
Ph.D. course:
Advanced Distributed 

Systems Development with 
Multiagent Systems

Dott. Daniela Briola
Prof.ssa Viviana Mascardi

Prof. Rafael Bordini

Ph.D. Course: Advanced Distributed Systems Development with Multiagent Systems



JADE:
Main Concepts

Daniela Briola
Daniela.briola@disco.unimib.it

Ph.D. Course: Advanced Distributed Systems Development with Multiagent Systems



JADE
• Java based platform for developing MASs
• No specific agent type (BDI or other) is imposed
• A simple but powerful Agent Template is given
• The focus is more on the MAS than on the single agent

• Based on the FIPA standard (http://www.fipa.org/)
• Widely adopted in academia and industry
• Many addons and extensions available
• It provides an environment where to execute agents, managing:
• Agents lifecycle
• messages exchange between agents

• It offers a set of classes to be used to implement agents
• It offers some GUIs to simply manage agents
• It helps in managing services offered by the agents
• https://jade.tilab.com/



Jade Platform
• Each Jade Platform may be divided into Containers
• They can be used to group agents
• A main Container (the first created) is always needed
• Other containers may be launched and installed even on different

machines: they need to register with the main one
• You can “forget” about containers if you are ok with the main one 

only
• Agents live in a container (but can move between 

containers)
• Agents can interact (sending messages) if they are on

different platforms or containers (the address of the 
platforms must be known)
• JADE platform will manage the physical exchange of messages





Platform agents
•On each main container there are:
• AMS (Agents management system) Agent: it keeps the 

list of all the agents registered in the platform, and 
manage their “status”
• DF (Directory Facilitator) Agent: it offers a service of 

“yellow pages” of the services offered by the agents, so 
that it is simple to search for them

• The AMS is unique
•DFs from different platforms can register one to 

the others, so that to create a network of DFs



JADE Agents
• Whatever extends the jade.core.Agent class, that provides:
• Code to automatically register with the AMS
• Code to manage the agents behaviours
• Code to interact with the platform (DF and AMS)
• Code to manage agent lifecycle
• Many other basic (but crucial) activities

• Each agent has a unique name (jade.core.AID) in the platform:
• <AgentName>@<PlatformName>
• Plus addresses (those of the container it is running on)

• Each Agent needs to implement its setup() method
• Each agent runs on a dedicated thread
• JADE shedules them with a round robin approach



Agent LifeCycle



Agent Behaviours
• The tasks an agent can/need to do are called “Behaviours”
• They are object of a class that extends 
jade.core.behaviours.Behaviour

• They can be combined and added/removed in any moment
• An agent has two lists, of ready and one of blocked behaviours
• The actionmethod defines the job to be done in the behaviour
• The boolean donemethod is used to say if the behaviour is 

completed or not
• Behaviours can run concurrently and are scheduled with a 

RoundRobin approach. They share the same agent thread
• An actionmethod is executed in a non preemptive way: it is not interrupted 

when it starts... Be careful!
• You can stop a behaviour with the blockmethod
• No behaviours available for execution ! agent’s thread goes to 

sleep





Behaviours Types
• 4 main types:
• “One-shot”: behaviours that complete immediately and whose 
action() method is executed only once. Done() returns true by 
default

• “Cyclic”: behaviours that never complete and whose action() 
method executes the same operations each time it is called. Done() 
returns false by default

• “Time based”: behaviours that execute certain operations at given 
points in time. They execute every tot milliseconds (and never end) 
or only once after a timeout

• Generic behaviours that embeds a status and execute different 
operations depending on that status. They complete when a given 
condition is met.

• More complex ones, like Sequential or Parallel, exist



Agent Communication
• Agents exchange messages, directly inserted in the private 

message queue by the platform
• Message are in the FIPA ACL language. They include
• Sender
• Receiver[s]
• Performative
• Language
• [Ontology]
• [Protocol]
• Content
• Other information to keep trace of a conversation

• Waiting for a message can be synchronous (be careful...) or 
asynchronous (the standard for agents)

• You can search for a specific received message using a Template



Let’s try...
• Download Jade and put it somewhere you want
• Start Eclipse
• Create a new Java Project
• Include Jade (and the common-codec jar)
• Import the agents from the online zip
• Create a launch configuration for your project: 
• jade.Boot is the main class
• Parameters: 
-gui -agents 
ag1:SimpleAgent;ag2:TimeAgent("500");ag3:WriteAgent("20000")
• VM parameter: -Dlog4j.configurationFile=file:PathTo/log4j2.xml

• Open the source codes of the agent and try to understand them
• Launch the MAS (initially without ag3)


