
Chapter 13

Exercise 13.1

Complete the data mart projects illustrated in Figure 13.4 and Figure 13.5, identifying the attributes
of fact and dimensions.

Sol:

1)

2)

Payment

Police

Time

Client Problem

NumberType

Expiration
Time

Prize

Amount
Type

Name Address
SSN

City
DateOf
Birth

Job

TimeCode

DayMonth

DayYear

Month

Year

ProblemCode Category

Description

(1,1)

(1,1)

(1,1)

(1,1)

(0,N)

(0,N)

(0,N)

(0,N)

Therapy

Patient

Hospital

Doctor Illness

Amount
Type

Name

Address

SSN City
DateOf
Birth

Specialization

TimeCode

DayMonth

DayYear

Month

Year

Code Category

Description

(1,1)

(1,1)

(1,1)

(1,1)

(0,N)

(0,N)

(0,N)

(0,N)

Age

AdmissionDate

SSN Name Address

Department City Symptom

Exercise 13.2

Design the data marts illustrated in Figure 13.4 and Figure 13.5 identifying the hierarchies among
the dimensions.

Sol:

SnowFlake schemas

1)

2)

Payment

Police

Day

Client Problem

(1,1)

(1,1)

(1,1)

(1,1)

(0,N)

(0,N)

(0,N)

PoliceType
(1,1) (0,N)

Job

City Category

(0,N)

Month

Year

(1,1)

(1,1)

(0,N)

(0,N)

(1,1)

(1,1)

(0,N)

(0,N)

(1,1)

(0,N)

Therapy

Patient

Hospital

Doctor Illness

(1,1)

(1,1)

(1,1)

(1,1)

(0,N)

(0,N)

(0,N)

(0,N)

Departement Category

CityRegion

Age
(1,1)(0,N)

(1,1)

(0,N)

(1,1)

(0,N)

(1,1)(0,N)

(1,1)

(0,N)

Exercise 13.3

Refer to the data mart for the management of supermarkets, described in section 13.2.2. Design an
interactive interface for the extraction of the data about classes of products sold in the various
weeks of the year in stores located in large cities. Write the SQL query that corresponds to the
proposed interface.

Sol:

We assume that attribute size refers to the City of the supermarket.

Product.Category Time.WeekYear Market.Size Qty Schema

Food
Soap
Saucepan

1..52 0...5000000 Option

> 10000 Condition

Product.Category Time.WeekYear sum (Qty) View

SQL code:

select Product.Category, Time.WeekYear, sum(Qty)
from Sale, Product, Time, Market
where Sale.ProductCode=product.ProductCode
 and Sale.MarketCode=Market.MarketCode
 and Sale.TimeCode=Time.TimeCode
 and Market.Size > 10000
group by Time.WeekYear, Product, Category
order by Product.Category, Time.WeekYear

Exercise 11.4

Describe the roll-up and drill-down operations relating to the result of the query posed in the
preceding exercise.

Sol:

The following table contains a possible result for the query in Exercise 13.3

Product.Category Time.WeekYear sum(Qty)
Soap 15 20
Soap 30 30
Food 2 50
Food 6 80
Food 20 70
Saucepan 8 10
Saucepan 20 5

A drill-down operation adds a dimension to the analysis. In this example the operation add “City”.
The new result of the query is:

Product.Category Time.WeekYear Market.City Sum (Qty)
Soap 15 London 10
Soap 15 Edinburgh 10
Soap 30 London 20
Soap 30 Edinburgh 10
Food 2 London 30
Food 2 Edinburgh 20
Food 6 London 40
Food 6 Edinburgh 40
Food 20 London 70
Saucepan 8 London 5
Saucepan 8 Edinburgh 5
Saucepan 20 London 3
Saucepan 20 Edinburgh 2

A roll-up operation eliminates a dimension from the analysis: in this case the operation deletes the
attribute WeekYear and re-aggregates the data:

Product.Category Market.City sum(Qty)
Soap London 30
Soap Edinburgh 20
Food London 140
Food Edinburgh 60
Saucepan London 8
Saucepan Edinburgh 7

Exercise 13.5

Describe the use of the with cube clause and with roll up clause in conjunction with the query
posed in Exercise 13.3

Sol:

If the with cube clause is used in conjunction with a query, the result will contain all the possible
aggregations of the dimensions of analysis:

select Product.Category, Time.WeekYear, sum(Qty)
from Sale, Product, Time, Market
where Sale.ProductCode=product.ProductCode

 and Sale.MarketCode=Market.MarketCode
 and Sale.TimeCode=Time.TimeCode
 and Market.Size > 10000

group by Time.WeekYear, Product, Category
with cube

The result is:

Product.Category Time.WeekYear sum(Qty)
Soap 15 20
Soap 30 30
Soap ALL 50
Food 2 50
Food 6 80
Food 20 70
Food ALL 200
Saucepan 8 10
Saucepan 20 5
Saucepan ALL 15
ALL 2 50
ALL 6 80

ALL 8 10
ALL 15 20
ALL 20 75
ALL 30 30
ALL ALL 265

The roll up clause causes a progressive aggregation of the dimensions: the aggregation is made
from right to left, and so produces a smaller set of tuples than the data cube:

select Product.Category, Time.WeekYear, sum(Qty)
from Sale, Product, Time, Market
where Sale.ProductCode=product.ProductCode

 and Sale.MarketCode=Market.MarketCode
 and Sale.TimeCode=Time.TimeCode
 and Market.Size > 10000

group by Time.WeekYear, Product, Category
with roll up

Product.Category Time.WeekYear sum(Qty)
Soap 15 20
Soap 30 30
Food 2 50
Food 6 80
Food 20 70
Saucepan 8 10
Saucepan 20 5
Soap ALL 50
Food ALL 200
Saucepan ALL 15
ALL ALL 265

Exerxcise 13.6

Indicate a selection of bitmap indexes, join indexes and materialized views for the data mart
described in Section 13.2.2.

Sol:

To indicate a set of indexes for a data warehouse it is necessary to know which are the most
frequent operations applied to it.
The schema of the data warehouse is:

SALE(ProdCode, MarketCode, PromoCode, TimeCode, Qty, Revenue)
PRODUCT(ProdCode, Name, Category, SubCategory, Brand, Weight, Supplier)

MARKET(MarketCode, Name, City, Region, Zone, Size, Layout)
PROMOTION (PromoCode, Name, Type, Percentage, FlagCoupon, StartDate, EndDate,

Cost, Agency)
TIME (TimeCode, DayWeek, DayMonth, DayYear, WeekMonth, WeekYear, MonthYear,

Season, PreholidayFlag, HolidayFlag)

Let us suppose that the most frequent queries are:

1) Select all the sales with a specified product code and market code.
2) Select all the promotions with a specified start date and end date.
3) Select all the sales of a specified category of product.
4) Select all the sales with a specified promotion code and where category=”Food”.
5) Select all the sales in a specified Market where category=”Food”.

The first query suggests the introduction of two bitmap indexes on table SALE for the attributes
ProductCode and MarketCode, because the query has a conjunction in its condition of selection.
Also, the second query suggests two bitmap indexes on table TIME, on the attributes StartDate and
EndDate.

The third query requires a join between tables SALE and PRODUCT on the attribute ProdCode. A
join index on this attribute makes the query more efficient.

The last two queries suggest the introduction of a view materialization for the query

select Sale.*, Product.Category
from Sale join Product on Sale.ProdCode=Product.prodCode

This query can be calculated only once and then can be used by both the queries 4 and 5 each time
they need it.

This analysis does not consider the actual frequency of the queries, the frequency of update of the
data and the time necessary to calculate the view. A more accurate analysis could show that the
introduction of the materialized view is not always useful.

Exercise 13.7

Design a data mart for the management of university exams. Use as facts the result of the exams
taken by the students. Use as dimension the following:

1) time;
2) the location of the exam (supposing the faculty to be organized over more than one site);
3) the lecture involved;
4) the characteristics of the student (for example, the data concerning pre-university school

records, grades achieved in the university admission exam, and chosen degree course).

Create both star schema and snowflake schema, and give their translation in relational form. Then
express some interface for analysis simulating the execution of the roll up and drill down
instructions. Finally, indicate a choice of bitmap indexes, join indexes and materialized views.

Sol:

Star Schema

Relational Form

EXAM (TimeCode, LocationCode, Student, LectureCode, Course, Degree)
TIME(TimeCode, Day, Month, Year, WeekMonth, WeekYear, DayMonth)

LOCATION(LocationCode,LectureHall, Department, Faculty, Address, City)
STUDENT (Number, Name, Address, DegreeCourse, Admission, PreUniversitySchool,

SchoolType)

Exam

Time

Student

Lecture Location
(1,1)

(1,1)

(1,1)

(0,N)

(0,N)

(0,N)

(0,N)

(1,1)

TimeCode

Day Month Year

WeekMonth

WeekYearDayMonth

Code
Author Title

Price DateOf
Publication

Degree Course LectureHall Department
Size

Faculty Address City

Number

Name

Address

DegreeCourse

Admission

Pre-university
SchoolSchool

Type

Location
Code

Snowflake Schema

Relational Form

EXAM (DayMonth,MonthYear, YearNumber, LocationCode, Student, LectureCode, Course,
Degree)

DAY(DayMonth,MontYear,YearNumber)
MONTH(MonthYear, YearNumber)

YEAR(YearNumber)
LECTURE (Code, Title, Author, Price, DateOfPublication)

AUTHOR (Name, Age)
STUDENT (Number, Name, Address, DegreeCourse, Admission)

SCHOOL (Name, SchoolType)
LECTUREHALL(LocationCode, Size, Department)

DEPARTMENT(Name, Faculty, Address)
FACULTY(Name, City)

Exam

Day

Student

Lecture LectureHall
(1,1)

(1,1)

(1,1)

(0,N)

(0,N)

(0,N)

(0,N)

(1,1)

DayMonth

Code
Title

Price DateOf
Publication

Degree Course
Size

Address

City

Number

Name

Address

DegreeCourse

Admission

School
Type

Location
Code

Month

Year

MonthYear

YearNumber

Department

School
Faculty

Author

Name Age

Name

Name

Name

Interface for analysis:

Lecture.Author Location.Faculty * Schema
[string] Engineering

Math
Physics

Option

Smith, Brown,
Green

Engineering,
Math

Condition

Location.Faculty count(*) View

This interface selects the number of exams taken by students in the Faculty of Engineering and
Math, who read books of Smith, Brown and Green to prepare the exams.

Result of the query:

Lecture.Author Location.Faculty count(*)
Smith Engineering 270
Brown Engineering 264
Brown Math 250
Green Math 280

Drill down on Time.MonthYear attribute:

Lecture.Author Location.Faculty Time.MonthYear count(*)
Smith Engineering 2 70
Smith Engineering 6 100
Smith Engineering 9 100
Brown Engineering 2 264
Brown Math 3 160
Brown Math 7 90
Green Math 1 150
Green Math 7 130

Roll up on Lecture.Author

Location.Faculty Time.MonthYear count(*)
Engineering 2 334
Engineering 6 100
Engineering 9 100
Math 1 150
Math 3 160
Math 7 220

These queries suggest the introduction of bitmap indexes on Location.Faculty and Lecture.Author.
To make the joins more efficient it is possible to introduce join indexes (on Location.Code,
Lecture.Code and Time.TimeCode) or materialized views.
The choice depends on the dimension of the tables, the number of different values of the attributes
and the update frequency of the tables
Considering that in table Exam the tuples are often added but rarely updated or deleted, the choice
of materialized views may be the best.

Exercise 13.8

Design one or more data marts for railway management: use as facts the total number of daily
passengers for each tariff on each train and on each section of the network. As dimensions, use the
tariffs, the geographical position of the cities on the network, the composition of the train, the
network maintenance and the daily delays.
Create one or more star schemas and give their translation in relational form.

Sol:

Star Schema:

Relational Schema

PASSENGER(Tariff, Maintenance, Delay, Section, Vagon, Train, Number)
TARIFF (Code, Price, StartDate)

MAINTENANCE(Code, LastDate, Cost)
DELAY(TimeCode, Day, Month, Year, DelayMinutes)

SECTION(City, Region, Length)
VAGON(Number, Train, Class, DepartureTime, ArrivalTime)

Passenger

Tariff

Delay Section

VagonMaintenance

Code Price

StartDate

Code LastDate

Cost

Number
Number Train

Class Departure
Time

Arrival
Time

TimeCode

Day

Month

Year

Delay
minutes

City Region

Length

(1,1)

(1,1) (1,1)

(1,1) (1,1) (0,N)

(0,N)(0,N)

(0,N)

(0,N)

Exercise 13.9

Consider the database in Figure 13.19. Extract the association rules with support and confidence
higher or equal to 20 percent. Then indicate which rules are extracted if a support higher than 50
percent is requested.

Transaction Date Goods Qty Price
1 17/12/98 ski-pants 1 140
1 17/12/98 boots 1 180
2 18/12/98 ski-pole 1 20
2 18/12/98 T-shirt 1 25
2 18/12/98 jacket 1 200
2 18/12/98 boots 1 70
3 18/12/98 jacket 1 200
4 19/12/98 jacket 1 200
4 19/12/98 T-shirt 3 25
5 20/12/98 T-shirt 1 25
5 20/12/98 jacket 1 200
5 20/12/98 tie 1 25

Figure 13.19

Sol:

Premise Consequence Support Confidence
ski-pant boots 0.2 1
boots ski-pants 0.2 0.5
T-shirt jacket 0.6 1
jacket T-shirt 0.6 0.75
T-shirt ski-pole 0.2 0.33
ski-pole T-shirt 0.2 1
T-shirt boots 0.2 0.33
boots T-shirt 0.2 0.5
jacket boots 0.2 0.25
boots jacket 0.2 0.5
jacket tie 0.2 0.25
tie jacket 0.2 1
T-shirt tie 0.2 0.33
tie T-shirt 0.2 1
{ski-pole, T-shirt} {jacket, boots} 0.2 1
{jacket, boots} {ski-pole, T-shirt} 0.2 1
{ski-pole, jacket} {T-shirt, boots} 0.2 1
{T-shirt, boots} {ski-pole, jacket} 0.2 1
{ski-pole, boots} {T-shirt,jacket} 0.2 1
{T-shirt,jacket} {ski-pole, boots} 0.2 0.33
{boots,ski-pole, T-shirt} jacket 0.2 1
jacket {boots,ski-pole, T-shirt} 0.2 0.25
{ski-pole, T-shirt,jacket} boots 0.2 1
boots {ski-pole, T-shirt,jacket} 0.2 0.5
{ski-pole,jacket,boots} T-shirt 0.2 1
T-shirt {ski-pole,jacket,boots} 0.2 0.33

{jacket,boots,T-shirt} ski-pole 0.2 1
ski-pole {jacket,boots,T-shirt} 0.2 1
{T-shirt,jacket} tie 0.2 0.33
tie {T-shirt,jacket} 0.2 1
{T-shirt,tie} jacket 0.2 1
jacket {T-shirt,tie} 0.2 0.25
{jacket,tie} T-shirt 0.2 1
T-shirt {jacket,tie} 0.2 0.33

If a support higher than 50 percent is requested, the only rule is:

• T-shirt -> jacket

Exercise 13.10

Discretize the prices of the database in Exercise 13.9 into three values (low, average and high).
Transform the data so that for each transaction a single tuple indicates the presence of at least one
sale for each class. Then construct the association rules that indicates the simultaneous presence in
the same transaction of sales belonging to different price classes.
Finally, interpret the results.

Sol:

Discretization of prices:

low: price ≤ 25
average: 25 < prize ≤ 200
high prize ≥ 200

Transaction Date Qty Class
1 17/12/98 2 Average
2 18/12/98 1 Average
2 18/12/98 2 Low
2 18/12/98 1 High
3 18/12/98 1 High
4 19/12/98 1 High
4 19/12/98 3 Low
5 20/12/98 2 Low
5 20/12/98 1 High

Association rules

Premise Consequence Support Confidence
Average High 0.4 0.5
High Average 0.4 0.25
Average Low 0.2 0.5
Low Average 0.2 0.33
High Low 0.6 0.75
Low High 0.6 1
{Low, Average} High 0.2 1
High {Low, Average} 0.2 0.25
{High, Low} Average 0.2 0.33
Average {High, Low} 0.2 1
{High, Average} Low 0.2 1
Low {High, Average} 0.2 0.33

These results show that the most important rules are:

• Low -> High
• High -> Low

The biggest quantity of sales refers to the low class.
It means that high and low class articles are often bought together, while average class articles are
not very pleasant for buyers.
These results may be useful in locating the articles in the various sectors of a supermarket.

Exercise 13.11

Describe a database for car sales with the description of the automobiles (sport cars, saloons, estate,
etc), the cost and the cylinder capacity of the automobiles (discretized in classes), and the age and
salary of the buyers (also discretized into classes). Then form hypotheses on the structure of a
classifier showing the propensity of the purchase of cars by different categories of persons.

Sol:

The database is composed of the following tables:

CAR (Number, Model, Color, Optional, Cost)
MODEL(Code, Name, CylinderCap, MaxSpeed, Category)

CLIENT(Name, Age, Salary)

Example of an instance of database:

CAR
Number Model Color Options Cost
1 2478 red air conditioned High
2 2478 black High
3 2631 white radio Average
4 4932 red Low

MODEL

CLIENT

Model Name Cylinder Category
2478 Ferrari 3000-4000 SportCar
2631 BMW 2000-3000 StationWagon
4932 Toyota 1000-2000 Runabout

Name Age Salary
Green 20-25 Low
Brown 25-30 High
Smith 30-40 Average
Thomson 40-50 Average

Classifier:

Propensity to purchase a car.

Person(Name, Age, Salary)

Age >65

true false

NO Salary =Low

true

NO

false

Salary =High

false

YES
RUNABOUT

Age < 30

true

true false

YES
SPORTCAR

YES
STATION WAGON

