
Ph.D. course:
Advanced Distributed 

Systems Development with 
Multiagent Systems

Dott. Daniela Briola
Prof.ssa Viviana Mascardi

Prof. Rafael Bordini

Ph.D. Course: Advanced Distributed Systems Development with Multiagent Systems



Lesson 2 
A fast introduction to OWL 

ontologies
Daniela Briola

Daniela.briola@disco.unimib.it

Ph.D. Course: Advanced Distributed Systems Development with Multiagent Systems



What is an ontology?
• Many definitions. We adhere to the Grubers’s one (1997):
• An ontology is an explicit specification of a conceptualization

• An ontology should be:
• Conceptual: an abstract model of the main concepts of a domain
• Explicit: concepts, properties and constraints of the domain should

be stated
• Formal: in a machine readable format
• Shared: should model a shared knowledge, and be accepted by the 

end users



Why using an ontology?
• To share common understanding of the structure of 

information among people or software agents
• To enable reuse of domain knowledge
• To make domain assumptions explicit
• To separate domain knowledge from the operational

knowledge
• To analyze domain knowledge
• To give a Semantic to a syntax

• They are (it depends on language) more expressive than
UML, ER etc, and not related to a language (Java, OO etc) 
nor to physical implementation (Relational Database etc)



Main entities
• Concepts (Class): the conceptual entities of a domain
• Individuals: concrete instances of the Concepts
• Relationships (between concepts)
• Attributes (of the concepts)
• Axioms (constraints over the concepts and, depending on 

the language, individuals)

• Formal ontologies support (with limits):
• Verification and Validation (of the schema and of the instances)
• Automatic inference
• Reasoning



RDF: a simple [ontology] language
• class
• subClassOf

• property
• subPropertyOf
• Domain and Range (of the property)

• IS-A (for defining instances)
• RDF models all as a triple (relation attribute-value)
• Very simple inference is supported
• Has a dedicated query language (SPARQL)



OWL
• Based on RDF
• W3C standard
• OWL and OWL2, based on Description Logic
• We focus on OWL DL (that is restricted to First Order 

logic)
• Decidable
• Based on long research on DL
• Some reasoners available
• API to programmatically use it

• It is the most widely adopted language for ontology 
development
• Often used for the Semantic Web



OWL (main features)
• Supported features:
• Equivalent and Disjoint (for concepts and properties)
• Same and Different (for instances)

• Facets of properties:
• DataType (range into a literals, like int or String)
• ObjectType (range into Concepts)
• cardinality

• Properties main characteristics:
• Symmetry
• Transitivity
• Inverse
• Functional (min cardinality 0, max cardinality 1)



Methodology for developing ontologies
• There are many methodologies, from simple to complex ones
• We refer to the simplest and most intuitive one: 101 [Noy]
• Step 1: Determine the domain and scope of the ontology
• Step 2. Consider reusing existing ontologies
• Step 3. Enumerate important terms in the ontology
• Step 4. Define the classes and the class hierarchy
• Step 5. Define the properties of classes—slots
• Step 6. Define the facets of the slots
• Step 7. Create instances

N. F. Noy, D. L. McGuinness, "Ontology development 101: A guide to creating your
first ontology", Tech. Rep. March 2001, [online] Available: 
http://protege.stanford.edu/publications/ontology_development/ontology101.pdf.



Practical exercise: LEARN domain
• We are developing a MAS physical distributed over end 

user machine (one LEARN platform on each machine)
• Platforms must have a name and an IP

• We can monitor one, or more, applications installed by 
the user on its pc
• An application can experience an internal state of error 

(not visible to the user but only to a monitor), which can 
then lead to a failure of the system (crash or wrong 
behaviour)
• We need to keep the list of known failures and, if known, related 

state of errors



LEARN domain (cont)
• Agent services:
• To provide the list ok known platforms
• To provide the list of monitored applications
• To provide the list of experienced failures or errors of one 

application
• To notify about a new failure or error of one application
• To add a new failure or error for an application



That was for the ontology...
• What about “when and why” invoking the services? In a 

proactive or reactive way? Subscribing to a service?
• How to let the receiver simply understand the type of 

message (a request to execute a service, an answer, a 
notification...)?
• Speach at theory: communications not only transmit information, 

but represent actions which change the state of the world
• For example:
• Request
• Inform
• Failure
• Query-If


