DEGLI STUDI

?é
%)
a4
=
£
Z
—
B

== ONVTIN 1d

DDDDDDDDDD
IIIIIIIIIII
SSSSSSSSSS
EEEEEEEEEEEEEE

Ph.D. course:
Advanced Distributed
Systems Development with
Multiagent Systems

Dott. Daniela Briola

Prof.ssa Viviana Mascardi
Prof. Rafael Bordini

Ph.D. Course: Advanced Distributed Systems Development with Multiagent Systems



DEGLI STUDI

=
%
a8
=
z
j—
B

== ONVTIN 1d

DDDDDDDDDD
IIIIIIIIIII
SSSSSSSSSS
EEEEEEEEEEEEEE

[Lesson 2
A fast introduction to OWL
ontologies

Daniela Briola
Daniela.briola@disco.unimib.it

Ph.D. Course: Advanced Distributed Systems Development with Multiagent Systems



N
What is an ontology?

- Many definitions. We adhere to the Grubers’s one (1997):

- An ontology is an explicit specification of a conceptualization

- An ontology should be:
- Conceptual: an abstract model of the main concepts of a domain

- Explicit: concepts, properties and constraints of the domain should
be stated

« Formal: in a machine readable format

- Shared: should model a shared knowledge, and be accepted by the
end users



N
Why using an ontology?

- To share common understanding of the structure of
information among people or software agents

- To enable reuse of domain knowledge
- To make domain assumptions explicit

- To separate domain knowledge from the operational
knowledge

- To analyze domain knowledge
- To give a Semantic to a syntax

- They are (it depends on language) more expressive than
UML, ER etc, and not related to a language (Java, OO etc)
nor to physical implementation (Relational Database etc)



Main entities

- Concepts (Class): the conceptual entities of a domain
- Individuals: concrete instances of the Concepts
- Relationships (between concepts)

- Attributes (of the concepts)

- Axioms (constraints over the concepts and, depending on
the language, individuals)

- Formal ontologies support (with limits):
- Verification and Validation (of the schema and of the instances)
- Automatic inference
- Reasoning



N
RDF: a simple [ontology]| language

. class
« subClassOf

« property
- subPropertyOf
- Domain and Range (of the property)

- IS-A (for defining instances)

- RDF models all as a triple (relation attribute-value)
- Very simple inference is supported

- Has a dedicated query language (SPARQL)



-
OWL

- Based on RDF
- W3C standard
- OWL and OWL2, based on Description Logic
« We focus on OWL DL (that is restricted to First Order
logic)
- Decidable
- Based on long research on DL

« Some reasoners available
- API to programmatically use it

- It is the most widely adopted language for ontology
development

 Often used for the Semantic Web



e
OWL (main features)

- Supported features:
- Equivalent and Disjoint (for concepts and properties)
- Same and Different (for instances)

- Facets of properties:
- DataType (range into a literals, like int or String)
- ObjectType (range into Concepts)
- cardinality
- Properties main characteristics:
- Symmetry
- Transitivity
- Inverse
- Functional (min cardinality 0, max cardinality 1)



e
Methodology for developing ontologies

- There are many methodologies, from simple to complex ones

- We refer to the simplest and most intuitive one: 101 [Noy]
Step 1: Determine the domain and scope of the ontology

Step 2. Consider reusing existing ontologies

Step 3. Enumerate important terms in the ontology

Step 4. Define the classes and the class hierarchy

Step 5. Define the properties of classes—slots
Step 6. Define the facets of the slots
Step 7. Create instances

N. F. Noy, D. L. McGuinness, "Ontology development 101: A guide to creating your
first ontology", Tech. Rep. March 2001, [online] Available:
http://protege.stanford.edu/publications/ontology_development/ontology101.pdf.



Practical exercise: LEARN domain

- We are developing a MAS physical distributed over end
user machine (one LEARN platform on each machine)
- Platforms must have a name and an IP

- We can monitor one, or more, applications installed by
the user on its pc

- An application can experience an internal state of error
(not visible to the user but only to a monitor), which can
then lead to a failure of the system (crash or wrong
behaviour)

- We need to keep the list of known failures and, if known, related
state of errors



e
LEARN domain (cont)

- Agent services:
- To provide the list ok known platforms
- To provide the list of monitored applications

- To provide the list of experienced failures or errors of one
application

- To notify about a new failure or error of one application
- To add a new failure or error for an application



N
That was for the ontology...

- What about “when and why” invoking the services? In a
proactive or reactive way? Subscribing to a service?

- How to let the receiver simply understand the type of
message (a request to execute a service, an answer, a
notification...)?

- Speach at theory: communications not only transmit information,
but represent actions which change the state of the world

- For example:
« Request
- Inform
- Failure

« Query-If



