
&KDSWHU��

([HUFLVH����

Study the database schema containing the relations:
FILMS (FilmNumber,Title, Director, Year, ProductionCost)
ARTISTS (ActorNumber, Surname, FirstName, Sex, BirthDate, Nationality)
ROLES (FilmNumber, ActorNumber, Character)

1. Produce a database on this schema for which the joins between the various relation are all
complete

2. Assuming two referential constraints between the relation ROLES and the other two, discuss
possible cases of incomplete join.

3. Show a cartesian product that involves relations in this database.
4. Show a database for which one (or more) of the joins is (are) empty.

6ROXWLRQ�

FILMS
)LOP1XPEHU 7LWOH 'LUHFWRU <HDU 3URGXFWLRQ&RVW
145684 Armageddon 15434 1997 5000000
457343 Life is Beautiful 67532 1998 1000000
563822 Ronin 34573 1997 2000000

ARTISTS
$FWRU1XPEHU 6XUQDPH)LUVW1DPH 6H[%LUWKGD\ 1DWLRQDOLW\
67532 Benigni Roberto Male 14/03/1950 Italian
12456 DeNiro Robert Male 22/04/1951 American
45673 Braschi Nicoletta Female 1/05/1954 Italian
67777 Willis Bruce Male 3/2/1959 American
12345 Tyler Liv Female 18/02/1962 American

ROLES
)LOP1XPEHU $FWRU1XPEHU &KDUDFWHU
457343 67532 Guido
457343 45673 Dora
145684 67777 Harry
145684 12345 Grace
563822 12456 Sam

In this instance of database, the two (natural) joins between ROLES and ARTISTS, and between
ROLES and FILMS are complete. In this schema there exists also a reference between “Director”
and “ActorNumber”, when an actor is also director (such as Benigni).
If we had included all directors in table ARTISTS, then the join with ROLES would not be
complete.

The referential constraints in this schema are on “ActorNumber” and “FilmNumber”. If a value on
these attributes in table ROLES has not a corresponding value in tables ARTISTS and FILMS, the
information in ROLES have not sense.
Yet is possible to admit values in table ARTISTS without corresponding values in ROLES (for
example because they are directors).

This situation involves incomplete joins. The same holds for attribute “FilmNumber”.
An example of cartesian product between ARTIST and FILMS on the database above is:

)LOP1XP 7LWOH 'LU <HDU 3URG&RVW $FWRU1XP 6XUQDPH)LUVW1DPH 6H[%LUWKGD\ 1DWLRQDOLW\
145684 Armageddon 15434 1997 5000000 67532 Benigni Roberto Male 14/03/50 Italian
457343 Life is

Beautiful
67532 1998 1000000 67532 Benigni Roberto Male 14/03/50 Italian

563822 Ronin 34573 1997 2000000 67532 Benigni Roberto Male 14/03/50 Italian
145684 Armageddon 15434 1997 5000000 12456 DeNiro Robert Male 22/04/51 American
457343 Life is

Beautiful
67532 1998 1000000 12456 DeNiro Robert Male 22/04/51 American

563822 Ronin 34573 1997 2000000 12456 DeNiro Robert Male 22/04/51 American
145684 Armageddon 15434 1997 5000000 45673 Braschi Nicoletta Fema

le
1/05/54 Italian

457343 Life is
Beautiful

67532 1998 1000000 45673 Braschi Nicoletta Fema
le

1/05/54 Italian

563822 Ronin 34573 1997 2000000 45673 Braschi Nicoletta Fema
le

1/05/54 Italian

145684 Armageddon 15434 1997 5000000 67777 Willis Bruce Male 3/2/59 American
457343 Life is

Beautiful
67532 1998 1000000 67777 Willis Bruce Male 3/2/59 American

563822 Ronin 34573 1997 2000000 67777 Willis Bruce Male 3/2/59 American
145684 Armageddon 15434 1997 5000000 12345 Tyler Liv Fema

le
18/02/62 American

457343 Life is
Beautiful

67532 1998 1000000 12345 Tyler Liv Fema
le

18/02/62 American

563822 Ronin 34573 1997 2000000 12345 Tyler Liv Fema
le

18/02/62 American

Another database, with empty joins, may be the following one: values in table ROLES have not
reference in the other tables:

FILMS
)LOP1XPEHU 7LWOH 'LUHFWRU <HDU 3URGXFWLRQ&RVW
145684 Armageddon 15434 1997 5000000
457343 Life is Beautiful 67532 1998 1000000
563822 Ronin 34573 1997 2000000

ARTISTS
$FWRU1XPEHU 6XUQDPH)LUVW1DPH 6H[%LUWKGD\ 1DWLRQDOLW\
67532 Benigni Roberto Male 14/03/1950 Italian
12456 DeNiro Robert Male 22/04/1951 American
45673 Braschi Nicoletta Female 1/05/1954 Italian
67777 Willis Bruce Male 3/2/1959 American
12345 Tyler Liv Female 18/02/1962 American

ROLES
)LOP1XPEHU $FWRU1XPEHU &KDUDFWHU
478384 67500 Peter
467343 42223 Dora
185682 67754 Harry
945684 99845 John
963822 12000 Mark

([HUFLVH����

With reference to the schema in Exercise 3.1, express the following queries in relational algebra, in
domain calculus, in tuple calculus and in Datalog:

1. The titles of the films starring Henry Fonda;
2. The titles of the films in which the director is also an actor;
3. The actors who have played two characters in the same film; show the title of the films, first

name and surname of the actor and the two characters;
4. The titles of the films in which the actors are all of the same sex;

6ROXWLRQ�

1.
Relational Algebra:
ΠTitle(FILMS d (σ (FirstName=”Henry”) ∧(Surname=”Fonda”) (ARTISTS) d ROLES))

 Domain Calculus:
 { Title : t | FILMS (FilmNumber: fn, Title: t,Director: d, Year: y,ProductionCost: pc) ∧

ARTISTS (ActorNumber: an, Surname:sur , FirstName: n, Sex: s,
BirthDate:b, Nationality:nat) ∧

ROLES (FilmNumber: fn, ActorNumber: an, Character: ch) ∧
(sur= “Fonda”) ∧ (n= “Henry”) }

 Tuple Calculus:
 { F.title | F(FILMS), A(ARTIST), R(ROLES) |

F.FilmNumber=R.FilmNumber ∧ A.ArtistNumber=R.ArtistNumber ∧
A.Surname= “Fonda” ∧ A.FirstName= “Henry” }

 Datalog:
 FILMSWITHFONDA (Title: t) ←

FILMS (FilmNumber: fn, Title: t,Director: d, Year: y,ProductionCost: pc),
ARTISTS (ActorNumber: an, Surname: “Fonda”, FirstName: “Henry”, Sex: s,

BirthDate: b, Nationality: nat),
ROLES (FilmNumber: fn, ActorNumber: an, Character: ch)

2.
Relational Algebra:
ΠTitle (σDirector=ArtistNumber)(ROLES d FILMS))

Domain Calculus:
{ Title: t | FILMS (FilmNumber: fn, Title: t,Director: d, Year: y,ProductionCost: pc) ∧

ROLES (FilmNumber: fn, ActorNumber: d, Character: ch) }

Tuple Calculus:
{ F.Title | F(FILMS), R(RULES) |

F.FilmNumber=R.FilmNumber ∧ F.Director=R.ActorNumber }

Datalog:
 FILMSWITHDIRECTORARTIST(Title: t) ←

FILMS (FilmNumber: fn, Title: t,Director: d, Year: y,ProductionCost: pc)
ROLES (FilmNumber: fn, ActorNumber: d, Character: ch)

3.
Relational Algebra:
ΠTitle,FirstName,Surname,Character1,Character

 (ρFilmNumber1, ActorNumber1,Character1← FilmNumber,ActorNumber,Character (ROLES)
 d(FilmNumber1=FilmNumber) ∧ (ActorNumber1=ActorNumber)∧(Character1≠Character)

 ROLES)
 d ARTISTS d FILMS)

Domain Calculus:
{ Title: t, FirstName: fn, Surname: sur, Character: ch, Character1: ch1 |

FILMS (FilmNumber: fn, Title: t,Director: d, Year: y,ProductionCost: pc) ∧
ARTISTS (ActorNumber: an, Surname:sur , FirstName: n, Sex: s, BirthDate:b,

Nationality: nat)∧
ROLES (FilmNumber: fn, ActorNumber: an, Character: ch) ∧
ROLES (FilmNumber: fn, ActorNumber: an, Character: ch1)∧
 (ch ≠ ch1) }

 Tuple Calculus :
 { F.Title, A.Surname, A.FirstName, R1.Character, R2.Character |
 F (FILMS), A (ARTISTS), R1(ROLES), R2(ROLES) |

F.FilmNumber=R1.FilmNumber ∧ A.ActorNumber=R1.ActorNumber ∧
R2.FilmNumber=R1.FilmNumber ∧ R2.ActorNumber=R1.ActorNumber ∧
R2.Character ≠ R1.Character }

 Datalog:
 TWOCHARACTERS(Title: t, FirstName: fn, Surname: sur, Character: ch, Character1: ch1) ←

FILMS (FilmNumber: fn, Title: t,Director: d, Year: y,ProductionCost: pc) ,
ARTISTS (ActorNumber: an, Surname:sur , FirstName: n, Sex: s, BirthDate:b,

Nationality:nat),
ROLES (FilmNumber: fn, ActorNumber: an, Character: ch) ,
ROLES (FilmNumber: fn, ActorNumber: an, Character: ch1),
(ch ≠ ch1).

��
Relational Algebra (with intuitive abbreviations for attribute names):
ΠTitle (FILMS) -
ΠTitle (FILMS) d σSex≠Sex1((ARTISTS d ROLES) d
 ρFN1,AN1,Ch1,S1,FN1,Sex1,BD1,N1←FN,AN,Ch,S,FN,Sex,BD,N (ARTISTS d ROLES))

Domain Calculus:
{ Title: t | FILMS (FilmNumber: fn, Title: t,Director: d, Year: y,PCost: pc) ∧
¬∃t1(∃d1(∃y1(∃pd1(FILMS(FilmNumber: fn, Title: t1,Director: d1, Year: y1,PCost: pd1) ∧

ARTISTS (ActorN:an1, Surname:sur1, FirstName: n1, Sex: s1,
BirthDate:b1, Nationality:nat1) ∧

ARTISTS (ActorNumber: an2, Surname:sur2 , FirstName: n2, Sex: s2,
BirthDate:b2, Nationality:nat2) ∧

ROLES (FilmNumber: fn, ActorNumber: an1, Character: ch1) ∧
ROLES (FilmNumber: fn, ActorNumber: an2, Character: ch2) ∧
(s1 ≠ s2)

)))) }

Tuple Calculus:
{ F.Title | F(FILMS) |

 ¬(∃F1(FILMS)(∃A1(ARTISTS) (∃A2(ARTISTS) (∃R1(ROLES) (∃R2(ROLES) ∧
A1.ArtistNumber=R1.ArtistNumber∧ F1.FilmNumber=R1.FilmNumber ∧
A2.ArtistNUmber=R2.ArtistNumber ∧ R1.FilmNumber=R2.FilmNumber ∧
A1.Sex≠ A2.sex))))) }

Datalog:
DIFFERENTSEX (Title: t) ←

FILMS (FilmNumber: fn, Title: t,Director: d, Year: y,ProductionCost: pc),
ARTISTS (ActorNumber: an1, Surname:sur1 , FirstName: n1, Sex: s1, BirthDate:b1,

Nationality:nat1),
ARTISTS (ActorNumber: an2, Surname:sur2 , FirstName: n2, Sex: s2, BirthDate:b2,

Nationality:nat2),
ROLES (FilmNumber: fn, ActorNumber: an1, Character: ch1),
ROLES (FilmNumber: fn, ActorNumber: an2, Character: ch2),
(s1 ≠ s2)

SAMESEX(Title: t) ←
FILMS (FilmNumber: fn, Title: t,Director: d, Year: y,ProductionCost: pc),
NOT DIFFERENTSEX(Title: t)

([HUFLVH����

Consider the database containing the following relation:
REPRESENTATIVE(Number, Surname, FirstName,Committee,County,Constituency)

CONSTITUENCIES(County,Number, Name)
COUNTIES(Code,Name,Region)

COMMITTEES(Number,Name, President)

Formulate the following queries in relational algebra, in domain calculus and in tuple calculus:

1. find the name and surname of the presidents of the committees in which there is at least one
representative from the county of Borsetshire;

2. find the name and surname of the members of the finance committee;
3. find the name, surname and constituency of the members of the finance committee;
4. find the name, surname, county and region of election of the delegates of the finance committee;
5. find the regions in which representatives having the same surname have been elected.

6ROXWLRQ�

1.
 Relational�Algebra:

ΠFnP,Surp((σName= “Borsetshire” (COUNTIES)dCode=County(REPRESENTATIVE dCommittee=NumberC

ρNumberC,NameC←Number,Name(COMMITTEE))
dPresident=NumberP

ρNumberP,SurP,FnP,CommitteeP,CountyP,ConstituencyP ←

Number,Firstname,Surname,Committee,County,Constituency(REPRESENTATIVE)))

������ Domain Calculus:

 { Surname: surp, FirstName: fnp |
REPRESENTATIVE (Number: np, Surname: surp, FirstName: fnp, Committee: cmp, County:

cop,Constituency: cstp) ∧
REPRESENTATIVE (Number: n, Surname: sur, FirstName: fn, Committee: cm,

County:co,Constituency: cst) ∧
COMMITTEES(Number: cm, Name: nameC, President: np) ∧

COUNTIES(Code:co, Name: CountyName, Region: r)∧
(CountyName= “Borsetshire”) }

Tuple Calculus:

{ P.(Surname, FirstName) | P (REPRESENTATIVE), R (REPRESENTATIVE),
C(COMMITTEES), CO(COUNTY) |

(P.Number=C.President) ∧ (R.Committee=C.Number) ∧
(C.Number=CO.Code) ∧ (CO.Name=”Borsetshire”) }

2.
 Relational Algebra:

ΠFirstName,Surname (σName=“Finance”(REPRESENTATIVE) dCommittee=NumberC

ρNumberC←Number(COMMITTEE)))
 Domain Calculus:

{FirstName: fn, Surname: sur | REPRESENTATIVE (Number: n, Surname: sur, FirstName: fn,
Committee: cm, County:co,Constituency: cst) ∧

COMMITTEES(Number: cm, Name: nameC, President: np) ∧
(NameC= “Finance”) }

 Tuple Calculus:

{R.(FirstName,Surname) | R(REPRESENTATIVE), C(COMMITTEES) |
(R.Committee=C.Number) ∧ (C.Name= “Finance”) }

3.
 Relational Algebra:

ΠFirstName,Surname,NameCon((σName=“Finance”(REPRESENTATIVE) dCommittee=NumberC

ρNumberC←Number(COMMITEE))
d (Constituency=NumberCon)∧(County=CountyCon)

ρCountyCon,NumberCon,NameCon←County,Number,Name(CONSTITUENCIES))

 Domain Calculus:
{FirstName: fn, Surname: sur, Costituencies:Namecon |

REPRESENTATIVE (Number: n, Surname: sur, FirstName: fn, Committee: cm,
County:co,Constituency: cst) ∧

COMMITTEES(Number: cm, Name: nameC, President: np) ∧
CONSTITUENCIES(County: co, Number: cst, Name: Namecon)∧

(NameC= “Finance”) }

 Tuple Calculus:

{R.(FirstName,Surname),CON.Name | R(REPRESENTATIVE), C(COMMITTEES),
CON(CONSTITUENCIES) |

(R.Committee=C.Number) ∧ (C.Name= “Finance”) ∧
(R.County=CON.County) ∧

(R.Constituency=CON.Number) }

4.
 Relational Algebra:

ΠFirstName,Surname,CountyName,RegionName

((σName=“Finance”(REPRESENTATIVE) dCommittee=NumberC ρNumberC←Number(COMMITEE))
dCounty=CountyCodeρCountyCode,CountyName←Code,Name (COUNTIES)
dRegion=RegionCode ρRegionCode,RegionName←Code.Name(REGIONS))

 Domain Calculus:

{FirstName: fn, Surname: sur, County: CountyName,Region: RegionName |
REPRESENTATIVE (Number: n, Surname: sur, FirstName: fn, Committee: cm,

County:co,Constituency: cst) ∧
COMMITTEES(Number: cm, Name: nameC, President: np) ∧

COUNTIES(Number:co, Name: CountyName, Region: r) ∧
REGIONS (Code: r, Name: RegionName)∧

(NameC= “Finance”) }

 Tuple Calculus:

{R.(FirstName,Surname),CO.Name,RG.Name | R(REPRESENTATIVE), C(COMMITTEES),
CO(COUNTIES), RG(REGIONS) |

(R.Committee=C.Number) ∧(R.County=CO.Code) ∧
(CO.Region=RG.Code) ∧ (C.Name= “Finance”) }

5.
 Relational Algebra:

ΠRegionName(σ(Surname=Surname1)∧(Number≠Number1)

((ΠNumber,Surname,Region (REPRESENTATIVE dCounty=Code COUNTIES)
dRegion=Region1

ρNumber1,Surname1,Region1←Number,Surname,Region

(ΠNumber,Surname,Region (REPRESENTATIVE dCounty=Code COUNTIES))
dRegion=RegionCode

ρRegionCode,RegionName←Code,Name(REGIONS))

 Domain Calculus:

{RegionName: rn | REPRESENTATIVE (Number: n, Surname: sur, FirstName: fn, Committee: cm,
County:co,Constituency: cst) ∧

COUNTIES(Number:co, Name: CountyName, Region: r)∧
REPRESENTATIVE (Number: n1, Surname: sur1, FirstName: fn1, Committee: cm1,

County:co1,Constituency: cst1) ∧
COUNTIES(Number:co1, Name: CountyName1, Region: r)∧

REGIONS(Code:r, Name: rn)∧
(sur=sur1)∧(n≠n1) }

 Tuple Calculus:
{R.Name | R(REGIONS), RP1(REPRESENTATIVE), RP2(REPRESENTATIVE),

C1(COUNTIES), C2(COUNTIES) |
(RP1.County=C1.Code) ∧ (RP2.County=C2.Code) ∧

(C1.Region=C2.Region) ∧(R.Code=C1.Region) ∧
(RP1.Surname=RP2.Surname) ∧ (RP1.Number ≠ RP2.Number)) }

([HUFLVH����

Show how the formulation of the queries in Exercise 3.3 could be facilitated by the definitions of
views.

6ROXWLRQ�

In Exercise 3.3, in queries 2,3,4 we need to know Name and Surname of members of the finance
committee. So it is reasonable to make this query only once, writing a view:

FINANCEMEMBERS= σName=“Finance”(REPRESENTATIVE dCommittee=NumberC

ρNumberC←Number(COMMITEE))

This query, with the projection on Surname and FirstName, answers to query n° 2; it can be used to
simplify the queries 2 and 3 as follow:

ΠFirstName,Surname,NameCon(FINANCEMEMBERS d (Constituency=NumberCon)∧(County=CountyCon)

ρCountyCon,NumberCon,NameCon←County,Number,Name(CONSTITUENCIES))

ΠFirstName,Surname,CountyName,RegionName

(FINANCEMEMBERS dCounty=CountyCodeρCountyCode,CountyName←Code,Name (COUNTIES)
dRegion=RegionCode ρRegionCode,RegionName←Code.Name(REGIONS))

In query 5, the join between REPRESENTATIVE and COUNTIES is made two times; so it is
possible to define a view:

REPRWITHCOUNTY=REPRESENTATIVE dCounty=Code COUNTIES

The query becomes:
ΠRegionName(σ(Surname=Surname1)∧(Number≠Number1)

(ΠNumber,Surname,Region (REPRWITHCOUNTY)dRegion=Region1

ρNumber1,Surname1,Region1←Number,Surname,Region(ΠNumber,Surname,Region (REPRWITHCOUNTY))
dRegion=RegionCode ρRegionCode,RegionName←Code,Name(REGIONS))

([HUFLVH����

Consider the database schema on the relations:

COURSES(Number, Faculty, CourseTitle,Tutor)
STUDENTS (Number, Surname, FirstName, Faculty)

TUTORS (Number, Surname, FirstName)
EXAMS(Student, Course, Grade, Date)
STUDYPLAN (Student, Course, Year)

Formulate in relational algebra, in domain calculus, in tuple calculus and in Datalog, the queries that
produce:

1. The students who have gained ‘A’ in at least one exam, showing, for each of them, the first
name, surname and the date of the first of such occasions;

2. For every course in the engineering faculty, the students who passed the exam during the last
session;

3. The students who passed all the exams required by their respective study plan;
4. For every course in the literature faculty, the student (or students) who passed the exam with the

highest grade;
5. The students whose study plan require them to attend lectures only in their own faculty;
6. First name and surname of the students who haven taken an exam with a tutor having the same

surname as the students.

6ROXWLRQ�

1)
��������Relational Algebra:

ΠFirstName,Surname, Date

((ΠStudent,Date (σGrade= ‘A’(EXAMS)) -
ΠStudent,Date(σGrade= ‘A’(EXAMS d(Student=Student1)∧(Date≥Date1)

ρStudent1,Course1,Grade1,Date1← Student,Course,Grade,Date(EXAMS))))
dStudent=Number(STUDENTS))

 Domain Calculus:
{FirstName: fn, Surname: sur, Date: d |

STUDENTS(Number: n, FirstName: fn, Surname: sur, Faculty: f) ∧
EXAMS(student: n, Course: c, Grade: g, Date: d) ∧

(g= ‘A’) ∧
¬(∃c1 (∃ d1 (EXAMS (Student: n, Course: c1, Grade: g, Data: d1) ∧ (d1<d)))) }

 Tuple Calculus:

{ S.(FirstName,Surname), E.Date | S (STUDENTS), E(EXAMS) |
(S.Number=E.Student) ∧ (E.Grade= ‘A’) ∧

¬(∃ E1(EXAMS) ((E1.Student=S.Number) ∧(E1.Grade= ‘A’) ∧ (E1.Date < E.Date))) }

 Datalog:
OTHERA (Student: n, Date: d) ←

EXAMS(Student: n, Course: c, Grade: ‘A’, Date: d),
EXAMS(Student: n1, Course: c1, Grade: ‘A’, Date: d1),
(d ≥ d1)

FIRSTA (FirstName: fn, Surname: sur, Date: d) ←
STUDENTS(Number: n, FirstName: fn, Surname: sur, Faculty: f),
EXAMS(student: n, Course: c, Grade: ‘A’, Date: d),
NOT OtherA(Student: n, Data: d)

2)
 Relational Algebra:

ΠSurname, FirstName, StudentNumber

(σ(Faculty= “Engineering”)∧(Date≥StartSession)∧(Date≤EndSession) (COURSES dNumber=Course EXAMS)
dStudent=StudentNumberρStudentNumber,StudentFaculty←Number,Faculty(STUDENTS))

 Domain Calculus

{FirstName: fn, Surname: sur, StudentNumber: sn |
STUDENTS(Number: sn, FirstName: fn, Surname: sur, Faculty: sf) ∧

EXAMS(Student: sn, Course: c, Grade: g, Date: d) ∧
COURSES(Number: c, Faculty: f, CourseTitle: ct, Tutor: t) ∧
(f= “Engineering”) ∧ (d ≤ EndSession) ∧ (d ≥ StartSession) }

 Tuple Calculus:

{ S.(FirstName,Surname, StudentNumber) | S (STUDENTS), E(EXAMS),C(COURSES) |
(S.Number=E.Student) ∧ (E.Course= C.Number) ∧ (C.Faculty=“Engineering”) ∧

(E.Date ≤ EndSession) ∧ (E.Date≥ StartSession) }

 Datalog:

GOODSTUDENTS(FirstName: fn, Surname: sur, StudentNumber: sn) ←
STUDENTS(Number: sn, FirstName: fn, Surname: sur, Faculty: sf) ,
EXAMS(Student: sn, Course: c, Grade: g, Date: d),
COURSES(Number: c, Faculty: “Engineering”, CourseTitle: ct, Tutor: t),
(d ≤ EndSession),(d ≥ StartSession)

3)

 Relational Algebra:

ΠStudent(STUDYPLAN)-
ΠStudent(ΠStudent,Course(STUDYPLAN) -ΠStudent,Course(EXAMS))

 Domain Calculus:

{ Student: n | STUDYPLAN(Student:n, Course :c , Year: y) ∧
(∀c1(∀y1(∀g1,∀d1(¬(STUDYPLAN(Student: n, Course: c1, Year: y1) ∨ (EXAMS(Student: n,

Course: c1, Grade: g1, Date: d1)))))) }

 Tuple Calculus:

{ S.Student | S(STUDYPLAN) | (∀S1(STUDYPLAN) (∀E(EXAMS) (¬(S.Student=S1.Student) ∨
((S1.Student=E.Student)∧(S1.Course=E.Course)))) }

 Datalog:

NOTALLEXAMS(Student: n) ←
STUDYPLAN(Student:n, Course :c , Year: y),
NOT EXAMS(Student: n, Course: c, Grade: g, Date :d)

ALLEXAMS(Student: n) ← STUDYPLAN(Student:n, Course :c , Year: y)
NOT NOTALLEXAMS(Student: n)

4)
 Relational Algebra:

ΠStudents(EXAMS dCourse=Number σFaculty= “Literature” (COURSES)) –
ΠStudentσ(Grade> Grade1)∧(Faculty= “Literature”)(COURSES d Number=Course EXAMS
d Course=Course1 ρStudent1,Course1, Grade1, Date1← Student,Course, Grade, Date(EXAMS)))

 Domain Calculus:
 { Student: sn | EXAMS(Student: sn, Course: c, Grade: g, Date: d) ∧

COURSES(Number: c, Faculty: f, CourseTitle: ct, Tutor: t) ∧
(f= “Literature”) ∧

¬(∃sn1(∃d1 (∃ g1 (EXAMS(Student: sn1, Course: c, Date: d1, Grade: g1) ∧ (g1< g))))) }

 Tuple Calculus:
{ E.Student | E(EXAMS), C(COURSES) |

(E.Course=C.Number) ∧ (C.Faculty= “Literature”) ∧
(∀E1(EXAMS) ¬((E1.Course=E.Course) ∨ (E1.Grade > E.Grade)))

 Datalog:
STUDENTNOTBEST(Student: sn) ←

EXAMS(Student: sn, Course: c, Grade: g, Date: d), COURSES(Number: c,
Faculty: “Literature”, CourseTitle: ct, Tutor: t),
EXAMS(Student: sn1, Course: c, Grade: g1, Date: d1),
(g > g1)

STUDENTBEST(Student: sn) ←
EXAMS(Student: sn, Course: c, Grade: g, Date: d),
COURSES(Number: c, Faculty: “Literature”, CourseTitle: ct, Tutor: t),
NOT STUDENTNOTBEST(Student: sn)

5)
 Relational Algebra:

ΠStudent(STUDYPLAN)-
ΠStudent(σSfaculty≠ Faculty)(ρSnumber,Sfaculty←Number,Faculty(STUDENTS)

dSnumber=Student STUDYPLAN
dCourse=Number COURSES))

 Domain Calculus:
{ Student: n | STUDYPLAN(Student:n, Course :c , Year: y)∧

¬(∃fn(∃sur,∃sf(∃f,(∃ct,∃t(STUDENTS(Number: n, FirstName: fn, Surname: sur, Faculty: sf) ∧
COURSES(Number: c, Faculty: f, CourseTitle: ct, Tutor: t)∧(sf≠f)))))) }

 Tuple Calculus:
{ SP.Student | SP(STUDYPLAN) | ¬(∃S(STUDENTS) (∃C(COURSES)

((SP.Course=C.Number)∧(S.Number=SP.Student)∧(C.Faculty≠S.Faculty)))) }

 Datalog:
DIFFERENTFACULTY(Student: n) ←

STUDYPLAN(Student:n, Course :c , Year: y),
STUDENTS(Number: n, FirstName: fn, Surname: sur, Faculty: sf) ,
COURSES(Number: c, Faculty: f, CourseTitle: ct, Tutor: t),
(sf≠f)

SAMEFACULTY(Student: n) ←
STUDYPLAN(Student:n, Course :c , Year: y),
NOT DIFFERENTFACULTY(Student: n)

6)
 Relational Algebra:

ΠSurname,FirstName (σSurname=Tsur(ρSnumber,SFaculty←Number,Faculty(STUDENTS)
dSnumber=Student EXAMS dTutor=Tnumber

ρTnumber,Tfn,Tsur←Number,FirstName,Surname (TUTORS)))

 Domain Calculus:

{ FirstName: fn, Surname: sur |
STUDENTS(Number: n, FirstName: fn, Surname: sur, Faculty: sf) ∧

EXAMS(student: n, Course: c, Grade: g, Date: d) ∧
COURSES(Number: c, Faculty: f, CourseTitle: ct, Tutor: t)∧

TUTORS(Number: t, Surname:sur, FirstName: tfn) }

 Tuple Calculus:

{ S.(FirstName,Surname) | S(STUDENTS), E (EXAMS), C(COURSES), T(TUTORS) |
(S.Number=E.Student)∧(E.Course=C.Number) ∧ (C.Tutor=T.Number) ∧

(T.Surname=S.Surname) }

 Datalog:
SAMESURNAME (FirstName: fn, Surname: sur) ←

STUDENTS(Number: n, FirstName: fn, Surname: sur, Faculty: sf) ,
EXAMS(student: n, Course: c, Grade: g, Date: d) ,
COURSES(Number: c, Faculty: f, CourseTitle: ct, Tutor: t),
TUTORS(Number: t, Surname:sur, FirstName: tfn)

([HUFLVH����

With reference to the following database schema:

CITIES(Name, Region, Population)
CROSSING (City, River)
RIVERS (River, Length)

Formulate the following queries in relational algebra, domain calculus, tuple calculus and Datalog:

1. Find the names, regions and population for the cities that (i) have more than 50 thousand in
habitants and (ii) are crossed by the Thames or the Mersey

2. Find the cities that are crossed by (at least) two rivers, giving the name of the city and that of the
longest of the rivers.

6ROXWLRQ�

1) Relational Algebra:
ΠName, Region, Population (σ(River="Thames")∨(River="Mersey")(CROSSING) dCity=Name

σPopulation>50000(CITIES))

 Domain Calculus:

{ Name: n, Region: r, Population: p | CITIES (Name: n, Region: reg, Population : p) ∧
CROSSING(City: n, River: r)∧ (p > 50000) ∧
((River= “Thames”) ∨ (River= “Mersey”)) }

 Tuple Calculus:

{ C.(Name,Region,Population) | C(CITIES), R (CROSSING) |
(C.Name= R.City) ∧ (C.Population > 50000) ∧

((R.River= “Thames”) ∨ (R.River= “Mersey”)) }

 Datalog:
NOTHAMESNOMERSEY (City: c) ←

CROSSING (City: c, River: r),
(r ≠ “Thames”), (r≠ “Mersey”)

THAMESORMERSEY (City: c, Region : reg, Population p) ←
CITIES (Name: c Region: reg, Population : p),
CROSSING(City: n, River: r), (p > 50000),
NOT NOTHAMESNOMERSEY (City: c)

2) Relational Algebra:

ΠCity,River (σRiver ≠ River1 (CROSSING dCity=City1 ρCity1,River1←City,River (CROSSING))) –

ΠCity,River (σ(River≠River1)∧(Length < Length1)((RIVERS d CROSSING) dCity=City1

ρCity1,River1, Length1← City,River, Length(RIVERS d CROSSING)))

 Domain Calculus:

{ City: n, River: r | CROSSING (City: n, River: r) ∧
CROSSING (City: n, River: r1) ∧ (r≠r1) ∧RIVERS(River: r, Length: l) ∧

(∀ r2 (∀ l2 ¬((CROSSING (City: n, River: r2)∧RIVERS(River: r2, Length: l2)) ∨ (l2<l)))) }

 Tuple Calculus:

{C.(City, River) | C(CROSSING), C1(CROSSING), R(RIVERS) |
(C.City=C1.City) ∧ (C.River ≠ C1.River) ∧ (C.River=R.River) ∧

(∀C2(CROSSING) (∀R2(RIVERS) (C2.City≠C.City) ∨((R2.River=R.River)∧(R2.Length <
R.Length))))) }

 Datalog:
SHORTRIVERS (City: c, River: r) ←

CROSSING (City: c, River: r),
RIVERS(River: r, Length: l),
CROSSING (City: c, River: r1),
RIVERS(River: r1, Length: l1),
(l < l1)

LONGRIVERS (City : c, River: r) ←
CROSSING (City: c, River: r),
CROSSING (City: c, River: r1),
(r ≠r1),
NOT ShortRiver (City: c, River: r)

([HUFLVH����

With reference to the following database schema:

TRIBUTARIES (Tributary, River)
RIVERS (River, Length)

Formulate in Datalog the query that finds all the tributaries, direct and indirect, of the Mississippi.

6ROXWLRQ�

ALLTRIBUTARIES (Tributary: t) ←
TRIBUTARIES (Tributary: t, River: “Mississippi”)

ALLTRIBUTARIES (Tributary: t) ←
TRIBUTARIES (Tributary: t, River:r),
ALLTRIBUTARIES (Tributary: r)

([HUFLVH����

Consider the relational schema consisting of the following relations:

TUTORS (Number, Surname, FirstName)
COURSES(Number, CourseName, Tutor)

STUDENTS(Number, Surname, FirstName)
EXAMS (Student, Course, Date, Grade)

With reference to this schema, formulate the expressions of algebra, tuple relational calculus and
Datalog that produce:

1. The exams passed by the student Detrouvelan-Delaney (supposing him to be the only one with
such a surname), indicating, for each exam, the name of the course, the grade achieved and the
name of the tutor;

2. The tutors who teach two courses (and not more than two), indicating the surname and first
name of the tutors and the names of the two courses.

6ROXWLRQ�

��� Relational Algebra:

ΠCourseName,Grade,Tsurname,Tname(σSurname= “Detrouvelan-Delaney”

(STUDENTS dNumber=Student EXAMS dCourse=Cnumber ρCnumber←Number(COURSES)
dTutor=Tnumber ρTnumber,Tsurname,Tname←Number,Surname,FirstName (TUTORS)))

 Tuple Calculus:

{ C.CourseName, E.Grade, T.(Surname,FirstName) | C(COURSES),
E(EXAMS), T(TUTORS), S(STUDENTS) |

(S.Number=E.Student) ∧ (E.Course=C.Number) ∧ (C.Tutor= T.Number) ∧
(S.Surname= “Detrouvelan-Delaney”)

 Datalog:

DETROUVELANEXAMS(CName: cn, Grade: g, TSurname: tsur, TName: tname) ←
STUDENTS (Number: n, Surname: “Detrouvelan-Delaney”, FirstName: fn),
EXAMS(Student: n, Course: c, Grade: g, Date: d),
COURSES (Number: c, CourseName:cn, Tutor: t),
TUTORS(Number: t, Surname: tsur, FirstName: tname)

��� Relational Algebra
ΠSurname,FirstName,CourseName,CourseName1

(ΠTutor,CourseName,CourseName1 (COURSES d(Tutor=Tutor1)∧(Number≠(Number1)

ρNumber1,CourseName1,Tutor1← Number,CourseName,Tutor (COURSES)) -
ΠTutor,CourseName,CourseName1 (σNumber≠Number2(COURSES d(Tutor=Tutor1)∧(Number≠Number1)

ρNumber1,CourseName1,Tutor1← Number,CourseName,Tutor (COURSES)
d(Tutor1=Tutor2)∧(Number1≠Number2)

ρNumber2,CourseName2,Tutor2← Number,CourseName,Tutor (COURSES)))
dTutor=TnumberρTnumber←Number (TUTORS))

 Tuple Calculus:

{ T.(FirstName,Surname), C.CourseName, C1.CourseName |
T(TUTORS), C (COURSES), C1(COURSES) |

(T.Number)=(C.Tutor) ∧ (T.Number)=(C1.Tutor) ∧
(C.Number≠C1.Number) ∧

¬(∃ C2(COURSES) ((C2.Tutor=T.Number) ∧(C2.Number ≠ C.Number) ∧(C2.Number ≠
C1.Number))) }

Datalog:

MORETHANTWO (Tutor : t) ←
COURSES (Number: n, CourseName: cn, Tutor: t),
COURSES (Number: n1, CourseName: cn1, Tutor: t),
COURSES (Number: n1, CourseName: cn1, Tutor: t),
(n≠n1),(n≠n2),(n1≠n2)

EXACTLYTWO (FirstName: fn, Surname: sn, Course1: cn1, Course2: cn2) ←
TUTORS (Number : t, FirstName: fn, Surname: sn),
COURSES (Number: n1, CourseName: cn1, Tutor: t),
COURSES (Number: n2, CourseName: cn2, Tutor: t),
(n1≠n2),
NOT MoreThanTwo(Tutor: t)

([HUFLVH����

Consider a relational schema containing the relations:

R1 (ABC), R2 (DG), R3(EF)

Formulate in tuple and domain relational calculus, the query formulated in relational algebra with
the following expression:

(R3 dG=E R2) ∪ (ρDG←AC (ΠACEF (R1 d B=F R3)))

6ROXWLRQ�

This expression cannot be formulated in tuple calculus because of the presence of the union between
different tables.
In domain calculus, the expression becomes:

{ D: d, G: g, E: e, F: f | R3(E:e, F:f) ∧ ((R2(D: d, G: g) ∧ (g=e)) ∨ (R1(A: d, B: b, C: g) ∧ (b=f))) }

([HUFLVH�����

With reference to the schema in Exercise 3.9, formulate in relational algebra the queries specified in
domain calculus by means of the following expression:

{ H: g, B: b | R1(A: a, B: b, C: c) ∧ R2(D: c, G: g) }
{ A: a, B: b | R2(D:a , G: b) ∧ R3 (E: a, F: b) }

 { A: a, B: b | R1(A:a , B: b, C: c) ∧ ∃a’ (R1(A: a’ , B: b, C: c) ∧ a≠a’) }
{ A: a, B: b | R1(A:a , B: b, C: c) ∧ ∀a’ (¬R1(A: a’ , B: b, C: c) ∨ a=a’) }
{ A: a, B: b | R1(A:a , B: b, C: c) ∧ ¬∃a’(R1(A: a’ , B: b, C: c) ∧ a≠a’) }

6ROXWLRQ�

ρH←G (ΠBG (R1 dC=D R2))
ρAB←DG (ΠDG (R2 d(D=E)∧(G=F) R3))

ΠAB(σA≠A1 (R1d(B=B1)∧(C=C1) ρA1,B1,C1←ABC(R1)))
ΠAB (R1) - ΠAB(σA≠A1 (R1d(B=B1)∧(C=C1) ρA1,B1,C1←ABC(R1)))
ΠAB (R1) - ΠAB(σA≠A1 (R1d(B=B1)∧(C=C1) ρA1,B1,C1←ABC(R1)))

([HUFLVH�����

Consider the following algebraic expression:

ΠADH (σ(B=C)∧(E=F)∧(A>20)∧(G=10) ((R1 d R3) d R2)

which refers to the schema

R1(AB), R2 (CDE), R3(FGH)

and transform it, with the goal of reducing the size of the intermediate results.

6ROXWLRQ�

ΠADH (σA>20(R1) dB=C ΠCDH (R2 dE=F ΠFH (σG=10(R3))))

