TEMA 1

Prova di Statistica (Complementi) del 08.01.16

COGNOME	NOME	N. MATR.	

Attenzione: lo studente deve fornire i diversi passaggi dei calcoli eseguiti e i commenti richiesti. Il presente foglio deve essere compilato e riconsegnato. E' vietato l'uso di calcolatrici programmabili o con funzione di agenda elettronica.

Teoria

- 1. L'analisi grafica dei residui del piano dei minimi quadrati.
- 2. Il teorema del limite centrale: enunciato e applicazioni.
- 3. Si dimostri che il quadrato di una variabile casuale normale standardizzata si distribuisce come...

Esercizi

1) Di tre variabili rilevate su 23 unità statistiche sono state calcolate matrice varianze e covarianze e medie aritmetiche:

	X_1	X_2	X_3
X_1	111	-39	19
X_2	-39	25	-12
X_3	19	-12	21

$$X_1 = -6$$

$$\overline{X}_1 = -6 \qquad \qquad \overline{X}_2 = -22 \qquad \qquad \overline{X}_3 = 45 \, .$$

$$\overline{X}_2 = 45$$
.

- a) Si determinino i parametri del piano dei minimi quadrati $\hat{X}_1 = b + \alpha_{12,3} X_2 + \alpha_{13,2} X_3$.
- b) Si misuri il grado di miglioramento passando dalla "miglior" retta al piano di cui al punto a) sia in termini di varianza totale che in termini di varianza residua e s'interpretino i risultati ottenuti.
- c) Considerando i dati in tabella come un campione casuale della variabile $\,X_1\,$ in corrispondenza delle coppie di valori delle altre due variabili, si verifichi l'ipotesi che, per il piano dei minimi quadrati di cui al punto a), i coefficienti di regressione $lpha_{12.3}$ e $lpha_{13.2}$ siano congiuntamente significativamente diversi da zero, volendo commettere l'errore di prima specie con probabilità del 10%.
- d) Considerando i dati in tabella come un campione casuale della variabile X_1 in corrispondenza delle coppie di valori delle altre due variabili, si verifichi l'ipotesi che, per il piano dei minimi quadrati di cui al punto a), il coefficiente di regressione $lpha_{13.2}$ sia significativamente diverso da zero, volendo commettere l'errore di prima specie con probabilità del 10%.
- e) Si calcoli l'indice A_2 per il piano di cui al punto a).
- 2) In tabella sono riportati i punteggi (in migliaia di punti) ottenuti da 3 giocatori per un particolare gioco elettronico.

Giocatore A	Giocatore B	Giocatore C
283	185	234
261	243	248
404	360	190
279	281	258
361	276	279
277	304	365
205	290	342
	254	317

- a) Si verifichi l'ipotesi che le varianze dei punteggi dei giocatori A e B siano uguali, volendo commettere l'errore di prima specie con probabilità del 5%.
- b) Si verifichi l'ipotesi che i punteggi medi dei 3 giocatori siano uguali, volendo commettere l'errore di prima specie con probabilità dell'1%.
- 3) In un ballottaggio sia p la frequenza relativa di votanti il candidato A. Determinare:
 - a) La numerosità del campione affinché $P\{|\hat{p}-p| \le 0.01\} = 0.99$, essendo \hat{p} lo stimatore di p.
 - b) L'intervallo di confidenza al 98% per p, facendo riferimento a un campione di 400 votanti dei quali 195 abbiano preferito il candidato A.

TEMA 1

1/8

ESERCIZIO NR. 1

$$\sum_{1} = \frac{1}{5} + \lambda_{12.3} \times_{2} + \lambda_{13.2} \times_{3}$$

$$\cdot \frac{1}{2.5} = \frac{N_{12}N_{35} - N_{13}N_{23}}{N_{22}N_{33} - N_{23}^{2}} = \frac{-39.21 - 19(-12)}{25.21 - (-12)^{2}} = \frac{-819 + 228}{381}$$

$$\frac{1}{13.2} = \frac{N_{13} N_{22} - N_{12} N_{23}}{N_{22} N_{33} - N_{23}^{2}} = \frac{19.25 - [(-39).(-12)]}{381} = \frac{475 - 468}{381}$$

$$= \frac{7}{281} = 0,01837$$

$$\hat{J} = \bar{x}_1 - \hat{\mathcal{L}}_{12.3} \bar{x}_2 - \hat{\mathcal{L}}_{13.2} \bar{x}_3$$

$$= -6 - \left[(-1,55/18) \cdot (-22) \right] - 0,01837 \cdot 45$$

$$\hat{X}_1 = -40,95261 - 1,55118 \hat{X}_2 + 0,01837 \hat{X}_3$$

$$T_{12} = \frac{M_{12}}{\sqrt{N_{11} N_{22}}} = \frac{-39}{\sqrt{111 \cdot 25}} = -0,74034$$

$$7_{12}^{2} = (-0,74034)^{2} = 0,548108 = I_{1.2}^{2}$$

$$\cdot \hat{\chi}_1 = c + \lambda_{13} \hat{\chi}_3$$

$$T_{13}^2 = (0,39353)^2 = 0,15487 = I_{1.3}^2$$

$$T_{1.23}^2 = \frac{VS}{VT} = \frac{\widehat{\mathcal{Q}}_{12.3} \, \alpha_{12} + \widehat{\mathcal{Q}}_{13.2} \, \alpha_{13}}{\alpha_{11}}$$

$$-MVR = \frac{I_{1:23}^2 - I_{1:2}^2}{1 - I_{1:2}^2} = \frac{9000046}{1 - 0,548108} = 0,00010.$$

E)

Ho:
$$d_{12.3} = d_{13.2} = 0$$
 vs $H_1: d_{12.3} \neq 0$ $V d_{13.2} \neq 0$
 $|A = 0, 1|$
 $|A = 23; K = 3|$

Si nifuta Ho $a:$
 $V = \frac{I_{1.23}^2/(K-1)}{(1-I_{1.23}^2)/(m-k)} = \frac{0,548154/2}{(1-0,548154)/20} = \frac{0,274.077}{0,022592}$
 $= 42,131h > f_{1-1}(2;20)$
 $f_{1-1}(2;20) = f_{0,9}(2;20) = 2,59$
 $-V RIFIUTO Ho$.

$$\frac{a^2 - DR - mw_{11}(4 - J_{1.23}^2)}{m - k} = \frac{23.111(1 - 0.548154)}{23 - 3}$$

$$= \frac{2553 \cdot 0.451846}{20} = 57,6781$$

$$=\frac{0,01837}{\sqrt{0,16455}}=0,0453$$

$$\Delta_{2} = \sqrt{\frac{1}{m}} \sum_{i=1}^{\infty} (x_{3i} - \hat{x}_{3i})^{2} = \sqrt{\frac{DR}{m}}$$

$$= \sqrt{M_{11}} (1 - I_{3\cdot 23}^{2}) = \sqrt{111 \cdot (1 - 0.548154)}$$

$$= \sqrt{50.1549} = 7.0820.$$

Ho:
$$a_A^2 = a_B^2$$
 vs H_a : $a_A^2 \neq a_B^2$ $\left[d = 0,05 \right]$

$$S_{A}^{2} = \frac{1}{M_{A}-1} \sum_{i=1}^{M_{A}} (X_{Ai} - X_{A})^{2}$$
; $M_{A} = 7$

·
$$S_{B}^{z} = \frac{1}{M_{B}^{-1}} \sum_{c=1}^{M_{B}} (X_{Bc} - \overline{X}_{B})^{2}; M_{B} = 8$$

GIOCATORE A	1 -121	GIOGATORE B	16 12
2LAC	(xxi-xx)	MBC	(RBi-JB)
283	161,54	185	7943,27
261	1204,78	243	968,77
404	11726,72	360	7374,52
279	279,22	281	47,27
361	4262,78	276	3,52
277	350,06	304	892,52
205	18228,30	290	252,02
2070	26213,40	254	405,02
7 - 2070	*	2193	17886,91

$$- \pi_A = \frac{2040}{7}$$
= 295,71

$$- \pi_{B} = \frac{2193}{8} = 274,125$$
 $- S_{B}^{2} = \frac{17886,91}{8-1} = 2555,27$

$$V = \frac{S_A^2}{S_B^2} = \frac{4368,9}{2555,27} = 1,71 < F_{3-2}(m_{A-1}; m_{B}-1) = F_{3}(6;7) = 5,12$$

ACCETTO HO

6/8

Ho:
$$M_A = M_B = \mu_e \text{ vs } H_a: \sum_{i \in lapsel} \sum_{j \in lapsel} |M_{ii} - M_j| > 0$$

Si nifuta the se:

$$V = \frac{DF/(K-1)}{DN/(m-k)} > F[x-1; m-x] = F_{0,99}[z; z_0] = 5.85$$

$$- \overline{\chi}_{A} = 295,71; \quad \overline{\chi}_{B} = 274,125; \quad \overline{\chi}_{C} = 279,125$$

$$\cdot \times = \frac{295,11.7+274,125.8+279,125.8}{23}$$

$$=\frac{2069,97+2193+2233}{23}=\frac{6495,97}{23}=282,43$$

· DF=
$$\sum_{j\in\{A,B,C\}} (\overline{X}_{j}-\overline{X}_{j})^{2} m_{j}$$

$$= (295,71-282,43)^{2}.7+(274,125-282,43)^{2}.8$$
$$+(279,125-282,43)^{2}.8$$

$$\cdot DN = \sum_{j \in lABC} \sum_{i=1}^{m_j} \left(X_{ji} - \overline{X}_{j} \right)^2 = \sum_{j \in lABC} \left(m_j - 1 \right) S_j^2$$

GlOCATOREC Xci	(dci-Tic)2
234 248 190 258 279 365 342 317	2036,27 968,77 7943,27 446,27 0,0156 7374,52 3953,27 1434,52
_	24156,90

· Ic= 279,125

$$N = (7-1) \cdot 4368,9 + (8-1) \cdot 2555,27 + (8-1) \cdot 3450,99$$

$$= 68257,21$$

$$V = \frac{1873,67/2}{68257,21/20} = \frac{936,835}{3412,86} = 9,2745$$

ACCETTO HO

P{
$$|\vec{p}-\vec{p}| = 0,01$$
} = 0,99 ; $|\vec{1}-\vec{1}=0,99|$
 $\vec{p}=0,5$
 $m = \frac{(z_1-y_2)^2 \cdot \vec{p}(1-\vec{p})}{9,01^2} = \frac{2,58^2 \cdot 9,5}{9,01^2} \cdot \frac{(1-9,5)}{9,01^2}$
 $= \frac{1,6641}{0,0001} = 16641$

5)
$$P = \frac{195}{400} = 0,48 + 5; \quad 1 - \lambda = 9,98 \quad ; \\ \frac{7}{2} = \frac{$$