev[s: Sig], next[s: Sig] : the previous / next element of s
• prevs[s: Sig], nexts[s: Sig] : all the predecessors / successors of 
s
• lt[s1, s2: Sig], gt[s1, s2: Sig] : does s1 come before / after 
s2?
• lte, gte : before or equal / after or equal



The scheduler (1)

• We do not define a specific (imperative?) algorithm for the scheduler
• We exploit the power of logic to define a set of constraints that any 

sensible scheduling algorithm should have
• However, these constraints should not be too abstract that they 

cannot be considered “implementable”
• In Jackson-Zeve terms, we are writing a specification for scheduling



The scheduler (2)

• The shared phenomena between the scheduler (machine) and the 
elevator (environment) are 
• The pending requests: s.intRequests, s.extRequests
• The destination floor: s.destFloor

• Therefore, the specification for the scheduler must tell:
• When a pending request is considered served and removed from the list of 

pending requests
• How the destination floor is calculated



Calculation of destination floor

• Idea: divide the pending requests in three sets with different priority
• Top priority: requests that can be served without switching the direction of 

the cabin movement
• Mid priority: requests that can be served by switching the direction of the 

cabin movement once
• Low priority: requests that can be served by switching the direction of the 

cabin movement twice

• The destination floor is picked with some criterion from the 
nonempty set with highest priority



Definition of priority sets

• If the cabin’s current direction is up:
• Top priority: 

• Cabin requests to floors above the current one, and
• Requests coming from floors above the current one for going up

• Mid priority: 
• Cabin requests to floors below the current one, and 
• Request coming from floors for going down

• Low priority:
• Requests coming from floors below the current one for going up

• Dual if the cabin’s current direction is down



Definition of priority sets, example

Current floor Current direction: U

0

1

2

3

4

5

6 D

U

I, D

D

I, U

U

Floors Requests

TOP: ≥ && (I || U)
MID: (< && I) || D
LOW: < && U

D

Next floor

I = internal (cabin) request
D = external (floor) request for going down
U = external (floor) request for going up



Picking the destination floor

• Once selected the right priority set, which floor shall we pick from it 
as the destination one?
• Idea: pick the one that maintains the minimal number of movements
• More precisely: pick the floor that, if served, will allow to serve the 

other floors in the same priority class without switching direction
(assuming that no other requests arrive)



Picking the destination floor, example (1)

Current floor

0

1

2

3

4

5

6

U

I

Floors Requests

Dest floor

Current direction: U

I = internal (cabin) request
D = external (floor) request for going down
U = external (floor) request for going up

Dest floor = closest in the current direction



Picking the destination floor, example (2)

Current floor

0

1

2

3

4

5

6

Floors Requests

Dest floor

Current direction: U

D

D

D

I

D

Dest floor = farthest in the current direction

I = internal (cabin) request
D = external (floor) request for going down
U = external (floor) request for going up



Picking the next floor, example (3)

Current floor

0

1

2

3

4

5

6

Floors Requests

Dest floor

Current direction: U

Dest floor = farthest in the opposite direction

U

U I = internal (cabin) request
D = external (floor) request for going down
U = external (floor) request for going up



Scheduler, calculation of destination floor (1)
fun priTopUp[s: System]: set Floor {
{ f: Floor | floors/gte[f, s.curFloor] && 

(f in s.intRequests || Up in s.extRequests[f]) }
}

Set comprehension : defines a set of atoms

Alternative join notation, equivalent to f.(s.extRequests)



Scheduler, calculation of destination floor (2)
fun priTopUp[s: System]: set Floor {
{ f: Floor | floors/gte[f, s.curFloor] && 

(f in s.intRequests || Up in s.extRequests[f]) }
}

fun priMidUp[s: System]: set Floor {
{ f: Floor | (floors/lt[f, s.curFloor] && f in s.intRequests) ||

Down in s.extRequests[f]
}

fun priLowUp[s: System: set Floor {
{ f: Floor | floors/lt[f, s.curFloor] && Up in s.extRequests[f] }

}

//Dual if current direction is down



Scheduler, calculation of destination floor (3)
pred minFloor[f: Floor, fs: set Floor] {
f in fs && (no f’: Floor | f’ in fs && floors/lt[f’, f])

}

pred maxFloor[f: Floor, fs: set Floor] {
f in fs && (no f’: Floor | f’ in fs && floors/lt[f, f’])

}



Scheduler, calculation of destination floor (4)

sig System {
…

}
{
…
//calculates the destination floor
curDirection = Up => (
(some priTopUp[this] &&
some destFloor && minFloor[destFloor, priTopUp[this]]) ||

(no priTopUp[this] && some priMidUp[this] && 
some destFloor && maxFloor[destFloor, priMidUp[this]]) ||

(no priTopUp[this] && no priMidUp[this] && some PriLowUp[this] &&
some destFloor && minFloor[destFloor, priLowUp[this]]) ||

(no priTopUp[this] && no priMidUp[this] && no priLowUp[this] &&
no destFloor)

//Dual if curDirection = Down
}



Calculation of the served requests

• As the cabin arrives at the destination floor, the scheduler must 
remove all the requests that it considers served
• Note that not all the requests for the current floor are considered 

served by the scheduler:
• If there is a pending cabin request, this is always considered served
• If there is a pending floor request for a given direction, this is considered 

served only if the scheduler will move the cabin in the right direction

• Result: at most one cabin request and one floor request are 
considered served each time a cabin arrives at a floor



A complication

• As a request is considered served, the scheduler should recalculate the 
next direction to move the cabin
• But at the same time, to calculate the next direction it must know which 

requests have been served
• We will solve this circularity by representing calculation of served requests 

with state transitions (actions):
• The system transitions to a state where the internal request (if present) is removed, 

and the schedule recalculated
• If the system is stuck at the same floor, it transitions to a state where the “best” 

external request (if present) is removed, and the schedule recalculated again
• If the system is still stuck at the same floor, the last external request is removed



Served requests, example

Current floor Current direction: U3

4

5

6

I, U, D

Floors Requests

Dest floor

I = internal (cabin) request
D = external (floor) request for going down
U = external (floor) request for going up

2 D



Served requests, example

Current floor = dest floor

3

4

5

6

I, U, D

Floors Requests

Request served: I

2 D

Current direction: U

I = internal (cabin) request
D = external (floor) request for going down
U = external (floor) request for going up



Served requests, example

Current floor = dest floor

3

4

5

6

U, D

Floors Requests

2 D

Current direction: U

I = internal (cabin) request
D = external (floor) request for going down
U = external (floor) request for going up



Served requests, example

3

4

5

6

U, D

Floors Requests

Hypotetic dest floor 2 D

Current direction: U

I = internal (cabin) request
D = external (floor) request for going down
U = external (floor) request for going up

Current floor = dest floor



Served requests, example

3

4

5

6

U, D

Floors Requests

Request served: D

2 D

Current direction: U

I = internal (cabin) request
D = external (floor) request for going down
U = external (floor) request for going up

Current floor = dest floor

Hypotetic dest floor



Served requests, example

3

4

5

6

U

Floors Requests

2 D

Current direction: U

I = internal (cabin) request
D = external (floor) request for going down
U = external (floor) request for going up

Current floor = dest floor



Served requests, example

3

4

5

6

U

Floors Requests

2 D

Current direction: U

I = internal (cabin) request
D = external (floor) request for going down
U = external (floor) request for going up

Current floor = dest floor

Still stuck: delete U



Served requests, example
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Served requests, example

Current floor 3
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Current direction: D

I = internal (cabin) request
D = external (floor) request for going down
U = external (floor) request for going up

Dest floor



Some refactoring

• We need to do some refactoring to avoid repeating the same 
formulas more than once
• We put the calculation of the destination floor in a predicate, so it can 

be used to calculate the hypothetic destination floor
• For the same reason we also need to change the parameters of the 

auxiliary functions that define the priority sets



Calculation of destination floor, refactored (1)
fun priTopUp[curFloor: Floor, intRequests: set Floor, extRequests: Floor -> Move]: 
set Floor {
{ f: Floor | floors/gte[f, curFloor] && 

(f in intRequests || Up in extRequests[f]) }
}

//Similarly for the other functions



Calculation of destination floor, refactored (2)
pred isTheDestFloor[destFloor: lone Floor, curDirection: Move, curFloor: Floor, 

intRequests: set Floor, extRequests: Floor -> Move] {
curDirection = Up => (
(some priTopUp[curFloor, intRequests, extRequests] &&
some destFloor && minFloor[destFloor, priTopUp[…]]) ||

(no priTopUp[…] && some priMidUp[…] && 
some destFloor && maxFloor[destFloor, priMidUp[…]]) ||

(no priTopUp[…] && no priMidUp[…] && some PriLowUp[…] &&
some destFloor && minFloor[destFloor, priLowUp[…]]) ||

(no priTopUp[…] && no priMidUp[…] && no priLowUp[…] &&
no destFloor)

//Dual if curDirection = Down
}

fun theDestFloor[curDirection: Move, curFloor: Floor, intRequest: set Floor,
extRequest: Floor -> Move]: lone Floor {

{ destFloor: Floor | 
isTheDestFloor[destFloor, curDirection, curFloor, intRequest, extRequest] }

}



Calculation of destination floor, refactored (3)
sig System {
…

}
{
…
//calculates the destination floor
destFloor = theDestFloor[curDirection, curFloor, intRequests, extRequests]

}



State transitions

• We need to represent state transitions:
• Triggered by inputs
• Or spontaneous

• In a noble tradition we model state transitions with predicates that 
relate the pre-state to the post-state
• If the transition has inputs/outputs, we add them as parameters of 

the predicate
• We call actions these kind of predicates



Actions

• Each action may have a precondition and has a postcondition
• Precondition: sub-predicate identifying the pre-states in which the 

action may fire
• Postcondition: sub-predicate relating the post-state to the pre-state



InternalPush, ExternalPush

• The action that correspond to the fact that someone pushed a cabin 
button or a floor button
• InternalPush has as parameter the destination floor
• ExternalPush has as parameters the floor where the button is, 

and the required direction
• The effect of the actions is just to add an item to the pending 

requests



InternalPush

//someone pushes the button in the cabin to floor f
pred InternalPush[s, s': System, f: Floor] {
//Precondition:
f !in s.intRequest //no stutter

//Postcondition:
s'.curFloor = s.curFloor
s'.curDirection = s.curDirection
s'.intRequest = s.intRequest + f
s'.extRequest = s.extRequest

}



ExternalPush

//someone pushes the button at floor f for direction m
pred ExternalPush[s, s': System, f: Floor, m: Move] {
//Precondition:
(f -> m) !in s.extRequest //no stutter

//Postcondition:
s'.curFloor = s.curFloor
s'.curDirection = s.curDirection
s'.intRequest = s.intRequest
s'.extRequest = s.extRequest + (f -> m)

}



MoveToNextFloor

• This action activates spontaneously (i.e., no input) when the current 
floor is different from the next floor calculated by the scheduler
• The effect is to update the current floor (i.e., to move the cabin), and 

nothing else: Other actions calculate the new pending requests
• Note that it moves one floor at a time!



MoveToNextFloor

pred MoveToNextFloor[s, s': System] {
//Precondition
some s.destFloor //otherwise, the cabin must stand still
s.curFloor != s.destFloor //same

//Postcondition:
floors/lt[s.destFloor, s.curFloor] =>
(s'.curFloor = floors/prev[s.curFloor] && s'.curDirection = Down) 

else
(s'.curFloor = floors/next[s.curFloor] && s'.curDirection = Up)

s'.intRequest = s.intRequest
s'.extRequest = s.extRequest

}



Calculation of the served requests 

• The calculation of the served requests is performed by three actions:
• ServeIntRequest is triggered when the cabin is at the destination floor, if 

there is an internal request for the floor, and removes it
• ServeExtRequestHypotheticalDir is triggered after 
ServeIntRequest, if the cabin is still at the destination floor, and 
removes the external request in the hypothetical direction
• ServeExtRequestStuck is triggered after 
ServeExtRequestHypotheticalDir, if the cabin is still at the 
destination floor, and removes the remaining external request (after it, the 
scheduler will calculate a different destination floor).



ServeIntReq

pred ServeIntReq[s, s': System] {
//Precondition
s.curFloor = s.destFloor
s.curFloor in s.intRequests //no stutter

//Postcondition
s'.curFloor = s.curFloor
s'.curDirection = s.curDirection
s'.intRequest = s.intRequest - s.curFloor
s'.extRequest = s.extRequest

}



Calculation of hypothetical direction

fun hypotheticalDestFloor[s: System]: lone Floor {
theDestFloor[s.curDirection, s.curFloor, s.intRequests, 

s.extRequests – (s.curFloor -> Move)]
}

fun hypotheticalDir[s: System]: lone Move {
some hypotheticalDestFloor[s] => (
floors/lt[s.curFloor, hypotheticalDestFloor[s]] =>
Up

else
Down)

else
none

}



ServeExtRequestHypotheticalDir

pred ServeExtRequestHypotheticalDir[s, s': System] {
//Precondition
s.curFloor = s.destFloor
s.curFloor !in s.intRequest //already served internal requests
some hypotheticalDir[s] 
hypotheticalDir[s] in s.extRequests[s.curFloor]

//Postcondition
s'.curFloor = s.curFloor
s'.curDirection = s.curDirection
s'.intRequest = s.intRequest
s'.extRequest = s.extRequest – (s.curFloor -> hypotheticalDir[s])

}



ServeExtRequestStuck

pred ServeExtRequestStuck[s, s': System] {
//Precondition
s.curFloor = s.destFloor
s.curFloor !in s.intRequest
no hypotheticalDir[s] || 
hypotheticalDir[s] !in s.extRequests[s.curFloor] 
//already served external request in the hypothetical direction

//Postcondition
s'.curFloor = s.curFloor
s'.curDirection = s.curDirection
s'.intRequest = s.intRequest
s'.extRequest = s.extRequest – (s.curFloor -> Move)

}



Assertions

• Is the (complex) scheduler we designed a good scheduler?
• To answer the question, we need to identify a set of requirements

that define what a “good scheduler” is, and then verify that they hold
• In other words, we need to write a set of assertions capturing these 

requirements



Bounded temporal analysis

• What if we want to write assertions on computations?
• We need to precisely define with a predicate what a “computation” is:
• A sequence of states such that 
• The first state in the sequence is a suitable initialization state, and
• Each subsequent pair of states in the sequence is related by an action (for 

some input)

• We can further refine the concept and write predicate for particular 
kinds of computations



Bounded temporal analysis (1)

…
open util/ordering[System] as systems
…
pred Init[s: System] {
//Postcondition
s.curFloor = floors/first[]
s.curDirection = Up
no s.intRequest
no s.extRequest
no s.destFloor

}



Bounded temporal analysis (2)

pred Step[s, s': System] {
( some f: Floor | InternalPush[s, s', f] ) ||
( some f: Floor, m: Move | ExternalPush[s, s', f, m] ) ||
MoveToNextFloor[s, s'] ||
ServeIntRequest[s, s'] ||
ServeExtRequestHypotheticalDir[s, s'] ||
ServeExtRequestStuck[s, s']

} 

//A computation starting from an arbitrary state
pred ComputeFromAny[] {
all s, s': System | s' = systems/next[s] => Step[s, s’]

}



Bounded temporal analysis (3)

//An unconstrained computation
pred Compute[] {
Init[systems/first[]]
ComputeFromAny[]

}

//A computation without additional requests
pred ComputeFromAnyNoReq[] {
ComputeFromAny[]

//No additional requests
all s, s': System | s' = systems/next[s] =>
no f: Floor, m: Move | 
( InternalPush[s, s', f] || ExternalPush[s, s', f, m] )

}



Some possible requirements (“static”)

• System is consistent: There is at least one System that satisfies all 
the constraints 
• The destination floor is requested: The scheduler always selects the 

destination floor among the pending requests
• No destination implies no request: If the scheduler does not select 

any destination floor, there is no pending request
• The scheduler is deterministic: The destination floor univocally 

depends on the current floor, the current direction, and the pending 
requests



Some possible requirements (“dynamic”)

• System has computations: At least one computation must exist
• A request stays scheduled until is served: The destination floor does 

not change until the initial request is initially served, if no additional 
requests are issued in the meantime
• The cabin does not get stuck at the destination floor: After the cabin 

arrives at the destination floor, if there are other pending requests at 
different floors, then eventually the scheduler will select a new, 
different destination floor



Liveness

• Does the designed elevator system progress, i.e., is every request 
eventually served?
• We have two flavors of liveness that we may want to check:
• (easy) An issued request is eventually served, if after it is issued no other 

request is issued
• (hard) An issued request is eventually served, unconditionally

• The Alloy Analyzer cannot help us prove neither, but can help us 
gaining some confidence that the easy one holds



Extra



(Non)determinism

• Our Alloy document is very likely to be nondeterministic
• Deterministic = at most one result, nondeterministic = more than one
• Nondeterminism is due to at least these factors:
• Arbitrary inputs (underspecified environment)
• Arbitrary choice of next action (actions have overlapping preconditions)
• Nonfunctional actions (intrinsically nondeterministic)

• But there is another, more subtle factor…



Example (1)

sig Element { }

abstract sig List { }
one sig EmptyList extends List { }
sig NonemptyList extends List {
elt: Element,
next: List

}

fact acyclic { all p: List | p !in p.^next }

pred cons(ls, ls’: List, elt: Element) {
ls’.elt = elt && ls’.next = ls

}

//Can you spot the nondeterminism of cons?



Example (2)
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Example (2)
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Avoiding nondeterminism

• To make an Alloy document deterministic, you need to add suitable 
facts to it
• Constrain the environment to specify the sequence of inputs
• Refine actions so that their preconditions do not overlap and their 

postconditions are deterministic

• Avoiding the last form of nondeterminism (presence of isomorphic 
worlds) is not in general possible



Stuttering

• We took special care in avoiding stuttering when defining actions
• We say that we have stuttering when it is possible that an action does 

not yield a post-state different from the pre-state
• In other word, for some action act, there are systems/inputs such 

that act[s, s', inputs] and s.curFloor = 
s'.curFloor, s.curDirection = s'.curDirection, …
• Stuttering yields computations that do not progress, which turn to be 

unduly counterexamples to assertions of the kind “eventually 
something happens”
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