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These pages are only a schedule of some lessons for the final part of a course on Optimal Control. It
is a collection of some things that T use during my lessons: in particular, I would like to mention the very
interesting paper due to Bressan [3], the book [2], the sixth chapter of the note by Evans [6] and ....

In this schedule we use the optimal control theory, without recalling the fundamental notions and results:
I will use the notations used in [4].
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Chapter 1

Introduction

See [3]

1.1 Concepts of equilibrium in game theory

Game theory deals with situations in which a finite number of players do maximize their own payoff, deciding
a strategy among all the available options. Generally each player establishes his own strategy at the same
time, taking into account that the game’s result depends also on the choice taken by others. Without loss
of generality, let’s consider the case with two players; both of them have to solve the following problem:

)glg)}((l Ji(x1,%2) (1.1)
where x; € X;, which is the set of all possible options for Player ¢ = 1,2. This is a “one shot game” meaning
the payoff is entirely determined by the particular selected strategy.

In general it is not possible to find a solution (x},x3) € X; x X2 which leads both Player 1 and Player
2 to get the maximum payoff; indeed, the outcome could be favourable only for one of them. This is the
reason why there exist different concepts of equilibrium that differ from each other in some features, such
as the type of available information, games’ mechanism in terms of choices’ sequence or, as an alternative,
the faculty to cooperate. Hereafter there are the main concepts of solution: Nash equilibrium, Stackelberg
equilibrium and Pareto optimality, but first it is necessary to introduce some notations.

In the simplest case of two players, say “Player A” and “Player B” the required ingredients are given by:

e The two (finite/infinite) sets of strategy A and B: the players choose their particular strategy, respec-
tively a € A and b € B, so that the payoffs achieved are J4(a,b) and Jp(a,b).

e The two payoff functions: J4: A x B — R and JB : A x B — R which are continuous and known by

both players.

Definition 1.1 (Nash equilibrium). The pair of strategies (a*,b*) is a Nash equilibrium of the game if,
for every a € A and b € B, one has

Ja(a,b*) < Ja(a®,0%)  Jp(a®,b) < Jp(a®,b")

In this situation none of the players may increase his payoff changing his own strategy if the other do not
deviate from his one. This is a solution concept of non-cooperative game.

Definition 1.2 (Stackelberg equilibrium). A pair of strategies (a*,b*) € A x B is called a Stackelberg
equilibrium if b* € RP(a*) and moreover

Ja(a,b) < Ja(a",b)  V(a,b), be RP(a), a € A,

1



2 CHAPTER 1

where RB(a) is the set of best possible replies of Player B (the follower), since Player A (the leader) has
already announced the strategy a, i.e.

RB(a) = {V € B: Jg(a,b) < Jg(a,b'), Vb < B}

Note that b* stands for the best reply of Player B, which can choose his strategy only after Player A (the
leader) has announced his own one. In other words, first Player A establishes his strategy optimizing his
utility function, then Player B defines his strategy taking into account what the first player has decided
(asymmetry of information).

1.2 Differential games

Let x € R" describe the state of the system, evolving in time according to the ODE (called dyinamics)

x(t) = g(t,x,u;,us ... uy), a.e. t € [0,T] (1.2)

with fixed T' > 0 and a initial data
x(0) = xo € R". (1.3)
Here uy, us,...,uy are the controls of the N players (clearly we suppose N > 2). We assume that they

satisfy the pointwise constraints
ui(t)EUi, 1=1,...N,

where U; C RFi are the control sets for the i-Player.

It is clear that the possibility to solve the Cauchy problem (I.2)—(L.3]) is not clear: however, we usually as-
sume that the function g is continuous, differentiable w.r.t. x and with the derivatives g—xgj (t,x,uj,uy...uy)
continuous.

The aim of the i-player is to maximize

T
Ji(ul,...uN):/O filt,x,uy,...uy)dt + (T, x(T)),

where, as usual in the control theory, f; are the running cost and 1; are the payoff. Clearly the i-player
controls only the choice of u;.

In all that follows we suppose that there are only two players (N = 2), but it is easy to generalize.

The information available to players, such as the current state of the system and the strategy adopted
by the competitor, determine the kind of game that has to be undertaken by them. Let’s first give some
assumptions upon which the following analysis will be established and then let’s expose some of the most
well-known differential games. Each player has perfect knowledge of:

e the evolution of the system (identified by the function g), and the control sets Uy, U,.
e the two payoff functions Ji, Js.
e the instantaneous time ¢ € [0, 7]

e the initial condition for the system 1z
1.2.1 Some particular two-persons games
Let us introduce some particular situation for the two-persons games. We say that the game is symmetric if

fl(taxa u17u2) = fQ(t,X, u?aul)a

P =12, g(t,x,ui,u9) =g(t,x,uz,u1), Uy =Us.
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A game is completely cooperative if

f1=f2, 1 = 1o, Uy = Us.

A game is zero-sum if
fi=—rf2 1= -1
in this case, setting f = f1 and ¥ = 11, the strike of the first player is to find a strategy u; in order to

max J(up, ug),
uy

where -
T(ur,u) = / F(t, %, ur, ug) dt + (T, x(T));

while the strike of second player is to minimize the same functional, controlling us, since

T
max/ —f(t,x,uy,u2) dt — (x(T)) = — min J(uy, us).
0 uz

u2

1.2.2 Information structure: open-loop and feedback in two—persons game

In this context are just discussed two differential games: Open-loop strategies and Feedback (or Markovian)
strategies. Essentially, open—loop means that the players base their decision only on time and an initial
condition; whereas, the players use the position/state of the game as information basis in a feedback context.
A feature that is common to those two information structure is that the players do not need to remember
the whole history of the game when making a decision: only running time and the initial position xq are
relevant for the open—loop information structure, while for the feedback structure, only information on the
current position is relevant.
We focus our attention on two—persons game:

Definition 1.3. Open—loop strategies. The set S; of strategies available to the i-th Player, with i = 1,2,
will consist of all measurable functions u; : [0,T] — U; such that

u; (t) = l/i(t, XU),

where xq is the initial data and v; is a decision rule, i.e. a measurable function v;: [0,T] x R* — Uj.

Definition 1.4. Feedback strategies (or Markovian strategies). Here, the control implemented by
Player i, for i = 1,2, is u;, depending on both time t and system’s state x. The set S; of strategies available
to the i-th Player will consist of all measurable functions u; : [0,T] — U; such that

ui(t) = Vi(ta X(t)),

where v; is a decision rule, i.e. a measurable function v; : [0,T] x R* — U;; the Player i observes the
system’s position (t,x(t)) and chooses his action as described decision rule v;.

Other concepts of strategies can be given (see for example [2]).
Clearly, as we will see in the next lines, we require that the previous controls are admissible too. To be
more precise,

Definition 1.5. The class Ao, and the class Arpp. We say that (u1,us), with u;(t) = v,(t,xo), is
an admissible control (or strategy) in the class Aoz of open loop strategies for the game (21)) if t —
(v1(t,x0),v2(t,x0)) € Uy x U is a measurable function such that there exists a unique solution x of the

ODE
{X(t) = g(t,x(t),v1(t,%x0), v2(t, X0)) a.e. t €[0,T]
x(0) = xo
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We say that (uy,us), with u;(t) = v;(t,x(t)), is an admissible control (or strategy) in the class App of
feedback strategies for the game (21) if (t,x) — (v1(t,x),v2(t,x)) € Uy x Uy is a measurable function such
that there exists a unique solution x of the ODE

{x(t) = g(t,x(t),v1(t,x(t)), va(t,x(t))) a.e. t €[0,T]
x(0) = xg

1.2.3 Target and game set

In the games, as in the problem of optimal control, we deal with trajectories that satisfies some initial
and final condition. Let us consider a target set 7 C RT x R"; in this note we will consider closed target
sets. If we consider a dynamics and a target set, we define the game set G C RT x R" as the points
(1,€) € [0,00) x R™ such that there exists at least a trajectory x : [7,T] x R" such that

x(t)=¢& and (T,x(T)) € OT;

usually we say that x transfers (7,£) € G in T.
For every (1,€) € T, we can consider the trajectory x : [7, 7] — R™ defined by x(7) = &; this trajectory

implies that
TCg.

Let us list some particular case of game sets, depending on the final condition on the trajectory:
o (fized time and fized value of the trajectory): for x(T) = B, with T" and B fixed, we have T = {(T, B8)};
o (fized time and free value of the trajectory): we have T = {T} x R";

o (free time and fized value of the trajectory): we have T = RT x {B}, with B8 € R" fixed.



Chapter 2

Nash equilibria for two—persons game

In all this chapter we are considering a two—person game (the general case of a N—person game is similar)

Player I: max J;(uy,us) Player IT: max J3(uy, us)
up uz
T
Ji(ar, uz) =/ fi(t,x, a1, u9) di 4 4(x(T)), i=1,2 (2.1)
0
X = g(taxau17u2)
x(0) = xo

where T is fixed, U; and Us are closed control sets for the players and (u, us) is an admissible control, i.e.
depending on the information structure.
A Nash equilibrium (uj, u3) is such that
Jl(u’{,ug) > Jl(u1,u§)7 Yuy
JQ(UT,U;) > JQ(uLuQ)a Vug,

taking into account the information structure and the admissibility of the controls, as we will study in the
next sections.

2.1 Open-loop Nash equilibria

Definition 2.1. A pair of control functions (uj,u3) € Aor, with decision rule uj(t) = vi(t,x¢) and
trajectory x* such that

x*(t) = g(t, x*(t), vi(t,x0), V5(t, %0)) a.e. t €[0,T]

x*(0) = xg
is a Nash equilibrium within the class of open—loop strategies Aoy for the game (21) if the following
holds:

I the control ui provides a solution to the optimal control problem for the Player I, i.e. for

max / f1 (6,5 (8), w1 (£ %), " (£, %0)) dt + 11 (x(T))

(ur,uj)eAor,
(t) = g(t,x(t),v1(t, Xo),VS(t X))
x(0) = xo

with uy (t) = v1(t,x(t));

-

IT the control u; provides an optimal open—loop control for the problem for the Player II, i.e. for

max / Jo (6,(8), 1% (£, %0), va (£, %0)) dt + i (x(T))

Lll,ll2 YEAoL
x(t) = g(t, x(8), vi(t, Xo) va(t, x0))
x(0) = x9
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with uy(t) = va(t,xp).

In order to find a pair of open-loop strategies (uj, u}) yielding a Nash equilibrium, it is reasonable to
introduce

Hl(taxa ulauQa)\l) — fl(taxa u17u2) + )\1 . g(tax7 ulau2) (22)
Hy(t,x,uy,u2, A2) = fo(t,x,us,u2) + Ao - g(t,x, 1, up)

A necessary condition for optimality is given by Theorem [A1] taking into account that since T is fixed and
the final value of the trajectory is free we can assume that the control is normal (see Theorem 6.13 in [2]):

Theorem 2.1. Let us consider the problem (Z1) with f;, ; and g in C'. Let (u},u3), with u;(t) = v;(t,xo),
be a Nash equilibrium in the class od open—loop strategies. Let x* be the associated trajectory.
Then there exists a continuous multiplier X} : [0,T] — R™, with i = 1,2, such that

i) for all t € [0,T] we have
uj(t) € arg max Hy(t,x"(t),v,u5(t), A]())
vely

u;(f) € arg max Hy (t, x" (1), uj (£), v, A5(1));

i) in [0,T] we have X{ = —VxH (t,x*,uf,uj, A]), XQ = —VxHy(t,x*,uf,uj, A3);
ii) we have X (T') = Vi1 (x*(T)), A5(T) = Vxiho(x*(T)).

Since Theorem [A.T] gives only a necessary condition for optimality, we have to consider sufficient results
such as Mangasarian’s sufficient conditions (see Theorem [A.2)) or Arrow’s sufficient conditions (see Theorem
[A.3), in order to be sure the couple of controls (uf, u}) stands for an open-loop Nash equilibrium.

2.1.1 Workers versus capitalists

This model is due to Lancaster (see [13]). Let us denote by k& = k(t) the capital stock of the economy,
and the rate of production is proportional to k, i.e. the production at time ¢ is ak(t), with a > 0 fixed.
Within the limits a and b, workers decide their share u = u(¢) of production; the remaining production
(1 —u)ak is controlled by the capitalists, who invest a fraction v = v(¢) and consume the other portion, i.e.
(1 —v)(1 — u)ak. Both workers and capitalists want to maximize their own total consumption.

T T
Workers: max/ uak dt Capitalists: max/ (1 —=v)(1 —uw)akdt
u 0 v 0
0<a<u<b<l1 _ 0<v<1
kE=v(l—u)ak
k(0) = ko > 0

Although workers usually do gain future benefits from investments, their willingness to sacrifice consumption
can be exploited to the capitalists. On the other hand, a willingness to invest will be less effective if the
workers too soon press their share towards the limit 5. We choose the time unit such that the constant of
proportionality « is 1.

We have the Hamiltonians

Hy, = uk + M\o(l —u)k, Hy=(1—-v)(1 —u)k+ Xv(l —u)k,

and using Theorem 2] we have

b if o<1
u € arg max kp(l —A\jv) = { 77 i e =1 (2.3)
pelat] o ifAo>1
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1 ifAy>1
v € arg max kgl —1)=< 77 ifXp=1 (2.4)
acl01] { 0 if <1

Eo= vl —uk
A = —u—X\o(l—u) (2.5)
Ao = (u—1)(1—v+ ) (2.6)
M(T) = 0 (2.7)
X(T) = 0 (2.8)

where in order to obtain (Z3) and (24) we use that k(t) > ko > 0 since k& > 0. We note that u and v in
23) and (2.4) do not depend on the trajectory k: hence we are in the position to looking for a open—loop
solution.

It is easy to see that (2.4]) implies that in (2.6]) we have

Xo(t) <0,  Vtel0,T]: (2.9)
indeed by the adjoint equation (2:6]) and the Maximum principle (2.4)),

ifla>1, = do=(@w—-1 <0
ifla<1, = do=(u—1)<0.

Hence, by (2.8]), there exists 7 € [0,7") such that

Xo(t) <1 Vte (r,T] (2.10)
This implies, by (Z3]) and (2:4)), v(¢) = 0 and u(¢) = b in (7, T]. Relations (Z.5)—(238) give
A(t) = =b(t =1T), Xo(t) = (1 =) (T —t) Vte(r,T]; (2.11)
Condition (2.I0) implies X
r=T - (2.12)

Note that Ao(7) = 1 and together with (2.9) we have \o(¢) > 1 in [0,7): hence, by (2.4]), we obtain
v(t) =1 vt € [0, 7]. (2.13)

Now we have to distinguish two cases: b > % and b < %
e b> 1 :Note that for such b, by 2I1]), we have A\; (1) = 125 > 1; moreover, by in (Z5) we obtain A (1) <O.
This gives that A\ (t) > 1 for ¢t € [T —¢e, 7) for some positive e: now, replacing the same arguments we obtain
that Ay (¢) > 1 in [0, 7]. Hence, this inequality and (2.13)) give by (2.3) that u(¢) = a in [0, 7]. We obtain that
the candidate to be a Nash equilibrium is (u*,v*) with

eon  fa iftel0,7] e J 1 iftefo,7]
“(t)_{b if t € (1,7]" ”(t)_{o ift € (r,7]

with 7 as in (2.12]). First, we have to guarantee that (u*,v*) is admissible, i.e. there exists a unique path
k*, solution of the dynamics and the initial condition. We have that

{k: v (1—uk=(1—a)k iftel0,7]
k(0) = ko

gives k(t) = koe Y, for ¢ € [0, 7]; moreover

E=v(1—u) k=0 iftel[r,T]
k(1) = koel )7
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gives k(t) = koe' 7, for ¢t € [, T]. Hence (u*,v*) is admissible.

In order to prove that (u*,v*) is really a Nash equilibrium, we remark that (k,u) — Hy(¢,k,u,v*,\]) and
(k,v) — Ha(t,k,u*,v,\5) are not concave functions (for fixed ¢) and hence we are not in the position to
apply Theorem [A.2} however, if we construct the maximized Hamiltonian functions HY and HY for H; and
H, respectively, we obtain

HO(t,k,v*,\}) = max Hi(t,k,u,v*,\}) = E[Xiv* + max u(l — \])v*)],

u€[a,b] u€[a,b]
HY(t, k,u*, \5) = max Ho(t, k,u*,v,73) = k(1 — u*)[1 4+ max (X5 — 1)v)];
vel0,1] v€([0,1]

it is easy to verify that such two functions are concave in k, for fixed ¢, and hence Theorem [A.3] guarantees
that (u*,v*) is a Nash equilibrium.
e b < i:Note that A(1) = % < 1; then there exists 7/ € [0,7) such that

M) <1 Vie ). (2.14)

This inequality with (Z.I3]) imply that, by (23)), u(t) = b. The adjoint equation (2.5) and the condition for
A1 in 7 give the ODE _
{)\1 =—b— )\1(1 — b) for t € [T’,T],
M(T) =15

The solution is

2b b
_ % e _ 0
M) = 15¢ 1—b

It is easy to see that for

!
T =T+

1
- In(25) (2.15)

we have A1 (7') = 1. Now the same argument of the case b > 1/2 gives that A\ (¢) > 1 in [0, 7] and we obtain,
as before, u(t) = a. Hence we have that the candidate to be a Nash equilibrium is (u*, v*),

e fa iftelo,7] ey J1 ifte(0,7]
“(t)_{b ifte (r',T]’ ”(t)_{o ifte(r,T]

with 7 and 7" as in (ZI2) and (ZI5). In order to prove that (u*,v*) is really a Nash equilibrium, we use
arguments similar to the previous case.

2.2 Feedback Nash equilibria

Definition 2.2. A pair of control functions (uj,us) € App, with decision rule u}(t) = v}(t,x*(t)) and
trajectory x* such that

{)i* (t) = g(t,x*(¢t),vi(t,x*(t)), v5(t,x*(t))) a.e. t €[0,T]

x*(0) = xg

is a Nash equilibrium within the class of feedback strategies App for the game (21) if the following
holds:

I the control uj provides an optimal feedback control to the problem for the first Player, i.e. for

max /fltx v x(0), V3t x(8)) dt + 9 (x(T))

Ul,llz YEARB
x(t) = g(t,x(t), v1(t, x(1)), v5(E,%(1)))
x(0) = xg

where uy (t) = v1(t,x(t));
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IT the control u; provides an optimal feedback control to the problem for the second Player, i.e. for

max / o (1 %(1), v (1 X(8)), vt x(1))) dt + o (x(T))

(uf,u2)€ArB
x(t) = g(t, x(t), vi(t, x(t)), va(t, x(t)))
x(0) = xo

where uy(t) = va(t, x(t)).

Variational approach is not useful

Let us suppose that we are interesting on finding a feedback solution using the variational method: we will
show that the Pontryagin necessary condition is much more complicated and it is not useful. In order to do
that, let us suppose that (uj,u3) € App, where u}(t) = v}(t,x*(t)), is a Nash equilibrium within the class
of feedback strategies, with x* its trajectory. Without lost of generality, we assume that n = ky = ky = 1;
moreover, we assume U; = Uy = R. Hence we have (t,2) — (vj(t,z),5(t,z)) € R2 measurable function
such that z* is the solution of the ODE

{i?(t) = g(t,z(t), vi (¢, 2(2)), 5 (¢, x(t)))
z(0) = xo

and uj(t) = vi(t,z*(t)), u3(t) = v3(t,2*(1)).
Let us put our attention on the first Player and we fix a continuous function h : [0,7] — R and for every
constant € € R we define the function u; . : [0,7] — R by

u1,e(t) = vi(t,z*(t)) + eh(t) = ui(t) + eh(t) (2.16)
and we suppose that there exists the trajectory z, associated to (ui,3), i.e. the solution of the ODE

{ i(t) = g(t, z(t),u1e(t), 5 (¢, 2(1)))
z(0) = g
Clearly

i) =wolt)  wo(t) =2 (1), (0) = . (2.17)

As usual in the variational approach to a problem of optimal control, we define the function Jj, : R — R? as

T
Th(€) = /0 Fi(ty we(t), u1,e(8), 15 (8 2(t))) db + b (z(T))

We introduce the Hamiltonian H; as in (2.2]). Using the dynamics and by integrating by part we have

+ b1 (ze(T))

Since (uj,u3) is a Nash equilibrium, for the first Player we have that optimal [J3,(0) > J(€), for every e,

T ) T
Tn(e) = / [Hl(t,xe,ul,e,yé‘(t,xe), A1) + )\1:176] dt — ()\1956 .
0

d
and hence T (0) = 0. Classical calculation gives
€
dJh
0 —
2 0
OH, OH, ovs o | de
= /0 {[ o (t, 2%, uf,ub, M) + A+ — O Lt o, ut, ub, Ap) (9952 (t,z*) e (0) +

L ul,uQ,m)h}dt—[Al( - Srerm)] o

0H, ov;
We note that the bad new is the term — 3 (t T ul, uy, A\p) o= 3 2 (t, z*) that arrives from the fact that we are
u z

working with feedback controls, i.e. v5(¢,z(¢)). In [9] (see Theorem 7.1) there is a sufficient condition for
a particular type of games in order to obtain a feedback Nash equilibrium using the variational approach:
such condition it not really useful.
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With the Dynamic Programming approach

Let us start with the definition of the value function that, with respect to the situation of optimal control
problems, it must be specialized:

Definition 2.3. Let’s suppose that a pair of control functions (uj,us) € App, where u}(t) = v;(t,x*(t)), is
a Nash equilibrium within the class of feedback strategies App for the game (2.1]). Then we define the value
functions V; : [0,T] x R" — R, for Player i, by

T
Vi(r,§) =  sup Fi(tsx(8), w1 (E,x(1)), v (t, x(t))) At + 41 (x(T))

(ur,uy)eApp Jr

where uy(t) = vi(t,x(t)). Similarly, we define

T
Vo(r,€) =  sup fa(t,x(t), v1(t, x(8)), v2(t, x(1))) di + 2(x(T))

(u’{,ug)EAFB T
where uy(t) = vo(t, x(t)).

Some comments: first we remark that such definition is on a Nash equilibrium. Second, to be clear, in the
definition of V; we consider the sup on all the feedback controls u; such that, for the fixed feedback control
u;, there exists a unique solution of

{x(t) = g(t,x(t),v1(t,x(t)), v5(t,x(t))) a.e. in 1,7
x(r) =§

Finally, since (uj,u}) is a Nash equilibrium, we have that

T
Vi(r,€) = / £t %, uf, ug) dt 4+ 4y (x(T))

Similar situation appears in definition of V5.

Now, we are in the position to apply the Dynamic Programming results. Let us suppose that the
value functions Vj, defined on a feedback Nash equilibrium (uj, u3) with trajectory x*, are continuously
differentiable. The idea is to write the Bellman-Hamilton-Jacobi system for the first player with its value
function V; and the Bellman-Hamilton-Jacobi system for the second player with its value function V5, i.e.

A%

a—tl(t,x) + max [fl(t,x,vl,u’é(t,x)) + Vi Vi (t,x) -g(t,x,vl,ug(t,x))} =0, VY(t,x)€[0,T] xR"

oV;

8—;(15,)() + max [fg(t,x,u’f(t,x),VQ) + Vi Va(t,x) -g(t,x,u’f(t,x),VQ)] =0, V(¢t,x)€[0,T] xR"
V2 2

W(Ta X) =1 (X), Vx e R?

‘/Q(Ta X) = ¢2(X)7 Vx € R?

A version of Theorem in this context is the following (see Theorem 6.16 in [2])

Theorem 2.2. Let us consider the us consider the problem (2.1) with f;, 1; and g in C'. Let’s consider a
pair of control functions (uj,u3) € App, where u(t) = v;(t,x*(t)) and x* is the solution of the ODE

{x(t) = g(t,x(t),vi(t,x(t)),v5(t,x(t))) a.e. in [0,T]
x(0) = xg

Let us suppose that there exist two functions W; : [0, T] x R* = R, i = 1,2, continuously differentiable such
that, for every (t,x) € [0,T] x R",

oW
—Wl(t,x) = J?ggf(l [fl(t,x,vl,ug(t,x)) + VWi (t, x) - g(t,x, vi,v5(t,x))
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= filt,x,v](t,x),v5(t,x)) + VWi(t,x) - g(t, %,V (t, %), v5(t, %))

oW N X
_WZ(LX) = J?g[,}/'{? [fZ(taxayl(tax)av2) + VXW?(tax) : g(t,X,Vl(t,X),VQ)]

= folt,x,v](t,x),v5(t,x)) + VWa(t, x) - g(t, x,v](t,%x),v5(t,%x))
WI (Ta X) = wl (X)
WZ(Ta X) = 11’2 (X)

Then x* is the optimal trajectory and (ui,u3) is a Nash equilibrium in the class Arp.

2.2.1 Affine—Quadratic differential games

Now let us consider a particular type of games: we say that a two person differential games is Linear—
Quadratic if

2

e 1
max 5 / (XIle + 2X,51 + u’lRl,lul + UIQRLQUQ) dt + §X(t1),P1X(t1)
0

uj

I 1
{ max 5 /0 (XIQQX + 2X,52 + u,1R2,1111 + u’2R2,2u2) dt + Ex(tl),PQX(tl)

up
g(t,x,u;,us) = Ax + Byuy + Bouy + C
x(0) = a

(C = {(uy,u) : [0,T] = RF1 x RF2, admissible}

where v’ is the transpose of the matrix v; we denote the trajectory x and the control u such that x =
(z1,22,...,2,) and w; = (uj1,ui2,...,u;k) respectively; with Q; = Qi(t) and P, = P;(t) symmetric
matrices, and R; ; = R; (t), A = A(t), B; = Bi(t) and C = C(t) matrices. We have the following result
(see [2]):

Proposition 2.1. Let us suppose that for a Linear—Quadratic two person differential games there exist the
value functions V;, then we have

1
Vi(t,x) = §XIZZ'X +xW, +Y; (2.18)
fori=1,2, with Z; = Z;(t), W; = W;(t) and Y; = Y;(t) matrices.
Moreover, let us mention the following particular situation (see [2], [3] for details):

Remark 2.1. Let us consider the Linear—Quadratic two person differential games in the linear and homo-
geneous case, i.e. with
C = 0, and SZ = 0.

If there exists the value functions for the problem, then

1
Viltx) = 5% Zi(t)x.

2.2.2 Infinite horizon case

Let us consider a two—person, infinite horizon with discount, differential game
Player I: max Jj(uy,us) Player II: max Jy(uy, us)
ujp u2

Ji(uy, ug) :/ fi(x,ur,up) e dt, 0= 1,2 (2.19)
0

X = g(xa 111,112)
x(0) = xo
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where r > 0 and U; are the two control sets for the players. In this situation we are in the position to
introduce the current value functions V,° : R* — R". More precisely, since f and g do not depend on ¢, it
is possible to prove (as in a optimal control problem) that the existence of the value function (Vi,V5) that
satisfies the BHJ system is equivalent to the existence of the current value function (V£, Vi) that satisfies a
current BHJ system: moreover

Vit,x) = e "Vi(x),  V(tx) € [0,00) X R"
Taking into account that

ov;

Vi Vi(t,x) = e "'V, VE(x), 5

— (t,x) = —re "V (x),
Theorem becomes
Remark 2.2. Let us consider the us consider the problem (Z19) with f; and and g in C'. Let’s consider
a pair of control functions (uj,ul) € App, where u}(t) = vi(t,x*(t)) and x* is the unique solution of the
ODE

x(t) = g(x(t), vi(t,x(t)), v5(t,x(t))) a.e. in [0,00)

x(0) = x9

Let us suppose that there exists two functions V. : R* — R, i = 1,2, continuously differentiable such that,
for every x € R”,

rVEG) = max £ i, vA( %) + V() - gl v, v (1 )|
= V() V5 (%) + VRVE) - g(x,vi(E %), v5 (1))
PVE() = max | fox, i (), va) + VaVF (%) - g(x, v (£.5), v2)|

= falx,v1(4,%),v5(t, %)) + Vi V5 (%) - g(x, 011, %), v5(2, %))
Then (uj,u3) is a Nash equilibrium in the class App.

In many situation of the previous remark we have that the decision rule does not depend explicity by ¢,
i.e.

u; (t) = vi(x(?))- (2.20)

We mention that in the case of problem (2.I9]) one can decide to restrict the attention only to the feedback
control of the type (2.20)), called stationary feedback strategies (see [14]).

2.2.3 Two firms in competition

Suppose two firms produce an identical product. The cost of producing is governed by the total cost function

1
C(u;) = cu; + §u22,

where u; = u;(t) refers to the i-firm’s production level at time ¢ and ¢ is a positive constant. Each firm sells
all it produces at time ¢ into a market with a common price p = p(t). The relationship between the total
amount of production u; 4+ us supplied and the change in price is described by

p=s(a—uy —uz —p),

where s and a are positive constants and py is the price at the initial time ¢ = 0. Hence the situation is (this
model is presented in see [11], page 278)

4 (e.@) 1
I Prod.: max/ e <pu1 —cuy — —u1> dt uy >0

u1l 0 2

o 1

II Prod.: max/ e <pu2 — cug — —u2> dt ug > 0
U2 0 2
p=s(a—u —uy —p)
\ p(0) =po >0 p(t) >0
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with the rate of discount r that is a positive constant. Note that it is a symmetric game. We are interested
on a non zero Nash equilibrium in the family of feedback strategies, i.e. strategies for the two firms that
depend, at every time, on the price p(t).

With a infinite and discounted problems, it is convenient to introduce the current value functions V;* =
VE(p) and Vif = Vif(p) and their Bellman-Hamilton-Jacobi equations: for every p we have

1
Vi g [ = 0 = 507 4 5K (a =0 = —p)| =0
v>0 2
= <oV sla = = p)(VF) + max (9 - c - s
U_
1
oV ma [ — 0 = 307 4 s(8) (a = —v —p)| =0
= o5 4 sla = = p)(VE) + max (0 - e~ (V) - 07| =0

Clearly we obtain, for i = 1,2

o e [0 it p— ¢~ s(VE) (p)
i) =20 = {3 very ith— ooy

Note that such strategies are stationary feedback strategies: hence if our strategy is zero, for some ¢, we
have that such strategy is zero at every time. Let’s concentrate our attention on strategies that are different
from zero: hence we have

vip)=p—c—s(VP)'(p), vs(p)=p—c—s(Vs)(p) (2:21)

in the assumption
p—c—s(V)(p) >0, i=1,2 (2.22)

Let us consider the first current BHJ equation; we obtain
1 2
—rVi+s(a=2p+c+s(VE) ) (i) +5(p—c—s(ve)) =0, .

Since the problem is Linear-Quadratic (see Proposition 2.1]), we looking for value functions as

C 1 C 1
Vi(p) = a1 + fip + 571172, V3 (p) = ag + Pop + 572172- (2.23)

We obtain, using ([2.21]) and (2.23]), that the two current BHJ equations now require that for every p

—r <a1 + Bip + %71;02) +s [a —2p+c+s(fo+ 72p)} (B1 +v1p) + %(p —c—s(p1+ 71;0))2 =0 (2.24)

v (B ) e sfa =2 o s (B (ot e+ 5 (p = o 5 (B ) =0 (225)

The previous equations give two polynomials of degree 2 in p and they are identically zero for every p:
equating the coefficients of p?, we obtain

§2y7 4 (=r — 65+ 25%y9)y1 +1 =0 (2.26)
$2y3 4 (=1 — 65+ 25%y)y2 +1 =10

Let us prove that y; = 72: in order to do that, let us subtract the previous two equation obtaining

(71— 72)[82(71 +792) —r —6s] =0.
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If 1 # 79, we have
s (y1 +72) =7 + 65 (2.27)

Now let us consider the dynamic: with u; = v and ug = v5 given in (Z2]I]) and taking into account (2.23]),
we obtain

p = s[s(y1 +v2) — 3]p + sla + 2c + s(B1 + P2)]-
The solution of this ODE in p is

[s(yity2)—-3]t _ @+ 2¢ + s(f1 + f2)

t) = Ae’
p(?) S T ) =3

(2.28)

where A is a constant that depends on py. We note that, by (2:27)),

r+ 3s
S

s(y14+72)—3= > 0.
Hence, A # 0, for the price p(t) goes to sgn(A) - oo, for ¢ — oo: this is not reasonable. If A = 0, then
p(t) = po is constant; relation ([2.21)) give u}(t) = v (po) and this is not a feedback strategy. Hence vi # 72
is impossible.

From now on, let us simplify the notations setting v = 71 = 2. The price, by (2.28]), now is

_a+2c+8(ﬁ1+ﬂ2)
25y —3

p(t) = AesZs1=3) (2.29)

and equation (2.27)) becomes
35242 — (r+6s)y +1=0

with solutions

r+6s 4 /(r +6s)2 — 1252

== 652
We note that
6s + 13652 —12s2 34++v6 3
Y+ > = > —
652 3s 2s

implies again that the price in ([2.29]) goes to oo for t — co. Hence we consider only the solution v = y_ and
we obtain

1465 —/(r+6s)? — 125

_ = (2.30)
Let us prove that $; = 3. Let us note that
0< s’y <65’y <7+ (6—2V6)s <7+ 3s. (2.31)
Equating the coefficients of p in (2.24) and (2.25]) we obtain
(25%y_ —1r — 38)B1 + s>y_Pa2 = ¢ — 2scy_ — sary_ (2.32)
S2y_Pr 4 (28%y_ —r —35)Ba = ¢ — 2scy_ — say—
Let us subtract the previous two equation obtaining
(B1 = Bo)(s*y— — 7 —3s) = 0.
This relation, by (231), gives 81 = fB2. Let us set = 1 = fo: by (2.32)
5= sy-(2c+a) —c (2.33)

r+3s—3s2y_
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It is easy to see that 8 > 0. Moreover, by (Z.21]) and (Z.23)) we have
vi(p) =v3(p) =p—c—s(B+7-p). (2.34)

Now let us prove that a; = as (note that such coefficients play no role in the strategies, but we have to
guarantee that exist (V|¢, Vi) solutions of the current BHJ equations). Taking into account that 51 = f2 = 5,
equating the coefficients of zero degree on p in (2:24) and (2.25) we obtain

1
—rai+s(atetsp)f+(c+sp)’ =0, i=12.

Clearly such «; exist and are equal. Finally, we obtain by (Z.34)

ui (t) = v (p*(t)) = (L = sy )p"(t) = (Bs +¢),  i=1,2 (2.35)
pi(t) = <p0 e 3)-302;2% ) es(2sy-—a)r 4 BT T 2P 3302;2% (2.36)

where y_ and g are defined in (Z30) and (Z33]) respectively.

Let us set k = % It is easy to see, using S > 0, that k > 0 and hence the shape of the trajectory—

price function in (2.36]) implies that
p*(t) > min (p* (0), lim p*(t)) = min (po,,l;> > 0.
t—o00
Hence p* is a good price, i.e. p*(t) > 0. Finally, the assumption (2:22]) is now
(1—sy_)p>(Bs+c):
this condition requires that the trajectory p lies in a regio R

R ={(t,p) €[0,00) x (0,00) : (1 =sy-)p>(Bs+c)}.

Clearly R depends on the constants involved in the model. More precisely, our trajectory p* lies is this
region R if and only if, again by the shape of p* in (2.36]), the following

Bs+c
1—sv_

min (p*(0), lim p*(t)) = min (po, k) > (2.37)
t—o0

is satisfied. Some computations gives that for some choice of (a,¢,r, s,pg) the previous condition holds and
for some others choice is not true. However, if (2.37)) is satisfied, then Remark guarantees that (u,u3)
in (2.35) is a Nash equilibrium in the family of feedback strategies.

2.3 Further examples and models

2.3.1 Two fishermen at the lake

In the present model (see [I1], page 285) we will see that the open—loop Nash equilibrium and the feedback
Nash equilibrium coincide.
The model. Suppose that the evolution of the stock of fish x = z(¢) in a lake is governed by

=ar— frinx

for ¢ > 0 and where o and 3 are positive constants. We assume that z(t) > 2, one of each gender, for the
fish population to survive and z(0) = zy > 2. At every time, the stock = generates az births and it has
BxInz deaths.

'We note that (1 — sy_) > 0.
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Two fishermen harvest fish from the lake and each fisherman’s catch ¢; is directly related to the level of
effort w; = w;(t) he devotes to this activity and the stock of fish: thus

Ci = T;w;j.

Clearly, the fisherman’s activity reduced the fish stock in the lake and with respect the equation of the
evolution of the fish we have
T =ar— frlnx —wir — wor.

Each fisherman derives satisfaction from his catch according to a log utility function U; as
U; = a; In(w;x),

where a; are positive constants, in an infinite period. Hence we will introduce a discount factor e™", with
r > 0, for such utility.

It is 1comveniemt for computations to set y(#) = Inz(#): hence § = 7. the target of very player—fisherman
is to realize

© oo
Hm?/ “Ay+h“wk_”d“=wnmx/‘(y+humk—”dm
0 0

w; Wi

since a; > 0. Hence we have the following symmetric game

oo oo
IF.: max/ (y + Inw;)e " dt ITF. max/ (y + Inwo)e " dt
w1 0 w2 0
wy >0 wy >0
y=a—w —wy— Py
y(0) =yo >In2,  y(t) >In2
Let us assume for simplicity

o —3B > 2r. (2.39)

We are interested on non zero Nash equilibria in the class of open—loop strategies and in the class of feedback
strategies.
Open—loop Nash equilibrium.ﬁ Let us introduce the two current Hamiltonians:

Hi = y+Inw + Aie(o — wy —we — By)
Hj =y +Inwy + Age(a — wy — wy — By)

We have to guarantee the following conditions:

v;i(t,y) € argmax H; = arg max(lnv — \;jcv) = /\lic if Aie > 0 (2.40)
ne v>0 v>0 v A if A, <0

) OH¢

Aic = TAic — C=(r+ ) Nie — 1 (2.41)

dy

for i = 1,2. We note that v; and v» in (2.40) do not depend on the trajectory y: hence we are in the position
to looking for a open—loop equilibrium. Let us looking for some non zero Nash equilibrium, we obtain by

(2.40) X .
w1 (t) =1 (t) = W wo (t) =19 (t) = >\2C(t)

2Suggestion: In order to solve the Bellman-Hamilton-Jacobi equation for the current value functions, we suggest to looking
for the solution in the family of functions

(2.42)

Vi(y) = ay +b, Vi(y) = cy +d, (2.38)

with a, b, ¢, d constants.
3In subsection we looking for a open-loop Stackelberg equilibrium.
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in the assumption that
Aic > 0. (2.43)

The adjoint equations (2.41)) give

1
v

with A and B constants. Clearly (2.42]) gives, putting in evidence the dependence by the two constants,

1

_ p B -
Alc(t) Ae + ,3 T T’

Aoc(t) = BelFHnt 4

o= 5” P = ﬁ” . 2.44
The dynamics now gives
t
yAB(t) = e Pt [/ (= wit(s) — w2B(s)) P ds + ol . (2.45)
0

We claim that the case A = B = 0 is the unique candidate to a be a Nash equilibrium. In order to prove
that, first we put A < 0 and, for ¢ sufficiently large, we obtain wf‘ < 0 which is impossible. The case B < 0
is similar. Now, let us suppose that A and B are non negative; note in this case (Z43)) hold: we want to
prove that

oo o0
/ (P + Inw)e " dt < / (°8 + Inw?)e " dt, (2.46)
0 0

i.e. that (wi',w?) is not a Nash equilibrium since for the first player, with wf fixed, there exists a better
strategy with respect to wi'. Now, taking into account that

CAB AP
/ (,B+r) GHs 117
=1 (A(B +r)ePH £ 1) —In(A(B + 1) + 1) (2.47)
for every fixed ¢ we have, by (244)) and (2.45)),
-t
AB Ay Bt ptr _ B Bs
y* P () +lnwi(t) = e _/0 (a AB e 1 wy (s))e ds-l-yo] +

+1n(8 +7) = In (A(B +r)el? 1) 4 1)
(by @4T7)) = e -/0 (a—wZB(s)) e’gsds—l-yo] +In(B+7r)+

(B+r)s 4 oB(s—t)
—(,B+r)/0 (’3:82r) 5"‘7‘—;—64—1 ds —In (A(B+7) +1)

t t
<t e Pt [/ (a w? (s )) Bs ds + yg] +In(B+7r)—(B+ r)/ P ds
0 0

= "B(t) + Inwl(t), (2.48)

where in the inequality “<!”we use A(B 4+ r) > 0 and the fact that, for every h and & positive@ we have,

k+h
_kAh h<l,
Ftl <

Clearly relation (2.48]) implies (2.46]).

4in our case h = e#~t)
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Let us study the case A =B =0, i.e.

wi(t) =wy(t) =B +r (2.49)
y* (1) = yoe Pt + w(l — B
0 =20 = 1

Let us check that y*(¢) > In2: in fact, by plotting the function y* and by (2:39]), we have

—2
y*(t) > min <y0,7a (ﬂ,@—l—r)) > 1, t>0.
We recall that in order to guarantee some sufficient condition of optimality in a infinite horizon problem
(see subsection [A.T.]), we require that lim;_, A*(¢) - (x(¢t) — x*(¢)) > 0 where A* is the multiplier, x a
generic trajectory and x* the trajectory candidate to the optimal. Since Af(t) = e "'\L(t) = e " /(B +T),
this sufficient condition for the i-problem is

Jim X (0 ((t) " (1) > Jim o

e " (In2 —y*(t) =0
Finally it is easy to see that the Hamiltonians

(val) = ch(valvwg(t)v Tc(t)) and (y,wg) = Hg(vaT(t)vw% Agc(t))

are concave functions, for every fixed ¢, and that the control sets Uy = Uy = [0,00) are convex. Hence
(wi,ws) in (2.49) is a open-loop Nash equilibrium.

Feedback Nash equilibrium. Let us introduce the two current value functions Vi* = V{°(y) and Vi =
Vi (y): the BHJ equations are

—rVE 4y + (VE) (@ = v3 = By) +max [Inv — o(V)'] =0
—rV§ +y + (V) (@ = vi — By) +max [lnv —v(V5)'] =0

We obtain that we realize the previous two max for

1 M c\/
vilty) = vil) ={ Wy W =0
2 if (V) (y) <0

(2.50)

Let us looking for a Nash equilibrium and hence let us suppose (V)'(y) > 0. Hence the BHJ equations
become

Ve g+ (V) (a L ,By) () —1=0

1
(V5)'

eV 4y (V) (a _ L ﬁy) () —1=0

1
vy

Now, using the suggestion (Z.38]), an easy computation in the previous system gives a = ¢ = B}H"' Note that
the previous assumption (V;¢)'(y) > 0 is true. It is clear, by (2.50)), that we obtain

viy)=p+r
as in (2.49). Since such (wj,ws), with w!(t) = vf(t,y) = B + r, is admissible (solve the dynamics § =

a—vj(t,y) —v3(t,y) — Py with the initial condition and check that y* > 2 with calculations similar to the
open—loop case) then it is a feedback Nash—equilibrium.
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2.3.2 On international pollution

We denote by u; = u;(t), for i = 1,2, the level of emissions of two economies and let z = z(¢) be the stock
of pollution at time ¢. The system has a (little) capacity to self-cleaning; let us fix o € (0,1) such that
& = —ax describes this capacity of the system.

The damage of the emission is quadratic with respect to = with coefficients %(ﬁi, for every i-player, and
we suppose that the utility for the i-economy related to its emission u; is given by the concave function
Us; (kz — %ul), with k; positive constants. Hence we have

( 0 1 1
I Econ.: max/ et <u1 <k1 — —u1> — —¢1x2> dt uy >0
X 2 2

o0 1 1
IT Econ.: max/ et <u2 (kg — —u2> — —¢2$2> dt ug >0
u2 0 2 2
T = Uy + U2 — ax
\ $(0) = Ty, l’(t) 20

with the rate of discount r that is a positive constant. This model is proposed in [5].
Open loop Nash equilibrium, in the general case. Let us introduce the two current Hamiltonians:

1 1

HY{ = kyuy — §u% — §¢1$2 + Ae(ug + ug — ax)
1 1

HS = kous — §u§ — §¢2x2 + Aoc(u1 + us — ax)

We have to guarantee the following conditions:

1
vi(t,z) € argmax H{ = arg max ((kl + Xic)v — —v2> =
v>0 v>0

> 2
S kit e ifki4+Xe>0
- { 0 if k; + X <0 (2.51)
. H¢
Xie = Thje — OH, = (a+71)Nic + dix (2.52)

or

for i = 1,2. We note that 1 and v, in (2.51]) do not depend on the trajectory z: hence we are in the position
to looking for a open—loop equilibrium.

Let us looking for some non zero Nash equilibrium: more precisely we are interested in the case where
the emissions u; are positive in [0,00), i.e. we assume that in (2.51I]) we have

ki + Xic(t) > 0, vt (2.53)

Taking into account (25I) in the dynamics and with (2.52]), we have to solve the system

T T k1 + ko - 1 1
S [ =A A | o [pwWithA= gy 0
Aoe A2e 0 ds 0  a+4r

The eigenvalues of A are 8 = a + r and

r+ /12 +4(e? +ar + g1 + ¢o)
5 :

0y = (2.54)
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Three eigenvectors for each eigenvalue are v = (0,1, —1)T (related to 0) and v+ = (a + 7 — O+, —1, —p2)T
respectively. Hence the general solution for the homogeneous part of our system is given by

(7, Moy Aae) T = c1ev + oo, + czel®= v

where ¢; are generic constants. It is easy to see that a particular solution of our system is given by

(kl + k2)

xpart, )\part, )\part T _
( le 2c ) O[(a+r)+¢1+¢2

((a+7), =1, —p2)"

Hence we obtain

(t) = e (a+r—04)+ ezt (a4r—0 )+ Pt
Alc(t) = Cle(a—i—r)t —¢1 <026t0+ + Cgewf) + )\1172” (255)
Aoe(t) = —crel@Mt gy (82€t0+ + c;:,ew*) + Apart

Using the expression of \i. given by (2.55]), putting (see (2.51]))
ui(t) = vi(t) = k1 + Mie(t),

and taking into account that
20—r>0 204 —r >0,

it is easy to see that, if (¢, c2) # (0,0), then for ¢ — oo we have

., 1 1 1
e "t (u1 <k1 — §u1> — 51/11952) ~ge t (()\10)2 + 2/}1952) — —00
Hence we have ¢; = ¢o = 0 and, by the initial condition on the stock of pollution
* _ ( (a+ 1) (k1 + ko) > 0 (a+7)(k1 + k2)
*(t) = |zo— e
ala+r)+ ¢+ ¢ ala+r)+ ¢+ ¢
) = __h (I _ (ot r)(k1 + k) ) - (ki t k)
a atr—0-\""" alatr)+ i+ ala+7) + b1 + 2
) = ¢ (m _ (ot r)(k + k) ) wo (k14 ko)go
2 at+r—0_\""" ala+r)+ i+ b ala+7) + ¢1 + ¢o

Note that z*(¢) > 0. We have to verify that (2.53]) holds. In order to do that note that
AL(t) >0 & zo > 2Pt

Hence, in the case zy > 2P we have to check that A5(0) + k; > 0, while in the case zg < 2Pt we have to
check that )\ff Ty k; > 0. We are not interested on this tedious calculations.
Let us prove that (u},u3) defined by (Z5T)

ui(t) =vi(t) =k + A1(),  ua(t) = wa(t) = ko + Ao (1),

and using A}, as in the last expression. Let us study the situation from the point of view of the first player.
It is immediate to see that
(Ia ul) = ch(ta Z,uy, ’Ué(t), Tc(t))

is, for every fixed ¢, a concave function. It is clear that for every admissible trajectory z = x(¢) we have, in

order to have z?e~"! integrable for t — oo,

2(t)e ™ =0, t— oo.
Note that this is equivalent z(t)e "2 — 0, for t — oo. Recalling that \i(t) = e "*Af,(t), we have
. * Lk — \Dbart y —rt _ pbarty _
T X7 () ((8) — 27 (6) = N lim e (1) — aP7) = 0
Hence u} is optimal for the first player (see subsection[A.1.1)): similar arguments hold for the second economy

and hence we have really that (u},u3), defined by (2.51)), is a Nash equilibrium in the class of open loop
strategies.
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Stackelberg equilibria

In 1934, von Stackelberg introduced a concept of a hierarchical solution for markets where some firms have

power of domination over others. This solution concept is now known as the Stackelberg equilibrium or the

Stackelberg solution which, in the context of two-persons nonzero-sum games, involves players with asym-

metric roles, one leading (accordingly called the Leader) and the other one following (called the Follower).
In all this chapter we are considering the following hierarchy two—person game

( Player T (Leader): max Jr,(ur,ur)
ur,

T
JL(uL,uF) = / fL (t,X, uL,uF) dt-l—i/)L(X(T))

0
Player II (Follower): max Jr(ur,ur)

Jr(ug, ur) = /0 fr (6%, ug, up) dt + p(x(T))

X = g(t,x, uLauF)
x(0) = xp

\

where T is fixed and (ur,ur) is an admissible control, i.e. depending on the information structure. We
assume that the control sets for the Leader and for the Follower are Uy, and Uf respectively, closed.

3.1 Open-loop Stackelberg equilibria

Let us consider a open—loop strategy uy, with ur(t) = v (t,xo), for the Leader. We define the set of best
possible replies of the Follower R (uz,) in the family of the open-loop strategies, where the Leader has
already announced the strategy up, as

RF(uL) = {uF : (ug,urp) € Aor,

JF(uL,u'F) < JF(uL,uF) V(uL,u'F) S AOL}-

Clearly (ur,ur) € R¥(uz) is an admissible pair of strategies and the set R (ur) can be empty.

Definition 3.1. A pair of control functions (u},u}) € Aor, with uj (t) = vj (t,%x0) and uj(t) = vy (t,%x0),
is a Stackelberg equilibrium within the class of open—loop strategies Aoy if

i. wh € RY(u}), with associated trajectory x*;

i. given any open-loop strategy ur, for the Leader and every best reply up € R (ur) for the Follower,
the following holds

T
/0 fo(t,xpp,ur,up) dt +¢r(xprp(T)) <

21
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T
< / Fult,x* g, ul) de + b (x(T))
0

where X is the trajectory associated to the pair (up,ur).

In this case the problem has to be solved backward.
First of all, let us assume that

Asl the function fr, fr, g, 1 are continuously differentiable w.r.t. x.

From the point of view of the Follower, for every uy fixed, we construct the set of best possible replies
RF (ur,). We have to solve, for a fixed ur,

T
max / fr (8%, ur, up) dt + $p(x(T))
ur 0

X = g(t,X, uLauF)
x(0) = xo

(3.2)

Applying Theorem [A1], if ur € RF (ur) and x is the trajectory associated to (ur,ur), then there exists a
continuous multiplierﬂ Ar 1 [0,T] — R™ such that

vi(t,xg) € arg max Hp(t,x(t),ur(t), v, A\p(t)) vt € 10,7 (3.3)
}-\F = —VXHF(t,X, uL,uF,}\F) in [O,T] (3.4)
Ar(T) = Vipp(x(T)) (3.5)

where up(t) = vp(t,xq) and the Hamiltonian Hp of the Follower is defined by
HF(taxa ur,ur, )\F) = fF(t7X7 ur, uF) + A - g(taxa ur, uF)- (36)

We note that x depends on the choice of uy, and on the choice of up in R (uz) (with the possibility that
this second choice can be not unique): hence x depends on (t,ur,ur), i.e. x = x(t,ur,upr). Moreover,
the multiplier is associated to the pair trajectory—control functions (x, (ur,ur)): hence Ap depends on
(x,ur,up), i.e. Ap = Ap(x,ur,up).

We are looking for a open—loop strategy: hence let us assume that

As2 for every (t,x9,x,ur, Ap) there exists a unique max in

vp € arg max Hp(t,x,ur,v,Ap)
veUrp

which does not depend on x.

Taking into account of the previous dependence, we have vy = vp(t,x¢,ur, Ar). Moreover, since in this
situation the value x(T') of the trajectory at the final fixed time T is free, then our controls are normal: this
is the reason of our definition of Hp in (B3.6]). At this point we have to guarantee some sufficient conditions
for the game of the Follower.

Now, let us consider the point of view of the Leader. For every u; we associated (up,x,Ap) where
ur € RF(ur) is given by ([B3) and by up(t) = vr(t,xo,ur(t), \r(t)); x is given by the dynamics of the
problem and Ay, is given by (3.4)): in this procedure, the best choice for the Leader is uj . Hence the Leader
has to solve the following problem, where its control is uz, and its trajectory is (x, Ar) with the conditions

x(0) = xo and (B.5):

( T
ma;x/ fr (t,X, uL,uF(t,xo,uL,)\F)) dt-l-dJL(X(T))
u 0

):C:g(taxauLauF(t7X07uLa)‘F)) (37)
)\F = —VXHF(t,X, uL,uF(uL,)\F),)\F)
x(0) = xo

Ar(T) = Vipr (x(T))

’

'We omit all the “*”.
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In this case the Hamiltonian Hy, for the Leader is defined by

HL(ta X, AF» ur, >‘0L7 AlLa )\ZL) = )\ULfL(ta x,ur, VF(ta Xo,ur, )‘F)) +
+Aiz - g(t,x,up,vr(t,xp,ur, Ar)) +
_)\2L ' VXHF(t,X, llL,VF(t,XU,UL,AF),)\F) (38)
We note that in the definition of Hy, since the value of the trajectory (x, Ar) has a condition in the initial
point ¢ = 0 and in the final point ¢ = T (more precisely the final equation in (3.7]) represents a surface), we

are not in the position to guarantee the normality of the extremal: hence we insert Ag.
In order to apply again Theorem [A.T] let us assume that (taking into account (3.6]))

As3 for every (t,uy,) the functions

)
(Xa )‘F) = fL(taxa uLauF(ta){OauLa)‘F))

(X7 )‘F) = g(t,x, uLauF(t7X07uL7}‘F))

(Xa )‘F) = fF(t7X7 uLauF(ta){OauLa)‘F)) + )‘F -g(t,x, uLauF(t7X07uLa)‘F))
are in C'.

Hence if u} is a Stackelberg equilibrium, there then there exists a continuous multiplier@ (MNoLs AL, Aar) :
[0, T] — R®™*! such that Aoz is a non negative constant, (Aoz, A1z, A2r) # (0,0,0) and

I/L(t,Xo) € arg Hé%x HL(t,X(t),}\F(t),V, )\OL,)\lL(t),}\QL(t)) Vt € [O,T]
velUyr

Air = =V Hr(t, %, Ap, ur, Aoz, A1z, Aor) in [0, 7]

Aor, = =V a, Hy(t,%, Apyur, AL, AiL, Aar) in [0, 7]

A1z (T) = Aoz Vipr(x(T)) — Aar,(T) D* ¢ (x(T)) (3.9)
Aaor, (0) =0

with uz(t) = vr(t,xg) since we are looking for a open-loop strategy. In B3) D%)p(z(T)) denotes the
Hessian matrix of second derivatives of 4, evaluated in z(T); such transversality condition (3.9) is a
consequence of the mentioned surface ([3.5): see section 4.2 in [3] for all details.

Clear, up to now we are discussing only of sufficient conditions of optimality for the two problems (3.2))
and (B.7): in order to find a Stackelberg equilibrium for (B:I]) we have to guarantee some sufficient conditions
for the two mentioned previous problems.

3.1.1 On international pollution with hierarchical relations

Let us denote by ur, = ur(t) and up = up(t) the level of emissions of two economies, where the first (the
Leader) has a sort of domination with respect to the second economy (the Follower); for example, this is
the situation that occurs when the Follower has a big debit with the Leader. Now, as in subsection 2.3.2]
let 2 = x(t) be the stock of pollution at time ¢, a € (0, 1) is the coefficient of capacity to self-cleaning of the
system. The damage of the emission is quadratic with respect to z with coefficients %gbL and %gbp, and we
suppose that the utility for the the two economies related to its emission are quadratic. As in subsection

232, we have
( o0 1 1
Leader: max/ et (uL (kL — —uL> — —¢Lx2> dt ur, >0
ur, 0 2 2
> —rt 1 1 2
Follower: max e up | kp — zup | — —¢ppz® | di up >0
ufr 0 2 2
T =ur+ur —azx
\ $(0) = Zo, l’(t) >0

Wk

2We omit again all the



24 CHAPTER 3

with the rate of discount r that is a positive constant and with ¢, ¢r, K1, and Kg positive constants. Let
us looking for a non zero Stackelberg equilibrium in the family of open—loop strategies.
Let us introduce the current Hamiltonian Hf, for the Follower

1
Hy = kpup — %— §¢F$2+)\FC(UL+UF—O[I).

E’U,
Let us fix uz,: hence all that follows for the Follower depends on such u7,. We have to guarantee the following
conditions:

1
vp € arg max Hp = argmax | (kp + Apc)v — 0?2 ) =
up>0 v>0

2
_JEkr4+Ape itkp+Ap.>0
- {0 if kp + Ape. <0 (3-10)
. OH¢
AFe = rApe — &EF = (0 + 1) A\pe + dpz (3.11)

where vp = vp(t,z,ur), Ape = Arc(t,ur) and = = z(t,ur). We note that v in (B.I0) does not depend on
the trajectory x: hence we are in the position to looking for a open—loop equilibrium.
Let us looking for some Stackelberg equilibrium where the emissions are positive in [0, c0), i.e. we assume
that in (BI0) we have
krp + Ape(t,ur) > 0, N4 (3.12)

We add to these necessary conditions (B.I0)-(B.11]), some considerations with respect to the sufficient con-
ditions of optimality for the Follower, for every u fixed by the Leader. Suppose that for every fixed u; we
have a extremal tern (z}.(¢,ur), AJ.(t, ur), uf(¢,ur)): it is immediate to see that, always for every fixed ur,,

(x,ur) — Hp(t,z,ur,(t), ur, Ap.(t,ur))

is, for every fixed t, a concave function. Moreover we have to guarantee that for every admissible trajectory
x = z(t,ur) we have
lim Ay, (t,ur)e " (z(t,ur) — z*(t,ur)) > 0. (3.13)
t—00
In order to do that, let us note that if 2:(¢, ur) is associated to an admissible control, then —‘%F (z(t,ur))?e "t —
0 for t — oo, and hence

: —rt/2 _
tlggloe z(t,ur) =0 (3.14)
Now, if |A%.(t,ur)] — oo for t — oo, then |u*(t,ur)| = |kr + X (t,ur)| = oo. Again, if u*(t,ur) is

admissible, then —% (u*(¢,ur))?e™" — 0 for t — oo, and hence

. ® —rt/2 _ 13 * —rt/2 _
tl_lglou (t,ur)e tl_lglo Ape(t,ur) 0. (3.15)

Clearly, (8:I14)) and (3I5) imply (B.I3).

Let us pass to the point of view of the Leader; its current Hamiltonian HY is, taking into account (Z.10)),

B.II) and 3.12),

1 1
H; = X <kLUL — §u% — §¢LI2> + Mrc(ur + Kp + Ape — ax) +
+Xore (a0 +7)Ape + Prz) .

We note that we have no conditions on the final point ¢ = oo of the trajectory ¢ — (z(t), Ar.(t)): hence we
are in the position to put Ay = 1. Now we have to guarantee the following necessary conditions:

1
c Ll
vy, € arg ir;zg(() Hi = arg rilzagc ((kF + Apet)v 21) )



3.1. OPEN-LOOP STACKELBERG EQUILIBRIA 25

Sk +XMre kL +XMre>0
o {0 itk + M. <0 (3.16)
. aHE
MLe =T Le — e = (oe—l—r))\ch—i—gbe—ng)\QLc (3.17)
. OH¢
XoLe = TrAoLc — N L - —ALe — ®AaLc (318)
Fe
More(0) = 0 (3.19)

Since that vz, in (8.I6]) does not depend on the trajectory z, we are in the position to looking for a open—loop

equilibrium. Let us assume
kL + >‘1Lc(t) > 0, Vit (320)

Hence, by (3.10) and 3.16]), we have up = Kp 4+ Ap. and uy, = K1, + A11.. Putting these information in the
dynamic, together with (BI1)), (3.I7), (B:I8]), we have to solve the system

z = Az + 2 (3.21)
where
T ki + ko -« 1 1 0
AFe 0 or a+r 0 0
zZ = , Zg= , A=
MLe 0 dL 0 a+r —¢r
Aore 0 0 0 -1 -«
with the conditions
z(0) = zo,  Aare(0) =0 (3.22)

The eigenvalues 6 of A solve det(A — I6) = 0, i.e. using the first line for the computation of the determinant
(—a—0)(r+a—0)—¢r) — (—a—0)(r +a—8)¢y = 0.

Setting
A=(—a—-0)(r+a—20) (3.23)

we obtain A? — A(2¢F + ¢1,) + ¢% = 0. Hence

2 +.,/4 2
4, — ¢r + ¢r £ \/4oLdF + ¢, (3.24)

5 .

Note that AL > 0. Putting A+ in (3:23) and solving we obtain

r+r2+4(c24+ar+ A
0, = v (2 +), (3.25)

where the first “+” in the subscript of € is related to the + in front of “\/” and the second is related to A4.

Let zPot = (gPort )\%acrt, )\ffz, Ag%’:)T # 0 be such that AzP*! = 0; clear this is a particular solution of

(BZ21). Hence the general solution of (B.2I)) is
z(t) = cre oy + coe vy 4 ezel®tu_y + ey v 4 2P0t (3.26)

where ¢; are generic constants and vy eigenvectors relative to the eigenvalue 0.4 ,.
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We claim that ¢; = co = 0: in order to prove that, let us denote by v, € R* the eigenvector related
to the eigenvalue 6, . Let us suppose that the first component v_lF 4 of vy is zero. It is easy to see that
(A—1614+)viy =0 implies vy = 0. Hence v}, # 0.

Now, if ¢; # 0, (8.26]) implies that, for ¢ — oo,

z(t)?e™ " ~ (clv_lH_)2 ety o

and integral, in our model, does not converge. Hence ¢; = 0. Similar arguments imply that co = 0. Hence
we obtain

Z(t) = ($*(t)7>‘;'c(t)a TLc(t)a ;Lc(t))T
= ezl to | + gl 4 gPort (3.27)

where the two constants ¢3 and ¢4 depends on the two initial conditions (3.22)). We are not interested to
discuss the sufficient conditions for the Leader.

3.1.2 Father and son, fishermens at the lake

The model is presented in 2Z.3.1], but now the situation for the two players is hierarchical. The first player, the
father, decide to use its influence on the second player, the son. Let us looking for a Stackelberg equilibrium
in the family of open—loop strategies. Let us rewrite the problem taking into account that the the father is
the Leader and the son is the Follower:

& o @]
Leader (father): max/ (y + Inwp)e " dt Follower (son): ma,x/ (y + Inwp)e " dt
wr, 0 wp 0
y=a—w,—wr—Py
y(0) =yo >In2,  y(t) >In2

Let us assume for simplicity
a—38 > 2r. (3.28)

Let us fix wy, the strategy of the father. We consider the point of view of the Follower—son and we
look for R¥ (wr,), the set of best replies for the son: the current Hamiltonian is

Hf =y+Inwp + Apc(a — wr, — wr — Py).

We have to guarantee the following conditions:

1 .
c _ . — ) 3 if )\Fc(t) >0
vi(t) € arg 111}1288( Hf = arg rlrjlga((lnv VAF(1)) { /HF if Apc(t) <0 (3.29)

OHS,
oy

Ape = rApe — = (r+ B)Arc — 1 (3.30)
Note that vp in ([3:29) do not depend on the trajectory y: hence we are in the position to looking for a
open—loop equilibrium

1

wrp(t) = vp(t) = o)

(3.31)

in the assumption that
Arc(t) > 0. (3.32)

The adjoint equation (3.30) gives

1
— BeBrt o &
Arc(t) = Be + v

’
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3.1.
with B constants. Clearly (3:31)) gives, putting in evidence the dependence by B
B ,3 + r
t 3.33
and the dynamics implies
(3.34)

t
yB(t):e_ﬁt [/0 (a—wL( )—wF( )) e?5ds + yo| .

We claim that the case B = 0 is the unique candidate to be in R (wr). In order to prove that, first we put
B < 0 and, for ¢ sufficiently large, we obtain wg < 0 which is impossible. Now, let us suppose that B > 0:

)
note that in this case (3.32) holds: we want to prove that

o @] o.¢]
/ (y? + nwl)e " dt < / (° + Inw%)e " dt, (3.35)
0 0
ie. wB g RF(wr) for B > 0. Now, taking into account that
18 —+ 7‘ ([5’+1")S
B,B+r Ye@Brns 4177
(3.36)

= ( (B +r)elP —i—l)—ln(B(ﬂ—l—r)—l—l)

for every fixed ¢ we have, by ([3.33) and (B.34),
-t
B B Bt _ B+ Bs
y o (t) +lnwp(t) = e _/0 <a wr,(s) — BT B+r)s_|_1>e ds-l—yo] +
+1n(B+7) = In (BB + )t 11)
Tt
e Pt /(a—wL(s))eﬁsds—l—yg]—i—ln(,B—i—r)—i—
0

' (B+)s 1 Bls—0)
(ﬂ+)/0 (5(“;2” ﬁ+:;e+1 ds —In(B(B +r) + 1)

t
<t e P [/ (a—wL(s))eBsds-l-yg] +1n(ﬁ+r)—(ﬁ+r)/ P61 4
0 0

(by B.36)) =

= y'(t) + Inwh(t), (3.37)
where in the inequality “<”we use B(f + r) > 0 and the fact that, for every h and k posmveﬁ we have
kE+h
<-h & h<L
k41

Clearly relation (3.37)) implies (3.35). By (3.34]), we have
(3.38)

wp(t) =B +r
P = e ¥+ T 1oy / s (5)eP0 D ds
p 0

1
>\Fc(t) = B+’r

for every wy, fixed. Since such wy, is generic, we are not in the position to guarantee that y°(¢) > In2, i.e
(wr,, wr) € Aor,. However, if RF (wr,) is nonempty, then RF (wr) = {wr} with wr as in (B.385).

3in our case h = e#~t)
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Let us pass to the point of view of the Leader—father. For every strategy of the Leader—father, the
Follower—son consider the strategy in wp in (8.38]). The current Hamiltonians for the Leader is similar to
the definition in (3.8]), taking into account that we use the current adjoint equation for the Follower:

HE =y +lnwg + Ach(a —wy, — (,B + r) — ﬁy) + )\QLC((,B + T‘)AFC — 1).

We have to guarantee the following conditions:

— if AL (t) >0

vi(t) € argmax Hj = argmax(Inv — vdize(t)) = { e )‘ILZ(t) Z0 (3.39)
: OH¢
AMLe =TAlLe — 8yL = (r+ B —1 (3.40)
: OH¢
A C:>‘ c_—L:_A c 41

2Le = TAoLe = A BAar (3.41)
Aare(0) =0 (3.42)

Note that (3.41) and (3:42)) imply Aor.(t) = 0. Moreover the two conditions ([3.39)(3.40) are exactly the
same of the two conditions ([B.29)—-(3.30): all the same arguments of before used to obtain the strategy for
the follower in ([B.38]) can be used to show that the candidate to be the optimal strategy for the Leader, the
associated trajectory and multiplier are

wr(t)=0+r (3.43)
y(t) = yoe P! + w(l —e P (3.44)
Miclt) = 5 —
Xore(t) =0
Let us check that y(¢) > In2: in fact, by plotting the function y and by ([B.28]), we have
a—2(8+r)

y(t) > min (yo, ) >1,  t>0.

B

Now, considering

wi () =wp(t) =p+r

(1) = e+ T2EED 1oy
1
Arelt) = Xire®) = 1

Aare(t) =0

we know that (w},w%) € Aor; in order to conclude our problem, we have to prove that R (w}) = {wh}
and that w;j, is optimal for the point of view of the Leader. In order to do that, note that

lim AR (t)(y(t) — y*(¢)) > lim e "(In2—y*() =0

t—00 Tt S+
: * * . 1 —rt * _
Jim AL (0((0) — y* (0) > Jim == (n2 =y (1) = 0

Jim Ao, () (Are(t) = Ae(t)) = lim 0(Are(t) = Ape(t)) = 0.
—00 t—o0
Finally it is easy to see that the Hamiltonians
(yv wF) = ch(yv wr, wz(t)v *Fc(t)) and (y, AFes wL) = H2C(ya AFe, wF(t)v wr, X{Lc(t)v §Lc(t))

are concave functions, for every fixed ¢, and that the control sets Uy = Us = [0,00) are convex. Hence
(w} ,w}) is a Stackelberg equilibrium.
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Two-persons zero-sum games

We are interested in the game

Player I: max J(uy,uy), Player II: min J(uy, us)
u; us
T
J(uy,ug) = / ft,x,uy,uz) dt + (x(T)) (4.1)
0
X = g(t,x, u17u2)
x(0) =«

where T is fixed and U; and U, are the two closed control sets for the players.
Note that Player I, whose control is uy, wants to maximize the functional J; Player IT has the control us
and wants to minimize J. This is a two-persons zero-sum differential game. In this context

Definition 4.1. A pair of control functions (uj,u3) € Aor, with u}(t) = vi(t,xo), is a Nash equilibrium
within the class of open—loop strategies Ao for ({.1) if

J(ur,u3) < J(uj,up) < J(uj, uy) (4.2)

for every (uy,u3) € Aor, and for every (uj,uz2) € Aor..

A pair of control functions (uj,u3) € App, where u’(t) = v;(t,x*(t)), is a Nash equilibrium within
the class of feedback strategies Arp for (4.1) if (4-2) holds for every (ui,ub) € App and for every
(U.T,U.Q) € Arp.

Relation (4.2)) implies that (u}, u}) is a saddle-point for .J.

4.1 Open—loop Nash equilibria with the variational approach

In this case, the variational approach is useful and the Pontryagin necessary condition is as follows (see
Theorem 6.13 in [2]):

Theorem 4.1. Let us consider the problem (f-1) with f, g and v in C'. Let (u},u}) € Aor, be a Nash
equilibrium with x* associated trajectory.
Then there exists a continuous multiplier X* : [0,T] — R such that

i. (min-max principle) for all t € [0,T], uy € Uy and uy € U

H(t,x*(t), w1, u3(t), A" (1)) <
< H(t,x* (1), uy (2), uz(t), A*(¢)) <

ii. (adjoint equation) in [0,T] we have AF = —VxH(t,x*,uf,us, X*);

29
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iti. (transversality condition) A*(T) = Vxy(x*(T)),
where H 1is the Hamiltonian function H defined b
H(t,X, 111,112,)\) = f(taxa 111,112) +A- g(taxa 111,112).

Now, in order to give sufficient conditions to obtain a Nash equilibrium in the class Apr, we apply
Theorem and [A.3] to the two players, taking into account that the first one maximizes, while the second
minimizes.

In some situation, there exists a Nash equilibrium with the class of feedback strategies for the problem
(@.10), while the Nash equilibrium in the class of the open—loop strategies does not exists (see for example “the
lady in the lake” in subsection[£.4.1]). In this situation the previous Theorem 4 Iland the variational approach
is not useful for the reasons explained in subsection Even if an open—loop Nash equilibrium does not
exists, a version of the previous theorem can still be utilized to obtain the feedback Nash equilibrium: let
us give the details since this approach is largely adopted in the literature for solving pursuit—evasion games.
Let (uj,u3) € App, where

wl(t) = vi(tx* (1), (4.3)

with the corresponding trajectory x* with x(0) = a, be a Nash equilibrum within the class of feedback
strategies for the game (LI)). Moreover let us suppose that a Nash equilibrium in the class of open—loop
strategies does not exists. However, let us consider the function

(ui(?), uz(t)) (4.4)

given by (43)); this function is not a open—loop strategies, since by definition a open—loop strategy is a
function which depends only on ¢ and xy. This function is usually called open—loop representation of
the feedback strategy. We have (see Theorem 8.2 in [2])

Theorem 4.2. As in Theorem [[1}, let us consider the problem (1) with f, g and 1 in C'. We assume
that there exists a Nash equilibrum within the class of feedback strategies (uj,u3) € App, with uj(t) =
vi(t,x*(t)), with x* associated trajectory. Let us consider its open-loop representation in (4.4). Then there
erists a continuous multiplier X* : [0,T] — R™ such that i.—iii. in Theorem [{.1 are satisfied.

This result will play a fundamental role in “the lady in the lake” in subsection .41l

4.1.1 War of attrition and attack

This model is due to Isaacs (see section 5.4 in [I0] and page 91 in [6]). We assume that two opponents
A and B are at war with each other, for a very long time. Let us define ;1 = x1(t) and zo = z2(t) the
supply of resources for A and B respectively, at time ¢. Fach player at each time can devote some fraction
of the efforts, ( = a(t) for Player A, § = 5(t) Player for B) to attrition (= guerrilla warfare, for example
to destroy the production of resources of the competitor) and the remaining fraction (1 — « and 1 — f3
respectively) to direct attack. Clearly o and 8 have values in [0, 1].

Let us introduce m; the constant rate of production of war material for the two players, ¢ the effectiveness
of B’s weapons against A’s production and cy the effectiveness of A’s weapons against B’s production. We
will assume co > c1, a hypothesis that introduces an asymmetry into the problem. The dynamics are
governed by the system of ODE

{ 1 =my — c1T
o = M9y — CT]

The A opponent want to realize an advantage with respect to B in the direct attack, i.e

T
max/o (1 —a)zy — (1 — B)zo] dt;

!Note that in our problem (@), the final time T is fixed and the trajectory in such final time, i.e. x(T), is free: hence we
can set A\j = 1.



4.1. OPEN-LOOP NASH EQUILIBRIA WITH THE VARIATIONAL APPROACH 31

the B opponent want to realize an advantage with respect to A in the direct attack, i.e

T T
max/ [(1=P8)ze — (1 — a)rq]dt = — min/ (1 =)z — (1 = B)zo] dt.
0 0

Hence we have the following two-persons zero-sum game

( Player A: max J(a, B), Player B: mﬁinJ(a, B)
0<o<l 0<g<1
Tewh) = [ 101 =)oy - (1= flaa)
T = m01 — 1P

i‘g = Mm99 — CoQT
\ :L'Z(O) =1x;0>0

The final time T is very large and fixed. Note that it is reasonable to require that z;(¢) > 0 but, in order to
simplify our solution, we remove it.

Let us looking for some Nash equilibrium in the family of open—loop strategies, using the variational
approach. The Hamiltonian H = H(t,x1, %2, v, B, A1, Ag) is

H = (1 — a)xl — (1 — ,B)xg + )\1(m1 — Clﬂxg) + )\Q(mg — 6201171).

Note that the final value of the trajectory (z1,z2) is free and hence we put \g = 1. We have to guarantee
the conditions of Theorem [Tt

1 EA2<—£

€ H= —1—ch) = ? ifA=-21 4.5
a € arg arél[%ﬁ] arg arél[%ﬁ] a( CaA2) 1 2 = (4.5)
0 if Ao > &
0 if A <&
€ in H = in b(1—c\) =<7 ifrx=2= 4.6
T T R B )
1 if A > o
. H
Al = _g—Il = —(]_ — Oé) + coardg (47)
. OH
2 O (1=8)+abh (4.8)
A (T) =X(T) =0 (4.9)

First, let us notice that in arg max and arg min in (4.5]) and (4.6)) we use the condition z;(¢) > 0. Moreover,
we remark that the arg max and arg min in (£3]) and (£6]) do not depend on (z1,z2): hence we are in the
position to looking for a Nash equilibrium in the family of open—loop strategies.

~ The adjoint equation (£.T) and the Maximum Principle (4.3) imply that A; is a decrease function since
A1 < —1: indeed

ifd<—1/ca = a=1 = ).\1=—(1—oe)+02a)\2<—1
if>\2:_]./02 = )'\1:—(1—01)4'020{)\2:—1
ifdg>—1/c; = a=0 = A =—(1—0a)+car=—-1

A similar argument, using the adjoint equation (.8) and the Minimum Principle (6], implies that g is

an increase function since Ay > 1.
Now, by (@3) there exists 7 € [0,T) such that

AL(t) < i, Ao (t) > —i, Vt € (1,T], (4.10)

C1 C2
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i.e. « =B =0 in (7,T]. The adjoint equation A= -1, Ao = 1, and the transversality conditions (€3] give
M) =T —t, Ao(t) =t —T;
the assumptions in (£I0]), taking into account that ¢, > ¢1, imply
T:T—é in (r, 7). (4.11)
Now, let us suppose that there exists 7’ € [0, 7) such that

1 1
A (t) < —, Ao(t) < ——, vt e (7', 7) (4.12)
C1 C2
ie. a=1, §=0in (7,7). The adjoint equation A1 = c2X2, Ao = 1, and the continuity of the multipliers
in the point t = 7 give
1

E, Ao(t) =t —T; in (7', 7).

Al(t):%(T—t)Q—l-

the assumptions in (£12]), taking into account that 2cy > ¢o > ¢q, imply

1 [0 —
T ey ey (4.13)
Co C1

Now, let us suppose that there exists 7”7 € [0,7') such that

1 1
Ar () > —, Ao(t) < ——, vte (', 1) (4.14)
C1 Co

ie. a=pB=11n (7",7"). The adjoint equation give
5\1 = CQ)\Q and ).\2 = 01>\1 (4.15)
and hence

5\1 —cican =0 = A\ = AeV ciezt | Bemveicat
= do= /2 (AevEt - pevaet)
C2

for some constants A and B. Using the continuity of the multipliers in the point ¢t = 7’ we have, taking into

account (£I3)),

25 — ¢\ eVt 25 — ¢\ e Vaelt=T)

+(1+

) 2¢q Co 2¢1

2c) — 1\ evae(t=m) 1 25 — 1\ e-Verelt=1)
) 2\/ C1C2 - < * ) 2\/6162

Since A1 is a decreasing function and As is an increasing function, we obtain 7" = 0.

M) = <1—

Ao(t) = (1—

C2 C2
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The pair (a*, 8*) candidate to be a Nash equilibrium is

con 1 iftelo,] sy J 1 iftelo, 7]
O‘(t)_{o if ¢ € (7,7T] Mt)‘{o it ¢ e (7, T]

where 7 and 7' is defined in (@I3]) and (£IT). Since (a*, f*) is constant, except two points, and consequently
the dynamics is linear in (z1,z9) with constant coefficients, except such two points, then there exists a
unique solution (z7,z3) of such ODE with initial data z;(0) = z;p and the strategy (a*,5*) is admissible.
Let A* = (A7, A5) be the multiplier obtained by the previous calculations.

Let us note that the function (¢,z1, 2, o, 8) — H(t,z1,z2, o, §, Xi(t), A5(t)), for a fixed ¢, is not concave
in (1,72, @) variable and convex in (z1, 9, 8) variable: let us use Theorem [A.3] in order to guarantee some
sufficient condition of optimality. First we consider the maximed Hamiltonian for the Player A:

H%(t7$17$27)‘){(t)7)‘§(t)) = arél[%}iH(t,$1,$2,a,,3*(t),)\){(t),)\g(t))
= z2B8 () (1 — 1 A(1)) + 21 — 22 + M AT () + moA3(t) + z1[ max a(—1 — coA5(t))]

a€0,1]

It is easy to see that, for every fixed ¢, the function (z1,z2) — H (¢, 71,72, X (t), A3(¢)) is linear and hence
concave in (z1,x2): hence o* is really a optimal solution for the max problem of the First Player, with g*
fixed. A similar argument holds for the minimized Hamiltonian

H%(ta T1,7T2, AT(t)a A;(t)) = bIEI%(l)I}} H(ta T1, T2, o (t)7 ba AT (t)7 A;(t))a
showing that, for every fixed ¢, the function (w1, 79) — H%(t,z1, 72, \j(t), A5(t)) is linear and hence convex

in (x1,x2). Hence B* is a optimal solution for the min problem of the Player B, with o* fixed. We obtain
that (a*, 8*) is a Nash equilibrium in the class of open-loop strategies.

4.2 An introduction to upper and lower value functions with the DP

We intend now to study Nash equilibria in the class of feedback strategies; in this context we know that the
variational approach is not useful (see subsection 2.2)). The idea is to use the Dynamic Programming (DP)
and to study the value functions. However, the general theory about the value functions with respect to the
feedback strategies is very complicated and long: since our aim is to give only an idea of the problems and the
tools, in this section we concentrate our attention only on open-loop strategies with Dynamic
Programming approach. The definitions and the proofs of the main results are mostly based on the
Belmann-Hamilton-Jacobi equations and such results can be generalized in the class Arpp (see for example
chapter 8 in [1]). In the next sections we will consider the class Arp, using the idea and generalizations of
this section.

4.2.1 Upper and lower value functions for open-loop strategies

Let us consider the problem (4.I]) and the following two assumptions:

1 f:[0,T]xR*xU; xUy - Rand g:[0, 7] x R" x Uy x Uy = R* and 9 : R* — R are bounded and
uniformly continuous with

|f(t,X, 111,112)| < Cl |f(t,X, 111,112) - f(taxlau17u2)| < Cl||x - XI“?
||g(t,x, 111,112)” < Cl ||g(t,x, 111,112) - g(taxlau17u2)” < Cl||x - XI“?
[h(x)] < C, [9(x) — ()] < Ollx — x|,

for some constant C' and for every x,x’ € R”, uy € Uy, up € Uy;

2. the control sets U; are compacts; more precisely we assume U; C Bk, (0, R;) for some fixed and positive
R;.
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For the Player I, let us introduce the set of controls at time 7, with 7 € [0, T fixed, as
Ui (1) ={uy : [1,T] = Uy, measurable}.
In a similar way, we define Us(7) = {uy : [1,T] — Us, measurable}.

Remark 4.1. By the previous assumptions 1. on g and 2., for every (1,€) and (u,ug) € Uy (1) x Us(T),
then (uy,us) is admissible, i.e. there exists a unique solution x of

{5{ =g(t,x,uy,uz) for a.e. t €[r,T]
x(1) = ¢

Let us introduce our a new notion of strategies that is useful in the zero-sum games, in the particular case
of decision rules v; for the two players such that they depend only on the time ¢, i.e. v; = v;(t):

Definition 4.2. Let us fir 7 € [0,T]. A map
D, UQ(T) — ul(’T)

is a nonanticipative strategy for the Player I at time 7 if, for any time t € [1,T] and any controls
Uy, u)y € Us(T) such that ug = uly almost everywhere in [1,t], then we have ®1[uy] = ®1[ul] almost everywhere
in [1,t]. We denote by S1(7) the set of such nonanticipative strategies at time T for the Player I

In a symmetric way we denote by Sy(7) the set of Player II nonanticipative strategies, which are the
nonanticipative maps

ot UL (T) = Us(T)

Note that for every (7,€), u; € Ui(7) and @2 € So(7) we have, by remark A.T] that (u;, ®2[u;]) is admissible;
similar property holds for (®1[us], us).

Moreover, it is clear that for every u; € U;(0) and ®2 € S2(0) we have that (u;, ®1[u]) is a open-loop
strategy in the class Aoz, as in Definition [[L5] for the problem (4.1); similar property holds for (®1[us], us) €
Aor.

The simplest example of nonanticipative strategy ®; for the Player I at time 7 is the constant one: more
precisely, let us fix uy € U;(7) and let us define the constant strategy ®; = @ by

<I>1[u2] = ﬁl, Vug € UQ(T)

For the problem (4.1), in the assumptions 7. and 2., let us define the two value functions as follows (see
for example Definition 1.6 of Chapter VIII in [1]):

Definition 4.3. Let us consider the problem (/.1) with the assumptions 1. and 2. The lower value
function V= : [0,T] x R" — R is defined by

Vine=, o /ftxu1,<I>2[u1])dt+dJ(())

P2€82(7) uy ety (7

where x is the trajectory associated to the control (uy, ®o[u1]) € Uy (1) X Ua(T) with initial data x(7) = &.
The upper value function V' :[0,T] x R* — R is defined as

VT(r,€é) = sup inf / f(t,x, ®1[ug], uz) dt + (x(T)).

P1€8; (1) w2 €U (T

where x is the trajectory associated to the control (®1[us], us) € Uy (1) X Us(T) with initial data x(1) = &.
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Note that assumptions 1. on g and 2. imply that every pair (®1[usz], uz) and (ui, ®3[u;]) is admissible and
hence we are considering sup and inf on a nonempty sets; moreover, assumption 1. on f and ¢ implies that
VT and V"~ are bounded.

One of the two players announces his strategy in response to the other’s choice of control, the other
player chooses the control. The player who “plays second”, i.e., who chooses the strategy, has an advantage.
In the definition of V', the Player II choices its nonantl(:lpatlve strategies @9 and “after” the Player I choices
its optimal u;. Hence we have tha‘

Remark 4.2. For every (7,€&) we have
Vo (r,6) <V (r,€) (4.16)

In general V* and V'~ are different functions (as we will see in Example [£.2.). The next example is in [1]:

Ezxzample 4.2.1. Let us consider the problem

Player I: maxJ(u1,u2), Player II: min J(u1,u2)
w1 u2
|U1| S 1 |11,2| S 1

J(ur,uz) = Ooo sgn(z) (1 — eflml) et dt
T = (11,1 — ’u,g)2
z(0) = zo

By definition we have

V(0,6) = inf / f(t,z)

P2E€852(0) 44 eu1 (0)

V(0,6 = inf / f(t,z)d

By 651(0) u2€U2(0)
where f(t,z) = sgn(z) (1 — e"“") e~! and z is the trajectory associated with x(0) = £. We show that, for every £ > 0, we have

V7(0,6) <V*H(0,8) (4.17)

Let us fix £ > 0. First we note that the dynamics gives x(t) > &, for every (ui,u2). Moreover, it is easy to see that the
function z — f(t,z) is increasing, for every fixed t.
For every ui € U:(0), where U;(0) = {u : [0,00) — [—1,1], measurable}, let us consider the nonanticipative strategy
5 : Ui (0) = Us(0) defined by ®s[u1] = ui. Hence the trajectory @ associated to such pair (w1, ®s[u1]) is the solution of

{:;; = (u1 — ®a[ur])2 =0
z(0) =¢

hence x(t) = €. Clearly, since x — f(t,z) is increasing and x(t) > &, such particular strategy &, for the second Player is the
best possible (remember that the second Player want to minimize). Hence we obtain

V7(0,¢) < sup / f(t,x) (we choose &y = 5)
w1 €U (0)
= 1—e %)etat
JA G
= 1-¢¢ (4.18)

Now for every us € U(0) let us consider the nonanticipative strategy ®1 : Us(0) — U (0) defined by

B _ [+ ifus(t) <0
D4 [us](t) = { -1 ifuz(t) >0

Hence the trajectory z associated to such pair (®1[uz],u1) is the solution of

{:b = (®1[ua] — u2)? = (1 + |ua])?
z(0) =¢

2The rigorous proof of this remark follows by further considerations.
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Clearly, for such particular strategy &, for the first Player, the optimal control for the second player is u> = 0; in this case the
associated trajectory is x(t) = £ +t. Hence we obtain

v*to,e) > inf / f(t,z)dt (we choose &; = &)
uz€U2(0) Jo
= / (1 — e_(“'t)) e~tdt (we choose u2 = 0)
0
—£
e

= 1—-— 4.1

- (419)
Hence, by [@18) and (419), we obtain
+ e —¢ -

i.e. relation (@I17).

Definition 4.4. We say that the game ({.1]) has value function V : [0,T] x R* — R when (4.16) is an
equality, for every (1,€), and in this case we set

V(t,x) =V7(t,x) =V"(tx),
for every (t,x) € [0,T] x R". In this case, V is the value function for the problem ({/.1)).

Clearly, the problem to guarantees that (4I]) has value function is very interesting and crucial. We will
discuss this problem in subsection 4.2.3]

4.2.2 Isaacs’ condition

In the next subsections we are interested on giving the main ideas of Isaacs theory. Let us start:

Definition 4.5. Let us define the upper Hamiltonian of Dynamic Programming H}, : [0,T]xR?" —
R defined by

H} L (t,x,\) = min max (f(t,x,v1,V2) +A- g(t,x,vl,v2)>
vo€Uz vi€Ur

and the lower Hamiltonian of Dynamic Programming H,,: [0,T] x R*™ — R defined by

H,.(t,x,A) = max min (f(t,x,v1,V2) +A- g(t,x,vl,VQ)).
vi1€UL v2€U?

We note that in the definition of V* we have a “sup-inf”, while in the definition of H}}, we have a “min—

max”.

Remark 4.3. We have
Hopp(t,%,A) < Bt %, ) (4.20)

Proof. Let us fix (¢,x,A) and let us denote by h the function h(vy,vs) = f(t,x,v1,va) + X- g(t,x, vy, va).
Clearly

min h(vy,ve) < h(vy,va), V(vy,vo) € Uy x Us.
va€Usz
This implies
max min h(vy,ve) < max h(vy,vs), Vvy € Uy
vi€U1 vaelUs viel;
and hence the thesis. u

The next example shows that inequality (4£.20) can be strict.
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Ezxzample 4.2.2. Let us consider the problem in Example[ 21l Clearly we have

Hip(t, 2, ) = (1—*'“)4,\—»2: (1—*'”3')4 i A(v1 — v2)?
So(t,z,A) |1I»121|121|{»111?<X1(Sgn(m) e e "+ AMvr — v2) sgn(x) e e +|11,121‘121‘2111?SXI (v1 — v2)

H — (1_ —|17|) —t _ 2 — (1_ —|a:|) —t . _ 2
op(t,T, ) = lf}rlllaqllr,r;‘lgl(sgn(m) e e "+ Ao — v2) sgn(x) e e +|£??gxl\$\1£1)\(m v2)

First, let us fix A and vy € [1,—1]: we have

max A(v —v)2— 0 #fA<0
2 AL T2 = UNL + |va])2 ifAS0
and hence
min max A(v; — vz {0 ifA<0 (4.21)
[v2|<1 Jug|<1 ifA>0
Now, Iet us fix A and vi € [1,—1]: we have
2 .
min A(vi — v,)° = {A(l +lv2])” ifA<0
lva|<1 0 ifA>0
and hence
’ ' max min A(vi — v2) { ifA<0 (4.22)
[v1]<1 va|<1 0 ifA>0

Inequalities (Z.21) and (£22) give that
Hpp(t,z,A) < Hip(t,z,)), YA#£0

The previous example suggests the following definition:

Definition 4.6. We say that the minimax condition, or Isaacs’ condition, is satisfied if
Hpyp(t,x,A) = H;rp(ta X, A)

for every (t,x,). In this case we define by Hpp : [0,T] x R2® — R the Hamiltonian of Dynamic
Programming by

Hop(t,%,A) = Hyp (1%, A) = Hip(t,%,0). (4.23)
4.2.3 Upper and lower Isaacs’ equations

At this point we are interested to study the two functions of V* and V. Let us start with their regularity.

Theorem 4.3. Let us consider the problem ({.1) with the assumptions 1. and 2. Then V'~ is bounded and
uniformly Lipschitz continuous, i.e.

|V_(7—7€) - V_(T,7€I)| S C (|T - TI| + “E - 51“) 3
for every 7,7 € [0,T] and &,&' € R", for some constant C.
A similar results holds for V.
Proof. (see Theorem 3.2 in [8]). Let us fix 7 < 7’ in [0,T] and &, ¢ € R™. It is immediate to see that
[V (7,8&)] < CiT + Co.

Now let us fix € > 0. There exists Ef'g € S»(7) such that

V(€)= sup { / f(t,x,m,<f>2[m])dt+¢(><(T))}—f- (4.24)

ug €U (T)

Fix ui i, € Ur. For every ui € Ui (7'), let us define 4 € Ui () by

_ Jwifip, fortelr, )
) = {111@), for t € [/, T (4.25)

£)

Let us define ®» € S>(7") such that

Ba[uy(t) = Ba[1in](#), Yu, € Uy(7), t €[, T]
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Clearly
v s { [ xS asxm)).

uj €Uy (77)

Now there exists 111 € U1 (') such that
T o~
V_(legl) < / f(taxzﬁlaQQ[ﬁl]) dt+¢(X(T)) +e. (426)

And ([@24) gives
Vo(r,€) > / Ft,x, Gy, Po[tir]) At + (x(T)) — e, (4.27)

where 1, is defined by u; via relation ([@25]). Note that the trajectories x that appear in ([@26) and in (£27) are different
function; in particular, denoting by x and X such trajectories in ([{26]) and in (£27)) respectively, they solve

{i(t) = g(t,x(t),m (t), ®2[m](t)) ae. in [, T]
X(r')=¢
and . ~
{i(t) = g(¢t,x(t),u1(t), P=[1](¢)) a.e. in [1,T]
X(r)=¢
Clear we have, by the bounded assumption 2. on g,

1

le —=(+)]| = / g(t,%, @, Bafin]) dt | < O (7' — 7). (4.28)

The Lipschitz assumption 2. on g and since u; = u; and ;1;2[61] = EI;Q[ﬁl] on [r', T], we have that, for every t € [r/,T],

Aoz _ (R = x(1), x() — 5X(1))
ai X0 = X0l = %) — %0
d . d .
< |gx0-gx0)
= ot %), 80, Bali)(1)) — gt %), T (1), ol 0)
< Cult) %)

The Gronwall’s inequality (see the appendix in [7]) implies, for every t € [7', T,

I%() — O] < [R() — %] exp ( / ge ds) <ozt - €. (4.29)
Now, for every t € [r',T], (A2]) and ([@&29) give us
I%(t) =) < C (|&(~) - €] + [ - €]) <C (1€ =&l + (' =) (4.30)

By (@28) and (£27), assumption 2. and 8. we obtain

V(' E) -V (r€) < /TT(f(t,i,ﬁl,$2[ﬁl])—f(t,i,ﬁ1,<f>2[ﬁl])) dt +

!

—/T £, 11, Bo[fi1]) dE + D(R(T)) — H(R(T)) + 26

IN

C: /, 1X(t) — %(t)|| dt + C1 (1" — T) + Co||X(T) — X(T)|| + 2¢

IA

C (I —€ll + (' = 7)) +2¢. (4.31)

This concludes the first part of the proof.
Let € again be fixed. Then there exists ®» € S>(7’) such that

Vo(r,&)> sup ){/T' flt,x,ur, Pafui]) dt +¢(X(T))} — €. (4.32)

uy €U (7!
For every u; € Ui (1), let us define i € U (7') by
Q) =w(), Vte[,T] (4.33)

Fix usyi» € Ua. Let us define &, € Sa(7) such that, for every uy € Ui (1)

~ [ usyia, for t € [r,7")
®2[ur]() = {5132[61]@), for t € [7/,T]
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Clearly
V(€ < sup ){ / f(t,x,m,<I>2[U1])dt+¢(X(T))}-

u €U (T
Now there exists u1 € Ui (7) such that

V= (r,€) < / £t %, T, Ba[]) dt + p(x(T)) + e (4.34)

Now ([A32) gives
T
Vo) > [ Bl dt+ p(x(T) - e (4.35)
where U, is defined by U; via relation ([@33). Denoting by X and X the trajectories in ([@34]) and in (£35) respectively, they

solve . ~
{ X(t) = g(t, x(t), ui(t), ®2[m](?)) in [, T]
X(r)=¢§
and . ~
{ﬁ(t) = g(£,%(t), W1 (t), 2[C1]()) in [, T]
X(r') =¢

By assumption 2. and using the same arguments of before we obtain inequality (£30). By (@34) and (£30]), assumption 2.
and 3. we obtain

T ~ o~
Vﬁ(Tlvgl) _Vi(Tag) < // (f(taivﬁlvq:'?[ﬁl]) _f(taivﬁlvq:'?[ﬁl])) dt +
— [ H Bl de o+ G(RT) — DR + 26
T
< o / IR(t) = RO dt + C1(F' — 7) + Col|R(T) — K(T)|| + 2¢
< C(IE =€l + (' =) +2e
This inequality and (@3T)) conclude the proof. 0

The previous result implies that the lower value function admits the gradient VV ~(¢,x) for almost
everywhere (t,x) € [0,T] x R". Moreover, it gives the possibility to V'~ to be a viscosity solution, as we will
see in definition [£7]

Definition 4.7. Let H : [0,T] x R* x R* — R be a continuous function and let V : [0,T] x R® — R be a
bounded and uniformly continuous function, with V(T,x) = (x) in R™.
We say that V is a viscosity subsolution of the Hamilton-Jacobi equation

ov ) .

{ S (6%) + Hit%, YV (%) =0 in (0,T) x B (4.36)
V(T,x) = 9(x) in R

if whenever v is a test function in C°((0,T) x R™) such that V. — v has a local minimum in the point

(to,x0) € (0,T) x R" we have

0
8—1;(t0,X0) + H(to,XU, V’U(to,Xg)) Z 0. (437)

We say that V' is a viscosity supersolution of the equation ({{.36) if v is a test function in C*°((0,T) x R™)
such that V- — v has a local mazimum in the point (t9,%o) € (0,T) x R* we have

0
8—1;(t0,X0) + H(to,XU, V’U(to,Xg)) S 0. (438)

A function that is both a viscosity subsolution and a viscosity supersolution is called viscosity solution.
The following Dynamic Programming optimality condition holds (see Theorem 3.1 in [8])
Theorem 4.4. Let us consider the problem (/1)) with assumptions assumption 1. and 2.. Then
T+0
Vo (r,&) = inf sup {/ ft,x, ul,q)g[ul])dt—l—V(T—l—a,x(T—i-a))}
(b?ES?(T) u €U (T) T

for every T, T+ 0 €[0,T] and £ € R".
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Proof. Let us define the function W by

W(r, €)= inf sup {/TH—G flt,x,ur, @o[ui])dt + V™ (7 4+ o, x(7 + cr))}

P2€S2(T) uqg €Uy ()

for every 7, §. Let us fix ¢ > 0.
Then there exists a ®2 € S2(7) such that

W(r,€)> sup {/:+af(t,x,ul,<’132[ul])dt+V*(T+a,x(r+o))}—e.

uj €U (1)

Also, for every n € R", by definition of V'~

Vi(ir4+omn) =

i
Do€S2(T+0) u €Uy (t+0) T+0o

where x is the trajectory with initial data x(7 + o) = . Thus exists a ®7 € Sa(7 + o) such that

T o~
Vo(r4am) > sup { F(t, %1, B uw]) dt + w<x<T>>} e
uj €U (T+40) T+o

Now define ®» € S>(7) in this way: for each u; € Ui (1) set

o [ Bsul](b), for t € 1,7 + o]
Ooui](t) = {5.’2‘(T+")[u1](t), fort € (t + 0,7

Consequently for any ui € Ui (1), by (£39) and ([@Z0) we have

T+40o .
W(rne) > / £t % un, B[ ]) di 4 V(7 + 0, x(r +0)) — €

T

\Y%

T+0o

/ £t %, 11, B[y ]) dt + p(x(T)) — 2¢

So that .
Vo(r &)< sup { / f(t,x,ul,@[ul])dt+¢(x(T))}SW(T,E)HE-

ug €U (T)
Let us pass to the second part of the proof. Now, there exists Ef'g € S»(7) such that
T -~
Vo> s [ e dafu)at+ o) -
ug €U (T) T
Then N
W< s { [T xS dtrv (o x o)}
) T

u €U (T

and there exists U1 € Ui (1) such that
T4+0 N
Wre < [ fx Bl e+ VTt ox(r+ o)) + e

For every u; € Ui (7 + o) we define u? € Uy (r) by

_ [ai(t), fort€[r,T+0]
ﬂ(t)_{ul(t), fzrtE(T+cr,T]

and we define ® € So(r + o) by
®f[w](t) = Bo[uf](t),  Vw €U(r+0), t €[r+0,T]

Hence

Viir+o,x(t+0)) < sup {/+ f(t,x,ul,ég[ul]) dt—l—v,b(x(T))}.

ug €U (T+40)
Clearly there exists ul € U (r 4+ o) such that

T
V7 (r+o,x(t+0)) < f(t,x,ul, ®[uf]) dt + (x(T)) +e.
T+o

nf sup { ft,x,ur, ®2[u1]) dt+¢(x(T))}

/m F(t,x,u1, Do[uy]) dt + £t x,ur, X [uy]) dt + p(x(T)) — 2¢

CHAPTER 4

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)
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Now we define u € U (1) by

1 Jai(t), fortelr, T+ o]
ul(t)_{uJ{(t), fort € (1 + 0,7

Now by (£43) and (£44]) we have

W(re) < / Tt i, Baffin]) dt 4+ V(7 4 0 x(r 4 0) €

T+o N T
s/ f(t,x,ﬁl,éz[ﬁl])dw/ ft,x,ul, ®[ul]) dt + (x(T)) + 2¢
T T+0o
T
= /f(t,x,u;,ciz[ug])dt+¢(x(T))+2e
T T ~
< swp { / f(t,x,ul,%[m])dt+¢(X(T))}+26
uy €U (T) T

< V(1€ + 3e.

This last inequality and (£41]) conclude the proof. ]
And now we are in the position to give the main property for the two values functions V'~ and VT
Theorem 4.5. Let us consider the problem (/1)) with the assumptions 1.— 2.. Then
A. V™ is a viscosity solution for
ov _ n
E(t,x) + H, . (t,x,VxV(t,x)) =0 for (t,x) € [0,T] x R (4.45)
V(T,x) = (x) forx e R?
B. V™ is the unique viscosity solution for ({.45);
A’ V't is a viscosity solution for
ov i n
E(t,x) + H} L (t,%x,VxV(t,x)) =0 for (t,x) € [0,T] x R (4.46)
V(T,x) = (%) forx e R”
B’. V't is the unique viscosity solution for ({{.40)).

The system in (4.46)) is called upper Isaacs’ equation, while (4.45) is called lower Isaacs’ equation.
The proof of A’. is very similar to the proof of A. The proofs of B. and B’. are similar but they require
a comparison principle for BHJ equation: such very interesting argument is very difficult and long, and it
requires another course.

Proof of A. It is obvious, by definition, that V™ (T, x) = ¢(x), for every x € R". So, let us fix (to,x0) € (0,7) x R".

First part of the proof: V™ is a supersolution. Let v € C*((0,T) x R™) be a test function touching V= from below at (to,Xo),
1.e.

V™ (to,x0) = v(to,x0) and V™ (¢t,x) > v(t,x) in a neighborhood of (¢o,xo). (4.47)

We have to prove that

0 _

a—:(to,xo) + Hpp(to, %0, Vo(to, x0)) < 0.
Let us assume that this is not true and that there exists § > 0 such that

ov _

E(to,XO) +HDp(t0,X0,VU(t0,X0)) > 6. (4.48)
Defining the function I' in a compact neighborhood of (to,x0) by

0
F(tz X, u1, u2) = a_’lt}(ta X) + f(t7 X, U1, 112) + V’U(t, X) : g(t7 X, u1, 112)

([#4]) is equivalent to

max min I'(¢o, X0, ur,us) > 6
u; €U us €U,
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Hence there exists uj € Ui such that

min T'(to, %o, uj,us) > 6
ug€Us

Since T is uniformly continuous in its domain and by assumption 2. on g, there exists 7 > 0 such that

min T['(s,%(s),u], uz) >
ug €Us

s Vs € [to, to + T] (449)

NS

where u; and s are generic controls in Ui (to) and in Us (o) respectively, and X solves

Hence, choosing 11 () = uj and for any ®» € Sa2(to) we have that inequality (£49) implies

T(s, %(s), i1 (5), Bo[i1](5)) > g Vs € [to, to + 7]

where now X is the trajectory in (L50) associated to the controls u; = uj and ®»[u1]. If we integrate the last inequality, we
obtain that there exists u1 € Ui (to) such that for every ®» € S»>(to) we have

fotr 70
/ D(s,x(s),ui(s), ®2[u1](s))ds > >
to
and hence
. boF7 /op 70
inf sup —(8,%x) + f(s,x,u1, ®2[ui]) + Vo(s,x) - g(s,x,ur, P2[ui]) | ds > — (4.51)
P2€82(t0) ueld; (tg) J tg ot 2
where x solves ( ) : |
x = g(t,x,ur, P2{u; in [to, T
4.52
{X(to) = Xp ( )
Now by Theorem [£.4] we know that
to+T1
V™ (to,x0) = inf sup {/ f(s,x,ur, @2[ui1])ds + V7 (to + 7, x(to + T))} (4.53)
P2€S2(t0) ug ety (tg) L/t

with x as before. For every such x, requirement (£47)) and the lipschitz assumption 2. on g imply that, for 7 small enough
0= Vi(to, Xo) — U(to, Xo) <V (to + 7, X(to + T)) — U(to + T, X(to + T)) (454)
Since x is continuous and v is in C*, [@52) implies

L+ dy(s,x(s))

Is ds

v(to + 7, x(to + 7)) — v(to,x0) = /

to

to+T /9y
/ 0 (G5 o060 + Foloyx(6)) s, () (s) Bafuno) ) s (4.55)
Relations (£53)-(@55) give

o
v

to+T1
f sup {/ f(s,x,ur, ®2[ul) ds+v(t0+r,x(to+r))—v(to,xo)}

in
P2€82(t0) uy ety (tg) Lty

to+7
= inf sup / <f(s,x, uy, ®o[w]) + %—f(s,x) + Vou(s,x) - g(s,x,u1, <I>2[u1])> ds

P2€S52(t0) ug ety (tg) Jto

This inequality contradicts (Z5I): hence (Z48)) is false and this concludes the first part of the proof.

Second part of the proof: V™ is a subsolution. Now, let v € C*((0,T) x R™) be a test function touching V'~ from above at
(to, Xg), i.e.

V™ (to,x0) = v(to,x0) and V™ (¢,x) < wv(t,x) in a neighborhood of (to,xo). (4.56)
We have to prove that
%(to,xo) + Hip (o, %0, Vo(to, o)) > 0.
Let us assume that this is not true and that there exists § > 0 such that
v -
E(to,xo) + Hpp(to, x0, Vu(to,x0)) > —6. (4.57)

This is equivalent to

max min I'(¢o, X0, u1,us) < —6
u; €U us€U2
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Hence, for every u; € U, there exists uy* € U, such that
F(to, X0, U1, u;l) < -0

Since I' is uniformly continuous we have

~ 36
F(t07x0au1au21) < _Z (458)
for every uy € Ui, w1 € By, (u1,r(u1)) N U and for some r(u1) > 0. Since U is compact (see assumption 1.) there exist
finitely many distinct points {ui}L, C Un, {u;l1 W, C U> and rays {r(ui)}l, such that

N
U C U BRM (ullzr(ull))
i=1
and , ;
T(to, X0, 11, usl) < —%, Vili € Bra(uj,r(ui)) N U

Let us define ¢ : Uy — Uz by ¢(u1) = u;J1 with j = j(ui1) such that

Jj—1

ui € By, (uf, r(uf)) \ [ Baws (uh, r(uh).

Hence (4.58)) implies
30
F(to, Xo, U1, ¢(U1)) < _Z

for every u; € U;. Since I' is uniformly continuous there exists 7 > 0 such that we have
~ 6
(s, x(s),ur,¢p(ur)) < -3 Vs € [to,to + 7] (4.59)

for every ui € U; and for every Ui € Ui(to), U2 € Uz(to) where X is the associated trajectory as in (Z50). Now let us define
B> € S»(to) such that
®o[ui](s) = ¢(ui(s)),  Vai € Ui(to), s € [to, T

Using (4.59)

I'(s,x(s),ui(s), 52[?11](3)) < —g, Vs € [to, to + 7]

for every u1 € Ui(to) and where X is as in ([@50) with us = ®»[u;]. If we integrate the last inequality, we obtain that there
exists ®» € S»(to) such that for every w1 € U(to) we have

tot+r . . ~ 70
[ P 6), Bafinl(s)ds < -
to
and hence
inf su /tOH (%(s x) + f(s,x,u1, ®2[m]) + Vo(s,x) - g(s,x, 11, ®2[u ])) ds < -0 (4.60)
q’2€52(t0)u1euﬁto) to ot R ’ g%, el o 2 .

where x is as in ([£52). For every such x, requirement (@356]) and the lipschitz assumption 2. on g imply that, for 7 small
enough

0=V (to,x0) —v(to,x0) > V™ (to + 7, x(to + 7)) — v(to + 7, x(to + 7)) (4.61)
Relations (£353)), ([E55) and (EEI) give

o
IA

inf sup {/tmLT f(s,x,ur, ®a[ui])ds + v(to + 7, x(to + 7)) — v(to,xo)}

P2€S82(t0) uy ety (tg) L/t

af  sup /W(f<s,x,u1,<1>2[u11>+%s,x)wv(s,x)-g(s,x,u1,<b2[u11>) s

i
P2€S82(t0) uy €Uty (tg) Jtg o

This inequality contradicts (A60): hence (@357 is false and this concludes the proof.
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4.2.4 TIsaacs’ condition, Isaacs’ equation and value function

If the TIsaacs’ condition is satisfied, clearly the systems (4.46) and (£.45]) coincide, and we obtain

1%
{ S (%) + Hop (%, ViV (%) = 0 for (£,%) € [0,7] x B" (4.62)
V(T,x) = 9(x) for x e R”

The previous system (£.62)) is called Isaacs’ equation.
The fundamental theorem on the value function is the following

Theorem 4.6. Let us consider the problem (/.1]) with the assumptions 1. and 2. Let us suppose that the
Isaacs’ condition ({{.23) holds. Then

a. the problem ({.1) has value function V', i.e. ([{.10) is always an equality;
b. V is the unique viscosity solution of (4.62);

Proof. The proof of a. and b. of this theorem is an easy consequence of Theorem with the Isaacs’s
condition. 0

As we said at the beginning of this section, we have given the results of this section for open-loop
strategies but they are also true for more general problems and feedback strategies. The main result is in
the previous theorem: if the Isaacs’ condition (4.23)) holds, then the problem has value function and satisfies
the Isaacs’ equation (4.62)).

4.3 Regular solutions of Isaacs’ equation for general problems

In the previous section we discussed the details of the upper and lower value functions, their regularity and
relations with respect to the upper e lower Isaacs’ equation and with open-loop strategies. In this section
we are interested to study the case where the Isaacs’ condition holds, the feedback strategies are considered
and the value function exists and it is regular.

Definition 4.8. Let us consider the problem (f-1). The lower value function V~ : [0,T] x R" —
[—00, +00]| is defined by

T
V7 (r,&) = infsup/ ft,x,uy,ug) dt + (x(T)), (4.63)

vy v

where (uy,us) € App, with u;(t) = vi(t,x(t)) for i = 1,2, is admissible with trajectory x unique solution of

{x(t) = g(t,x(t),v1(t,x(t)),va(t,x(t))) for a.e. t €[r,T]

x(1) =¢
Similarly, the upper value function V' :[0,T] x R* — [—o00, +00] is defined by
V(r,€) = supmf/ f(t,x,uy,ug) dt + (x(T)). (4.64)

Note that V'~ and V' admits the values 00 since now we have no particular assumptions on our problem

E1).
As in the open-loop strategies case and for the same reasons (see (4I6)), for every (7,€) we have
V= (1,&) < VT(1,€). We say, as in Definition [4.4] that the problem (£I)) admits value V function if

V(T,ﬁ) = Vﬁ(Tag) = V+(7.7§)

In the spirit of Theorem [AL6] we have the following result (see for example Corollary 6.6 and Theorem
8.1 in [2]):
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Theorem 4.7. Let us consider the problem (1) with f, g and 1 continuous. Let us suppose that the
Isaacs’ condition ({.23) is satisfied. Let V : [0,T] x R* — R be a C' solution of the Isaacs’ equation (-62).
Let (uf,u3) € App, where u}(t) = vi(t,x*(t)), with the corresponding trajectory x* with x*(0) = a, be
such that

ov
57

t,x) = [f{t,xvi(tx),vy(tx)) + ViV (Ex) - g(t,x,v1 (2, %), v5(t, x))

= min max (f(t,x,vl,vQ) + ViV (t,x) -g(t,x,vl,VQ)) (4.65)
v2€U2 vi€U1

= max min (£(t,%,v1,v2) + ViV (£%) - g(t,x,v1,v2))
vi€U1 v2€U2

Then (ui,u3) is a Nash equilibrium for the game ({f.1)) in the class of feedback strategy. In particular

V7 (0,a) =V*(0,a) = J(ui,ub). (4.66)
Moreover, if for every initial data (1,&) € [0,T] x R™ there exists the corresponding trajectory x, solution of

{x(t) = g(t,x(t), v (t,x(t)),v5(t,x(t))) a.e. in[r,T]
x(r) = ¢

then V' is the value function for ({f-1)).
We remark that (£65) implies that (v(¢,x),v5(t,x)) realizes the max-min, for every (¢,x) € [0,7] x R™.
In particular, along the optimal trajectory of the problem (4.1l we have

—%—‘Z(t,X*(t)) = f(t,x"(t), ul (t), ub(t)) + ViV (£, x* (1)) - g(t, x* (£), ul (£), ub(t)),

for every t € [0, T].
Proof of Theorem [[.]. Let (uj,u3) € App, where uj(t) = v;(t,x*(¢)), with the corresponding trajectory

x* with x*(0) = . For every fixed ¢,

ov * _ . * * *
E(tax (t)) - _Lglea[}(l ur2n€182<f(tax (t)7u17u2) -I-VXV(t,X (t)) 'g(t?x (t)7u17u2)>

= —f(t,x"(@),vi(t,x" (1), v3(t,x* (1)) — ViV (£, x7(1)) - g(,x7 (1), v1(E, x7 (1)), v5(t, x"(1)))
= —f(t,x"(1), ui(t), u3(t)) — ViV (,x* (1)) - x*(t) (4.67)

Since V is differentiable, the fundamental theorem of integral calculus implies

T av (t,x*(t))

V(T,x* (T)) — V(0,%*(0)) =/0 D) gy
T
=/ %—Z(t,x*(t)) + ViV (t,x*(t)) - x*(t) dt
T
(by @.67)) = —/0 f(t,x*(t),ui(t), us(t)) dt. (4.68)

Let (u;,u}) € App, where u;(t) = v (¢, x(t)) and uj(t) = v5(t,x(t)), with the corresponding trajectory
x with x(0) = a. For every fixed ¢,

%—Z(t,x(t)) = - max min ( Ft,x(t), ur, wp) + ViV (E,x(1)) - g, x(t), u1, u2)>
= — mave (F(x(0), 0, vt x(2) + VaV (8x(0) - gt x(2), w3 (4 x(1))

IN

—f(tx(8),v1(t,%(1)), w3 (8, %(1))) — V<V (E,%(2)) - g(t, x(8), v1 (2, x(£)), v5 (2, %(1)))
—f(t,x(1), w1 (t), u3(t)) = ViV (¢, x(2)) - x(t) (4.69)
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Again we have

T X
V(T,x(T)) — V(0,x(0)) = /0 wdt

- TW( x(t)) + VeV (£, x(t)) - %(t) dt

0
(by @5D) < / £t x(2), wi (), wh(8)) . (4.70)

We remark that x*(0) = x(0) = «; if we subtract the two expressions in (£68]) and in ([@T70]), then we obtain

T T
V(T %" (T)) — V(T, x(T)) > — /0 F(t,x" ul, ug) di + /0 £t %, ) dt.

Using the final condition in the Isaacs’ equation (£62]), the previous inequality becomes

J(ul,ug) = / £t %", ut, ug) df + h(x / £ (6%, wr, u3) dt 4+ p(x(T)) = J(wr, ul),

for every (u;,u3) € App. A similar argument proves that
J(u; u;) < J(u; 'llg),

for every (uj,u2) € Arp. Hence we have that (uj,u3) is a Nash equilibrium in the family of feedback
strategies.
Now, it is obvious that,
sup.J(uy,u) > J(uy, uz),

up

for every ug; hence

infsup J(uy, uz) > 1nf J(uj, uz).

[FER
Now, the previous inequality, the definition of lower value function V'~ in (£63]) and the fact that (uj, u})
is a Nash equilibrium imply

V7(0,a) = 1nfsupJ(u1,u2)>1an(u1,u2) J(uj,u3).

uz oy,
A similar argument gives V1 (0, ) < J(uf,u}). Relation (£I86]) gives (Z.G6).

Finally, if we replace the initial data x(0) = a in the game with the new initial data x(7) = &, then the
same proof gives that the game has value function V. 0

In the assumption of Theorem 7] we have that
V(0,x) = J(uj,u3) (4.71)
Lewin devotes the section 3.2 of his book [12] to the definitions of the optimal strategies and the value
function of a differential game using, as a matter of fact, equality (L71) to define the value function.
Clearly, in the assumptions of Theorem [l and Theorem A7 we know that
ViV (t,x*(t)) = X*(¢), (4.72)

for every t € [0, 7.
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A geometric proof of Isaacs’ equation as necessary condition

We are interested to give a very different proof of the Isaacs’ equation (£.62]), based on geometric ideas. In
particular, let us consider a different version of the problem (AI]) with f = 0 and T free: more precisely let
us consider

Player I: max J(uy,us), Player IT: min J(uy, us)
up us
J(ula 112) = w(Ta X(T))
X = g(ta X, uy, u2) (473)
x(0) =«

(T, x(T)) € OT

where 7 C [0,00) X R™ is a closed target set and G is the game set, i.e. if (7,€) € G then there exists a
trajectory x which transfers the initial point (7,€) in a point (7,x(T')) with x(T') € 9T (let us recall that
T C G). As usual we define the exit time Ty for the trajectory x by (since 7 is closed)

Tx =inf{t > 0: (t,x(t)) € T} =inf{t > 0: (¢,x(t)) € OT }. (4.74)

Theorem 4.8. Let us consider the problem ({{.73) with g and 1) continuous, with a closed target set T and
game set G. Let (0,a) € G\ T. Let us suppose that

i. the Isaacs’ condition holds; in this case we have

Hpp(t,x,A) = Jfnax min A g(t,x,u1,uz) = nin max A g(t,x,up, up); (4.75)

ii. the problem has value function V., with V.€ C*(G\ T) and VV (t,x) = (B—Y(t,x),VxV(t,x)) # 0 for
all (t,x) € G\ T.

Let us consider a Nash equilibrium (uj,ul) for the problem ([.73) and its optimal trajectory x* with exit
time T*. Then V satisfies the Isaacs’s equation (4.62) along the optimal path; more precisely,

o . . .
{E(t,x (t)) + Hpp(t,x*(t), ViV (t,x*(t))) =0 fort € [0,T) (4.76)
V(T*,x(T*)) = (T*,x(T*"))

Proof. Let us consider a Nash equilibrium (uf, u}) and its optimal trajectory x* with exit time 7™ for the
problem (473)): clearly we have
x‘(0) =a,  (T*,x"(T")) € 0T
The final condition in (£.76]) is obvious. Moreover, for every 7 € [0, T*] fixed, if we consider the new problem
(@73) with the new initial data
x(1) = x*(7),

the new optimal trajectory coincides, by the Bellman’s principle, with x* (the idea of the proof coincides
with the classical situation of an optimal control problem). Hence, for every 7 € [0, 7],

V(r,x*(r)) =¢(T",x(T7)) = ¢
where ¢ is a constant. Clearly we obtain

dV(t,x*(t)) oV

7 = 57 (1HX7() + ViV (E,x7(2)) -x*(t) =0, (4.77)

for every t € [0,T*).

Let us consider the curve v : [0,7*] — G, defined by v(t) = (¢,x*(¢)): it is such that V(y(¢)) = ¢ for every
t € [0,7%]. Since VV (¢,x) # 0, the Dini’s theorem guarantees that locally the curve 7 divides the set G\ T
in two different regions where V (¢,x) > ¢ and V (¢,x) < c.
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¥
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Now fix t € [0,7*) and consider the point P = (¢,x*(¢)). In such point P, the function V has the maximum
growth in the direction of the vector

YV (y(1) = (8—V(t,x*<t>>, vxvu,x*(t))) |

ot
Since the Player I wants to maximizes, he wishes to move P in such direction; but he has some “constraints”
for the movements of the point P, i.e. on the trajectory, given by the dynamics and the choice of the Player
I1. Hence, if the Player II choices u%(¢), then Player I considers its strategy such that

ul () € arg max [(%—‘;(t,x*(t)), VXV(t,x*(t))> -w] (4.78)

u €U,

where w is a vector which depends on ¢, x*(¢) and u}(#). Since x* is the optimal trajectory, we know that
the “best” direction w in the problem (£.78]) is w = % = (1,x*(¢)) (in the points ¢t where x*(t) exists);
using the dynamics we obtain

wl(t) € arg max (8—V(t,x*<t>>+vxv<t,x*(t>>-g(t,x*<t>,u1,uz(t>>)

u €Uy ot
= g mas ViV (6,37 (1) - (1" (1), w3 (1)) (4.79)

Since the Player IT wants to minimize, with similar arguments we obtain

wy(t) € arg min (VV (£ (1)) - g(t,x" (1), ui (1), ) (4.80)

uzels
Now, by (£T77) and the dynamics, we have

0 = %—‘t/(t,x*(t))—l—VxV(t,x*(t))-)é*(t)
= (0 (0) + TV (" (1) - gl (1), w3 (), w3 4)
oy D) = (" (1)) mae (Ve (1" (0) - g6 (1), i, w3 1))
(hy @ED) = (" (0) + min (Ve (15" () - g6, (1), T 1), 1)), (481)

Let us conclude the proof using the Isaacs condition; for every fixed ¢, let us introduce the function

%t(ul, uy) = ViV (t,x*(t)) - g(t,x*(t),us, us). (4.82)
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The previous equalities give that

hy(ut(£), ub(t)) = max hy(uy, wh(t)) = min hy(ul(t), ug). (4.83)
u €Uy ux€ls
If we show that N N N
4 . = i = mi 4.84
hi(ui(t), uz(t)) Inax min hi(ui, u2) min max hi(ui, u2) (4.84)

oV
we obtain 0 = E(t’ x*(t)) + Hpp(t,x*(t), V<V (t,x"(t))) and the proof is finished (note that in (4.84]) the
second equality is true by the Isaacs’ condition). Hence let us suppose, in order to obtain a contradiction,
that (£.84) is false: then

ha(ui (0, w5() =gy max hilu, w3(0)

> min max Et u, uy
(.8 false) ux €Uz u1 €U ( ’ )

={@7H) max min Et(ul,ug)

u1 €U uz€ls

> ul;rleig2 Et(uT(t)a uy)
:m ﬁt(u’{(t), u;(t))a

which clearly is impossible. Hence (£384]) holds: now using (£81)—(4£.84) we obtain (Z76]). 0

4.3.1 Examples
Ezample 4.3.1. (see [2]) Let us consider the two-person zero-sum game

Player I: maxJ(u1,u2), Player II: min J(u1,u2)
uq w2

1 [? 1
T(ur,uz) = 5/ (a3 — ud) dt + 52(2)’
0

T = \/i?l,z — U1
z(0) = mo

First, it is easy to show that the Isaacs’ condition holds:

Hyp(t,z,\) = max (—%u% — )\ul) + mie%g (%ug + \/5)&n> = Hfp(t,x,\). (4.85)
2

w1 ER
Hence we can define the Hamiltonian of Dynamic Programming Hpp : in order to do that, note that
uj = —\", uy = —V2\" (4.86)

realize the max and min in (Z385) respectively and hence Hpp(t,x,\) = —3\>. Hence there exists the value function V that
solves the Isaacs’ equation

oV 1[0V ?
W(t,l‘) — 5 (@(t,l‘)) =0 for (t,fl?) S [0, 2] x R

1 (4.87)
V(2,z) = 5932 for x € R

Since we are considering an Affine-Quadratic problem, we looking for a value function of the type (ZI8), i.e. V(t,x) =
1Z(t)x> + W(t)z + Y (t) : replacing such V in (@87) we obtain

Zx® 4+ 2Wx +2Y — (Zz 4+ W)? =0, VY(t,z)€[0,2] xR

= 7=2° (4.88)
W =2ZwW (4.89)
2y = W? (4.90)

V(2,z) = %Z(z)m“’ LW +Y(2) = %aﬂ, Vz e R
= Z2)=1, W(2)=Y(2) =0 (4.91)
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Easy computations give: by (488) and (.91) Z(t) = %; by (£89) and ([@91), W (t) = 0; finally, by (£90) and (£91),

Y (t) = 0. Hence we obtain the value function

1 2
t )= — 2>
Vi(t,z) 2B-n"
Now, relation [Z2) gives \*(t) = =z (t), where x* is the optimal trajectory; (4.86)) gives
* ]‘ * * — \/i *
ui(t) = —g—o"(t), w(t)=-g—27(t) (4.92)

Hence we are in the position to find a feedback strategy. Using this expression for the control (u1,us2), the dynamics gives

*
Cx xr

TS

together with the initial condition z(0) = xo, we obtain z* = xo2;t. This implies that (ui,u3) in @3J2) is a feedback Nash
equilibrium.

A

4.4 Pursuit-evasion games

Let

T=R"xTyCR" xR"
be a target set, with 7y closed. Let as denote by G C RT x R” the game set, i.e. the set where the trajectories
lie, (t,x(t)) € G.

We investigate a situation in which the first player tries to maintain the state of the system as long as
possible outside to a target set 7 while the second player aims reaching T as soon as possible. For this
reasons, in all this section, the first player, who chooses uy, is called Pursuer, which we shall abbreviate buy
P:; the second player, who chooses us, is called Evader, which we shall abbreviate buy FE.

We consider an autonomous problem, i.e. a situation where f, g and ¥ do not depend directly on ¢. For
every (uj,us) € App, where u;(t) = v;(t,x*(t)), with the corresponding x via

k:g(x,ul(t,x),uQ(t,x)), X(O) =«
such that (0,a) € G\ T, the exit time in ([ALT74) is

Tx = inf{t > 0:x(¢t) € To}; (4.93)

if the initial data on the trajectory x is x(7) = &, with (1,€) € G\ T,

then the definition of its exit time is Tx = inf{t > 7 : x(t) € Tp}. >
g
We are interested in the game
( Pursuer: minJ(u,ug), Evader: max J(up,uy)
ujp u2
u (t) € Uy, uy(t) € Uy
Tx
4 J(uy,u) = /0 fx a1, u2) dt + 4 (x(Tx)) (4.94)

}.C = g(X, 111,112)
x(0) = a, 0,) €eG\T
\ (Tx,x(Tx)) € OT

where Ty is the exit time of the trajectory x. Note that in the Pursuit-Evasion games the first Player (P)
would like to have a min, while (E) wishes to have a max; this notation is in honor of Isaacs and it is
exactly as in his book [I0] (see page 201). Clearly, all the results of the previous sections hold with easy
modifications.

Here we have that H,, and H}, do not depend on ¢. For this type of problems we have the following
properties:



4.4. PURSUIT-EVASION GAMES 51

Proposition 4.1. Let us consider the game ({f.97) with f, g and v continuous, and with Ty closed. Then
i. the lower V'~ walue function does not depend explicitly on t in the game set G, i.e.

V™ (t,x) =V~ (%), V(t,x) € G; (4.95)

ii. the game set G for the game ({[.97) is
G=R"xGyCR" x R?;

ii. if the lower value function V'~ is in C*(int(Gy \ To)), then the lower Isaacs’ equation ([{45]) becomes

{H{,P(x, VV™(x)) =0 forx € int(Gy \ To)
V™ (x) = 9(x) forx e Ty

Similar results in i. and ii. hold for V'

Proof. Let (1,&) € T; clearly V™ (7,&) = 1(€). Now, let (1,&) € G\ T: by deﬁnitiorﬁ,

Tx
Vﬁ(Tag) = infsup f(X7 u17u2) dt‘HP(X(Tx))
Vi vy Jr
where in the previous line (uy,us) € Appg, with u;(t) = v;(¢,x(t)), and the corresponding x solution of of
the ODE
{X:g(xayl(ta}c%”?(tax)) in [TaTX]
x(r) =§

For every such (uy,us) € App, let us consider v;(s,x) = v;(7 + s,x) for every x € R” and s > 0. Since g
does not depends on ¢, the unique solution x of the ODE

{X = g(xa gl(tax)7§2(tax))
x(0) = ¢
is X(s) = x(7 + s). Hence we consider (1;,Uy) € App, with u;(t) = v;(t,x(t)). Since T = R" x Ty, it is
easy to see that

Ti = Tx —T.
Clearly we obtain

f(ia ﬁla ﬁ2) di + Q[}(i(Ti)) = f(xa up, 112) di + Q[}(X(TX))v
0 T
for every (uj,us) as before. This implies V~(7,&) = V(0,&), for every 7 > 0. This proves i. and the
arguments of this proof imply easily .
The assumption V— € C'(int(Go \ To)) and relation (£95) give ia};—;(t,x) = 0. Now, since the problem
is autonomous, H,» does not depend explicitly by ¢ and we obtain, by the lower Isaacs’ equation (4.45]),
ov-

W(t,x) + H, . (t,x, V<V~ (t,x)) = H, »(x,VV ™ (x)) = 0.

Now, let us consider a initial data (7, &) for our trajectory x in 7; it is clear that Tx = 7 and hence
Tx
Vo(r,§) =infsup | f(x,ur,uz)dt +4(x(Tx)) = ¢(§).

Vi vy Jr

Taking into account that V'~ does not depend explicitly by ¢, we have iii.. 0

The next result is an easy consequence of the previous proposition.

3We recall that the First Player minimizes and the second Player maximizes, hence in the definition of V* and V'~ we have
to change 1 with 2 and viceversa.
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Remark 4.4. Let us consider the game ({.97) with f, g and v continuous, and with Ty closed. If the
Isaacs’ condition is satisfied, i.e.

HDP(X7 A) = Vr1n€i[r]11 glggé(f(xavla‘IQ) +A'9(X,V1,V2))

= max min (f(x,V1,V2) + A g(x,V1,V2))- (4.96)

and the value function V is in C(int(Go \ To)), then V does not depend explicitly on t. Moreover the Isaacs’
equation ({.62) becomes

V(x) = 1(x) forx € To (4.97)

Theorem [A.7] for our pursuit-evasion game has a new statement:

{HDP(X, VV(x)) =0 forx € int(Go \ 7o)

Theorem 4.9. Let us consider the game (4.94) with f, g and 1 continuous, and with Ty closed. Let us
suppose that the Isaacs’ condition is satisfied. Let us suppose that there exists a continuous differentiable
function V : (Go \ To) = R such that the Isaacs’ equation (4.97) holds.

Let (uj,u3) € App, where u;(t) = vi(x*(t)), with the corresponding trajectory x* with x*(0) = o and exit
time Tx~, be such that (vi(x),v5(x)) realizes, for every x, the max-min in the Isaacs equation, i.e.

0= f(x,v](x),v5(x)) + VV(x) - g(x,v](x),v5(x)) = Hpp(x, VV (%)), (4.98)

for every x € int(Go \ To). Then (uj,u}) is a Nash equilibrium.

We note that in our pursuit-evasion games (4£.94]), the feedback strategies (uj,us) € App are such that
u;(t) = v;(x(t)) with v; which depends only on x, i.e. we looking for stationary feedback strategies. Finally,
along the optimal trajectory (4.98) becomes

0= f" (), v1(x* (1)), va(x*(2))) + VV(x*(2)) - g (" (1), w1 (x"(2)), w5 (x7 (1)), (4.99)

for every t € [0, Tx-].

4.4.1 The lady in the lake

The following games is in [2]. A lady (F=Evader) is swimming in a circular lake (of radius R) with a
velocity #7(t) such that vy, (t) = vy, is constant and vy, < 1; she can change the direction in which she swims
instantaneously. Hence the lady controls the direction of its velocity, i.e. she controls the angular velocity
ur, with respect to the radius C'E, without any restriction.

A man (P=Pursuer) is not a swimmer and he wishes to intercept the lady when she reaches the shore;
he is in the beach of the lake and can run along the perimeter with velocity #3f(¢) which is tangent to the
circumference. He also can change his direction instantaneously; hence the man controls the signed modulo
up, 1e. Jup(t)] < 1, where upsr > 0 (ups < 0) implies that the man runs clockwise (counter-clockwise)
around the lake.

We assume that the lady and the man never get tired. E doesn’t stay in
the lake forever and she wishes to come out without being caught by the
man; in the land, F can run faster than P. E’s goal is to maximize the
pay-off, which is the angular distance 6 viewed from the center C of the
lake, at the time F reaches to the store. P obviously wants minimize
such pay-off.
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In order to describe the system, we introduce the angular distance 6§ = 6(¢), i.e. the angle between P
and E with respect to the center C in a clockwise sense: we consider —m < 6(¢) < 7 and the identification
7w~ —m. The E’s distance with respect to the center of the lake is » = r(¢). The dynamics of the game (we
left to the reader the details) is

v sinur, U

) — L~ h M 4.1
6 - = (4.100)

7 = UL Ccosup (4.101)
The pay-off function is |§(T)|, where T'= T'(6,r) is defined for every trajectory (0,r), as in (£93)), by
T =inf{t >0: (6(¢),r(t)) € To},

where 7 is the target set of the game, 7 = R" x Ty with Ty = [—, 7] X [R, 00)
(and w ~ —m). We are in a pursuit-evasion game as in (4.94)). Proposition 1] r o/
implies that the game set G for our problem is G = Rt x Gp: let us note that ‘
for every (rg, 6p) with ro > 0 and 6y € [—m, 7] the pair (uar,ur) = (0,0) in the
dynamics implies the trajectory r(t) = ro + tvy, and 0(t) = 6y for every t > 0:
it is clear that for some ¢ the trajectory reaches in the target set: hence

o
/
o

Go = [—m, 7] x [0,00),

!

TR
%Q\

)

with 7 ~ —m.
Hence we have the pursuit-evasion game

Man (P): min|6(T)| Lady (E): max |0(T)|
UpN ur
luar] <1
G- v, sinuy, _um

) T R
7 = V[, COS U],

r(0) =0, r(T) =R

Let us looking for a Nash equilibrium (u},, u} ) for this game in the family of (stationary) feedback strategies,
where

upr(t) = war(07(8),r*(2),  wp(t) = vz (07(2),r" ()

and the associated trajectory is (6*,7*). In order to do that, we apply Theorem A9 The Hamiltonian
H = H(0,r,unm,ur, M1, A2) is

H=X\ <w — U—M> + Agup, cosur,.
r R

For the upper and lower Hamiltonians of Dynamic Programming we have

HE(0,7,M1,0) = min max H(0,7,un,ur, A, A2)
lunv|<1 ur

{vL sinuy,

A
= min {—EluM}—i—max )\1+)\2vLcosuL}

luar|<1 urL

= max min H(O,T‘,UM,UL,)\l,)\Q)
ur  |upr|<1

= H;P(evlra >‘17 >‘2)

Hence the Isaacs’ condition is satisfied and, by Proposition Il we are in the position to looking for a
value function V' that does not depend on ¢, i.e. V =V (6,r); let us notice that the existence of such V' is
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not guaranteed since the dynamics is not bounded and Lipschitz w.r.t. r (see Theorem [A6]). The Isaacs’

equation (97 is

‘urjl\nli‘rgllrr}b%x [(ULSI# uM) 88‘9/ 0,7) + v, cosuL%—‘:(G r)| =0 for (0,r) € [-m, 7] x (0, R)
V(9,R) = |0 for 0 € [—m, 7]

where the order of the min and the max is irrelevant. If (u};,u}) is our Nash equilibrium with associated
trajectory (6*,r*), let us set

Vi) = SO0, (0), V) = 00, ().

Let us reorganize the Isaacs’ equation taking into account that (v},,v]) realizes the min and the max; in
particular along the optimal path (6*,7*), as in (£99), we have

. UMV sinury
|uIan|I<11 R 0 ( ) v nllt%X ( ’f'*( )

o w,. sinus (1) :
= 00w 1)+ (2D v 1)+ o )V, 0

Vi (t) + cosur V) (t)) (4.102)

ﬂ

for every t € [0, 7.

We can apply the variational approach for the open—loop representation of the feedback Nash equilibrium
(u}s,uy) (see Theorem {2). Taking into account that (see (L72))) A} =V, and A5 =V, along the optimal
trajectory (0*(t),r*(t)) and for the time ¢ such that V is sufficiently regulat@ in the point (6*(t),r*(t)), the
adjoint equation gives

. oH

AN=——=0 Vi=k 4.103
1 90 = ) ( )

. O0H d vr sinuy vr, sinu}

Ao = ——— = —Vi=Vy =k 4.104
2 or dr ' " 0 (,r,*)Q (,,.*)2 ( )

where k is a constant.
e First, let us suppose that for some time ¢ on the optimal trajectory we have Vjf(t) # 0: (£I02) implies
that the optimal control u}, is given by

ups(t) = sgn(Vy'(t)). (4.105)
Consequently, (£I02) is

Vs @)
?)LR

max < sinuy,
urL

Vi (t) e |
(1) +cosur V(¢ )} =

This implies that the vector (cos(uj (t)),sin(uj (¢))) has the same direction of the vector (V,,*(t), ‘:ﬁ*(t)) and

()
(o 5| = g (4107

An explicit calculation of the modulo gives

(Vg (£))?
(r*(1))?

this last relation is true only in the case r*(t) > vrR.

(4.106)

hence

< (V1) +

*Relation (I03) seems to give that t — X} (t) = V; (£) is a constant in [0, T]: as we will see, this is not true since for t = Ty
(see below for the definition of Tp) V' is not regular.
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e Let’s study the situation r*(¢) < vy, R: in this case, the previous calculations imply V() = 0: hence
by (4.104) we obtain V*(¢) = k1 constant and (£I02]) becomes

max {kj cosur} = 0.
ur,

Such relation gives k&4 = 0 = V*(¢). Hence on the optimal trajectory
(0*(t),r*(t)) inside the circumference of radius vz R we have T
NIE; R)-A8)
e
VY07 (1), r* (1)) = (Vg (£), V,*(£)) = (0,0) : e e |
? s
the value function doesn’t change if £ modifies her position, i.e. V is constant. b F{v% ~
- ~
In this situation the Lady can achieve a large angular velocity wy, (with respect ’ v/ r)f@ 5T n/r/)/l
to the center C) than the angular velocity wjs of the Man P, and therefore ',//,/,/mi/ﬂ/! )
she can always move herself into the position 8*(¢t) = =, i.e. to a position -7 v D
diametrically opposite from P. In fact we note that
g sinuj _ Uy
and for |wg| > |wpr| implies
vy, vr sinuy Uy 1
r* r* R| R’

hence 7*(t) < wvrR.
Clearly circumference of radius vz R, for every strategy-decision vy, of the Man, the Lady can consider a

strategy-decision v} in order to stay in a situation where 8*(t) = £m; hence 0* = 0 and wy, = wys. Relations
(4108) give the optimal control

(unr(£), ur,(t)) = <U}‘V[(t),arcsin W)

and the optimal trajectory is, again by the dynamics,

(10°(0)] 7 (1)) = (m%) | (4.100)

An example of the situation r(t) < vy R:
Let us suppose that the Man starts at the North pole of the circumference and runs

in the clockwise sense with mazimal velocity, i.e. uj; = 1. Let us denote
by M (t) the position of the Man at the time t, we have (see the blue curve

in the picture)
M@#)=R (sin%,cos %) .

Note that |M| = 1. Let us denote by L(t) the position of the Lady at time
t: ({-109) gives

r* = Rvpsinu} = r* = Rvupuj cosuy,.

Since the dynamics is r* = v, cosuj,

we obtain Ruj =1, i.e. ul(t) = t/R+ a with a constant. The initial condition r*(0) = 0 with (7-109) give a = 0.
Hence we have the strategy for the Lady

ol

uy =

By using [{-109), we obtain (see the red curve in the picture)

L(t) = —Ruy, sin% <sin %,cos %) .
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It is easy to verify that the modulo of the velocity of the Lady is exactly vy,.
e Since the lady doesn’t stay in the lake forever, let us define Ty as

To = max{t > 0; r*(t) = v, R},
and let us study the situation r*(¢) > vg R. The previous argument imply that
0°(To)| =, r*(Ty) = RVL. (4.110)

Taking into account that, by the final condition on the value function V(#, R) = |6|, we have V,/(T) =
%—‘g(@*(T),r* (T)) = sgn(0*(T)): equation (AI03) gives

Vo (t) =Vy(T),  tell,T]

Hence, by (ZI05),
wh, () = sgn(0%(T)), € [Ty, T) (4.111)
Relation (£.106) gives .
costu (0).sinfu (1) = et (V0,350 ).
Hence or R
sinuk () = T*L—(t)sgn(H*(T)). (4.112)

The optimal control here is

v Rsgn(6*(T))

(ups(t),ur(t)) = (sgn(ﬁ* (T)), arcsin o

>, t € [Ty, T].

e Let us discuss the possibility of the Lady and the Man obtain their respectively pay off. In r*(¢) > vy R,
the dynamics (EI00) and the optimal control (u},,u}) in (EIII) and @EII2) give

vr, sinuj 3 v2 R? — (r*)?

f* = - %M = sen(0" (1) s (4.113)

,r*
Now, taking into account the dynamics (£.I0I]) and the optimal control v} in (£.I12]), we have

: vL
7 =wpcosup, = —1/(r*)? — v} R%;
T

we consider only the case cosuj > 0 since the Lady cannot stay in the lake forever (see the dynamics).

Hence ([AII3]) becomes
jo_ @) VP R0
B R r* r*
_ s @) YO iR
N v R r* '

Taking int account ([ALII0), let us put 6*(Ty) = wsgn(0*(T')). Hence the last equality and ({II0) imply

9= (T) r(T) * r2 —v?R?
[ = [0 ) 2
0*(To) r*(To) vLR r

R /r? —v?R?
= (0°(T) — 0" (Tp))sgn(0*(T)) = — ! " "

'ULR vLR
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Ly1=¢2 v, R

= (7)) —m=-— 72d3 (with s = ——)
. s r
1 Jise ! LS|
=—||—-= 1-— 32] + / ———ds (by part)
|:( S) v v V].—S2
1 1
=——4/1- v% + (— arccos s]
V1, v
1 2
= ——/1 — w7 + arccosvr.
vr,

Clearly the previous calculation does not take into account the identifi-
cation 6*(m) = 0*(—m): we obtain

5.0;
* 1 2 25
|0*(T)| = m — —4/1 — vj 4+ arccos vr.. d
vr, 00; R
A plot of the function, for z € (0, 1], 257
1 v 503
= ylz) =m— = 1 — 22 + arccos z, 759
; 100
comes from 1im+ y(z) = —o0, y(1) =7 and 3 = —VIIEI > 0.
z—0

Hence there exists a value v} € (0,1) such that for vy, € (v}, 1) the Lady sure will not be caught by the
Man.

4.5 Pursuit-evasion game of kind

We consider a situation similar to section [4.4] but now the functional J takes only a finite number of values:
these type of pursuit-evasion games are called games of kind. The theory of these type of games is very
wide and here we would like to give some ideas, in some particular situations (see for example [12] for more
details).

Let us consider the problem in (f94]). Here we consider a closed target set 7 = R" x Ty C G, with
int(7g) # 0, such that 7y is a (n — 1)-dimensional surface in C?, i.e.

0To ={x € Gy CR": h(x) =0},

where h : Gy — R is a function in C'. For every x € 07y, let us denote by n(x) € R” the outward normal
of Ty at x; clearly n(x) || Vh(x).

In this game, the Evader (F) tries to prevent the state-trajectory from reaching into the interior of 7o,
whereas the Pursuer (P) seeks the opposite. We assign numerical values to the outcomes J in (£.94) for the
trajectory x associated to the strategy (ui,u2) € Arp, where u;(t) = v;(x(t)):

e —1 for termination of the game or capture, i.e. the trajectory x arrives in int(7p);
e +1 for no termination of the game or escape, i.e. the trajectory x never arrives in int(7p).
Hence we are interested in the game

( Pursuer: minJ(uy,us), Evader: max.J(uy,us)
ujp u2

u €U uy € Uy
—1 if 3¢>0 s.t. x(¢) € int(Tp)
(a1, u2) { +1 otherwise ( )
X = g(X, u17u2)
\ x(0) = o
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with ¢g continuous function and (0, ) € G fixed. For our game the Hamiltonian is
H(x,uj,uz,A) = X-g(x,ur,us). (4.115)

Let us suppose for this problem that the Isaacs’ condition is satisfied.

It is clear that in this problem the regularity assumption in 1. does not hold and, despite the Isaacs’
assumption holds, it is not possible to guarantee that there exists the value function V. However we can
define V~ and V't and, exactly as in 4.—44. of Proposition .1 we have

Remark 4.5. For the game ({[.11]) we have that:
i. the lower value functions V= and the upper value function V' do not depend on t;

ii. the game set is G = RT x Gy.

Since the “solution” of the game does not depend on the time, the most interesting question is to study
which initial points of Gy lead to a termination of the game and which are not. In order to do that, let us
classify the points of the set Gy:

States of capture, states of escape in G \ int(7).

Definition 4.9. Let us consider the game (4.117)). Let xo € Go \ int(7p). We say that

e x( is a state of termination (or to capture) if the first Player (P) has a strategy—control @y, i.e. a
decision rule U1 = U{(x), such that for every acts—strategy us of the second Player (E), i.e. for every
decision rule vy = vo(x), the tmjector can be steered to the interior of the target set: we denote by
Cap the set of all the states of capture;

e x( is a state of no—termination (or to escape) if (E) has a strategy-control such that for every acts—
strategy of (P) the trajectory can be steered outside to int(Tg) forever: we denote by Es. the set of all
the states of escape.

Let us prove the following;:
Remark 4.6. If is x € Cop, then V™~ (x) = VT (x) = —1. If is x € Es¢, then V— (x) = VT (x) = +1.
Proof. Let &€ be a state of capture. Then there exists a control u; for the first Player such that for every

uy such that (4, uy) € App, with trajectory x which starts from &, we have J(u1,uz) = —1. This implies
that

J(ﬁl,u2) = —1, V(ﬁl,u2) E.AFB.
Hence, by (4I6]) and by deﬁnitiorﬁ,

—1<V~(€) <VT(¢) = supinf J(uy, up) < supJ(uy,vy) = —1

vy Vi 12

Now, let € be a state of escape. Then there exists a control 1y such that for every u; such that
(ur,us) € App, with trajectory x which starts from &, we have J(uy,us) = +1. This implies that

J(ul,ﬁ2) =1, V(ul,ﬁz) € App.

®The trajectory, in this situation, is the solution x of the ODE

{k(t) = g(x(t), 71 (x(t)), v2(x(t)))
x(0) = xo

and hence ui (t) = vi1(x(t)), u2(t) = va2(x(t)).
5We recall that the First Player minimizes and the second Player maximizes, hence in the definition of V* and V'~ we have
to change 1 with 2 and viceversa.
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Hence, by (ZI6]) and by definition,

1>V7T(€&) >V~ (¢) =infsup J(vi,u;) > inf J(vq,02) = 1.
2

Vi oy,

Now we are in the position to define, with an abuse of language, a sort of value function
V:iCopUEse = {—1,+1}.

The most interesting situation, of course, is the one in which Gy contains both capture and escape states.
It is clear that the value function V is discontinuous and the theory of the previous sections is not useful.

Usable part in 97;.

At this point a natural question is to investigate which points of the boundary of the target set are candidate
to be a state of termination for the game. We have the following:

Definition 4.10. Let us consider the game and let us assume that the Isaacs’ condition is satisfied.
We define the usable part, that we will denote by UP, as

= dTo: mi : = i : <0}, 4.116
Upr {xe To Jflézr}llf??én(x) g(x,u1,uz) gggﬂrflelgln(X) g(x,ur,up) < } (4.116)

The points of the usable part are candidate to be termination for the game. If strict inequality holds in
(A.116)) for some x, then it is a state of termination, i.e. x € Cgp, and it penetrates in 7p; to be clear, if for
some controls (uy, us) and for some time ¢, the trajectory x associated to such controls arrives at time ¢ in
a point of this type, then x(t) = g(x(t), uy(¢), us(t)) gives the direction of the trajectory in the point x(t);
since n(x(t)) - x(¢) < 0, then the trajectory enters in int(7p).

The points x for which equality holds in (£116]) may be only touching points.

The barrier and its construction.

We now are in the position to introduce the most important “object” that allows us to study our problem:
the barrier. It is the set that separates the state of capture to the state of escape:

Definition 4.11. We define the barrier By, the set in Gy \ int(7y) by
Bar = 0Cqp N 0.

The boundary of the usable part, that we will denote by BUP, is the set
BUP =UP N Ba.

It is clear that the barrier can be a very irregular set. Let us introduce the following two assumptions:
Assumption. Let us assume that Bg, is non empty and

e (smoothness) the barrier is a C? surface, i.e. By = {x: b(x) = 0}, with b € C? and such that
X EBy = xXECupU&y;

e (naturality) the curve from which the barrier starts is BUP, i.e. the boundary of the usable part.

For every point x € B,,, let us denote by p(x) € R the outward normal of C,, in the point x (and inward
Ese): clearly p(x) || Vb(x). Without loss of generality we assume

p(x) = Vb(x). (4.117)
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A natural barrier: for every point xo in BUP, we have p(xo) = n(xo) (as we will see in ([{.129)).

If we are able to construct the barrier, then we would also have found C,;, and &, and, as a result, we solve
the game.
A first result in the direction to construct By, requires this definition:

Definition 4.12. Let us consider the game ({.117)) and let us assume that the Isaacs’ condition is satisfied.
Let A C Gy be a reqular surface, i.e. with

A={xeGy CR": a(x) =0},

where a : Go — R is a function in C', and such that a(x) € R is the normal in the point x to A (clearly
a(x) || Va(x)). We say that A is a semipermeable surface if

. _ _ . ‘ o
Jnin max a(x) - g(x,up, up) = max min a(x) - g(x,uy, ;)

The property of the barrier is the following:

Proposition 4.2. Let us assume that, for the game ({.117)), the Isaacs’ condition is satisfied, g is a
continuous function with continuous derivative with respect to x, and the barrier By, is non empty and
smooth. Then the barrier is a semipermeable surface, i.e. for every x € B, we have
min max p(x)-g(x,u;,uz) = max min p(x)-g(x,u;,uz) =0. 4.118
U1€U1UQEU2p( ) g( » U1, 2) u2€U2u1€U1p( ) g( » U1, 2) ( )
Proof. Let us consider xg € By,; let 5 be the value of the previous max —min (equal to the min — max) in
such point xy: we have to prove that g = 0.
Let us assume that 8 < 0, i.e.

1}?2[)](2 urlllelgl p(xo) ' g(XO,ul,HQ) — B :

this implies that for every point uy € Us there exists a point uj? € U; such that
P(xo0) - g(x0,u;”, up) < B. (4.119)

Now, for every point x € Cgp, let us denote by u¥ the strategy of (P) such that for every acts of (E) the
trajectory can be steered from x into int(7p).
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In the point xg € Bqy,. If for every point ug € Uy there exists a point u}? € Uy such that ({.119) holds, for
every choice-strategy of the second Player (E) then the first Player (P) have a control-strategy to “force”
the trajectory X from By, into Cqp following (locally) the direction x(0) = g(X0(0), uj'?, us).

For every strategy us of the second Player (E), i.e. a decision rule vy = vo(x) : R* — Us, let us
consider the strategy uj? for the first Player (P) defined by the decision rule v]? = v{?(x) : R* — U; with
vi?(x) = u'f(xo), for every x. Let ¢ = e(uz2) > 0 be such that there exists the unique solution x of the ODE

{ x(t) = g(X(t), vi* (X(t)), v2(X(1))) in [0,¢)

Xo0

Let us notice that g in continuous with continuous derivative with respect to x (we are not interested to
discuss the details in order to guarantee that such local solution x there exists). Relation (£II9]) implies
X(€) € Cyp, for every strategy us of the second Player (E). Now the first Player (P) consider the strategy
ﬁ’f(e) which transfers the point X(e) into int(7p): this implies that xg € C,), which contradicts the smoothness
assumption on the barrier. Hence 5 cannot be negative. A similar proof shows that £ cannot be positive. 0

The fact that B, gives the property that without (P)’s cooperation, (E) cannot make the state cross
B, passing from a region where V' = —1 to a region where V' = 1; and viceversa, without (F)’s cooperation,
(P) cannot make the state cross B, passing from a region where V' = +1 to a region where V' = —1.
However we have to remark that the semipermeability condition in (AII8]) does not exclude a “tangential”
penetration.

Let us emphasize that relation (£I18]) does not imply that, for every fixed x € B,,., there exists a pair
(uj,u3) € Uy x Uy, with uj and uj that depend on x, such that realizes the min-max in (£II8]). The
following notion is a further requirement on the barrier:

Definition 4.13. Let us consider the game (4.117)) and let us assume that the Isaacs’ condition is satisfied.
We say that a function (vi,v5) : Bar — Uy x Uy is a barrier control for Bay if for every x € By we have
that

0, Yus € Uy, (4.120)
0, Yu, € U;. (4.121)

Let us notice that the barrier control, in general, is not unique. The following remark shows the role of the
barrier contro

Remark 4.7. (v],v3) is a barrier control for Bay if and only if, for every x € By, the pair (v3(x),v5(x))
realizes the min-max in ([{.118), i.e.

-g(x,vi(x), v} = mi a - g(x,u1,uz) = ma i -g(x,uy,u3) = 0. 4.122
pP(x) - g(x,vi(x),v5(x)) JPé&&ff;P(x) g(x,uy, uy) J?eéiuf?é&p(x) g(x,uy, uy) ( )

Proof. Let (v7,v3) be a barrier control for B, and fix x € Bg,. Clearly (4120]) implies
P(x) - 9(x,v1(x),v5(x)) <0

while (£121)) implies
P(x) - g(x,v1(x),v5(x)) > 0.

Hence p(x) - g(x,v7(x),v5(x)) = 0 and, using (4I18)), we have that (v7(x),v3(x)) realizes the min-max in
(@118).

"Let us notice that, due to Remark 7] it is possible to use @IZ2) to give a different, but equivalent, definition of barrier
control: in fact, in the literature appears that, a function (vi,v3) : Bsr — Ui x Uz is a barrier control for B, if for every
X € B, we have that (£122) holds.
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Now let us suppose that, for x € B, fixed, the pair (v](x),v}(x)) realizes the min-max in (LII8]).
Moreover, let us suppose that (£120)) is false, i.e. there exists Ty € Us such that

p(X) : g(x, V){(X)aﬁZ) > 0.
Since v (x) realizes the min, we obtain
0 < p(X) ’ Q(X, V){(X)aﬁQ)
< max p( ) g(X,U){(X),UQ)

ux€U>

= nin max P(x) - g(x, u, us)

which contradicts (AII8]). This gives that (£I120) is true. A similar proof gives (ZI2T]). 0

Let (v7,v3%) be a barrier control for B,, (sufficiently regular), let us consider a point xo € B, and the
curve x : [0, t9] — R", for some ¢y > 0, defined by

{'(t)zg( x(t), vi(x(t)), v5(x(t))) in [0, o] (4.123)

Since (v}, v3) is a barrier control and using the previous ODE we have

0 =p(x(t)) - g(x(t), v1(x(1)),v5(x(t))) = p(x(t)) - X(t),

i.e. the curve x lies on the semipermeable surface B, and does not leave it. Let us show how it is possible
to use this idea in order to construct the barrier: such construction is “formal”, i.e. we are not interested
to give the precise assumptions that the following arguments require.

Let x be a point in B,,. By (£I122]) we have

P(x) - 9(x,¥1(x),v5(x)) = 0. (4.124)
Set p(x) = (p1(x),...,pn(x)), uy = ('Uzl,l,- .. 7ul,k1) elU; C RF and Uy = (Ug,l,. .. ,Ugka) e U C RF2. If
we consider the derivative w.r.t. z; of (£I24]), we obtain

n

0 = ggz (x)gi(x,v](x),v5(x)) + Zpi(x)%(x, vi(x), vi(x)) +
= i=1 J

+i2:; [pz Z aulk vi(x), V;(x))a_x;(x)} n

- ; vy
3 i 3 2 (.73, 3 0) .2 )] (4.125)
=1

u
P OQua i,

Since B, is a C? surface, by Schwarz and (@I17) we have

opi , . 0% 0% Opj
(97]' x) = 0z ;0x; (x) = 0r;0x; (x) = 8:1:1( x)- (4.126)
Let us notice that the third addend in (4125 is
k1 * k1 n *
agl >x< * ayl,k _ 892 * * ayl,k
> [pitx 003 gy AN ZE@] = 3 [sz(x@u—w(x,ul(x),ug(x))} Bk

=1
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since v7(x) realizes the min in (AII8), i.e. the min for the function u; — ¢(u;) = p(x) - g(x, uy, vi(x))
(recall that x is fixed), then Vp(vi(x)) = 0 and we have that
0

Dur (P(0) - 9,10 w5(x)) =0,V

1,... k.

Hence the third addend in (£I25]) is zero; a similar argument proves that the fourth addend in ({I25) is
zero. Equation (£125]) becomes, using (4.126])

B2, =2 (x)gi (x, ] (x )+ sz (x, 1(x), v3(x)) = 0. (4.127)
=1

Now, let us move x along the barrier By, i.e. x = x(t) € Bg, as in ([L123]). Relation (£I127) becomes, using
the ODE in (€123),

0 = Zgii (x(8), wi(x(2)), v +sz 3;; x(t), v} (x(1)), V5 (x(1)))

pj(x(t)) + %(X(t),VT(X(t))» v, (x(1)), p(x(1)))

since for our game the Hamiltonian is as in (£I15)). Hence we have that the curve x = x(t) € B,, satisfies

P(x(t) = —VxH (x(t),v1(x(t)), v3(x(t)), p(x(1)))- (4.128)

Now let us consider in (£123)) x¢o € BUP: the assumption that B,, is natural, gives that the curve x = x(#)
“starts” in xg, i.e. x(0) = x¢. Recalling that BUP = UP N B, we have that xg € B, gives, see (L1138,

mln max p(x g{Xp, U1, u2) = max m1n pP\X g{Xp,u1,u2) = 0
u; €U uz€lsz ( 0) ( 0 ’ ) uz €Uz u1 €U ( 0) ( 0 ’ ) ’
while xg € UP gives, by definition,

. pr— 1 . <0
Jnin max n(xo) - 9(xo, up, uz) = max min n(xo) - g(xo, s, u2)

If the previous inequality is strictly, xg is a state of termination; this contradicts xg € B,,. The regularity
of 07y and B, gives the condition

p(x0) = n(xp). (4.129)
Collecting the previous arguments in (£I123]), (£128) and (£I29]), in order to construct the barrier we
have the following;

Proposition 4.3. Let us consider the game and let us assume that the Isaacs’ condition is satisfied
The barrier By, is described by the function x = x(t) which solves the system

1')( ) = —VxH(x,vi(x),v3(x), p(x))
g9(x,v1(x), v5(x))
p(X) g9(x,vi(x),v5(x)) =0
p(x(0)) = n(x(0))
x(0) = x € BUP

N

(4.130)

where (V7,V5) is a control barrier, p(x) € R" is the outward normal of Cop in the point x € By, as in
4117
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4.5.1 Interception of a straight flying evader

When can an interceptor be successful against a faster attacking craft which travels a fixed straight course?
This model is in the book of Isaacs (see section 8.6 in [10]).

Here P moves in the plane with a motion and unit speed, while E is bound to a line moves with speed
w (w > 0 fixed), and merely can select for his strategy one of the two possible directions of travel. Capture
occurs when |PE| < I, where | > 0 fixed. In view of P’s unquestioned ability to capture when w < 1, this
case is trivial (please, solve it !). Our interest is in the conditions which make possible the success of a slower
pursuer with w > 1.

Let us pass to the details. The Pursuer P is free to move itself in the half-plane y > 0: the velocity is
7 (t) with modulo v = 1, the angle of the velocity w.r.t. the y-axis is ¢». The Evader E, constrained on the
z-axis, can only controls the direction ¢ € {£1} of the velocity is @ (t), with modulo w > 1 fixed.

,’_--N‘
7 R
e N
/ \
4 \\
L4 P \
(€ 3 N |
\ A d
’
\ (f/\\’
/
\\ y
\\ — de - d
e
\ | ==
N v
< w
The dynamics is
T = wp — siny
Y = — cos 1

and the target set 7 = [0,00) X Ty is such that

To={(z.y) €Go:y >0, Va2 +y2 <I}.

The boundary of 7T is smooth and

0Ty = {X =[(sina,cosa) : a € [_g, g]}

the outward normal of 7y in x € 97 is n(x) = (sinq, cos @). The game hence is

—1 if 3¢>0 st |[(z(8), y@)]2 <1
J = ’
(¥0) { +1 otherwise

( Pursuer: min J (1, @), Evader: max J(i, @)
¥ pe{-1+1}

T =wp —siny
Yy = —cosy
\ ((0),y(0)) = (z0,%0), Yo >0

We are in a pursuit-evasion game as in (£114).

The game set is G = [0,00) X Gp. In order to describe Go, let us fix (zg,yo) € R x RT: it is easy to see
that, first, choosing in the dynamics ¢ = 0, for every ¢, we move (zg,yo) to the point (z,0), for some z1;
secondly, choosing » = +7/2 and ¢ = +1 depending on sgn(z1), the dynamics moves the point (z1,0) to
the origin (0,0) € int(7y). Hence

Go = {(z,y) € R* : y > 0}.
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The Hamiltonian is H(z,y, ¥, v, A1, A2) = A1(we — siny) — A9 costp and it is easy to verify that the Isaacs’
condition is satisfied. Let us looking for the usable part UP, i.e.

UP ={x =I(sina,cosa) € ITp: min max n(x)-g(x,9¥,p) <0};
v pe{-1,+1}

hence we have to find o € [ — 7, 5] such that, since w is positive,

min(—sinasiny — cosacos)) +w max @sina < 0.
(U pe{—1,+1}

This is equivalent to —1 + w|sina| < 0. Hence, recalling that w > 1,
. ) 1
UP = {x =[(sina,cos) : |sina| < —} .
w
The boundary of the usable part is
1
BUP = {x =l(sine,cosa) : |sina| = —} = {x§ :=I(sina’,cosat), x, :=I(sina ,cosa )},
w

where —7/2 < a~ < 0 < ot < 7/2 such that |sina™| =
Let us construct the barrier B,,, i.e. the curve x(t) = (z(t), y(¢)) which is solution of the system (4.130),
i.e.

( 0
pl(Iay) = _B—Z(xvyadj*(xay)a@*(xay)apl(Iay)azh(Iay)) =0

Pa(,y) = —%—Z’(x,y,w*(x,w,so*(x,y>,p1(x,y),p2(x,y>> ~0

z,y) — sinyp*(z,y) (4.131)
Y (z,y)
p1(z,y) (we* (z,y) —smz/)*( y)) — p2(z,y) cos *(z,y) =0

0

z,y)) is the outward normal of C,y in x = (z,y) € B, and denoting by

recalling that p(x) = (p1(z,y), p2
), ©*(z,y)) the control barrier who realizes the following min — max

(¥1(x),v5(x)) = (4" (z,y

min max p(z,y) - g(z,y,%, p) = min (=p1(z,y) siny) — pa(z,y) cosP) +w  max pi(z,y)e,
¥ pe{-1,+1} Y pe{-1,+1}

- (cosp* (z,9),sin " (2,9)) = (2(e9)pr(2,9))s 0 (,9) = sgn(pr (). (4.132)

Let us consider x§ € BUP. The first two equations of the system (ZI31I) give that p(z,y) is a constant;
hence the barrier is part of lines. Since By, starts from the point x(J{ and it is tangent to 07y in such point
(see the sixth condition in the (4£I31])), we have that the equation of the barrier is

x(t) = (z(t),y(t)) = th(—cosa™,sina™) +I(sinat,cosa™); (4.133)

for some non zero constant k. Now, by noticing that By, divides the escape states £, to the capture states
Cup and that UP \ BUP is inside Cyp, in (£I33]) we have only to consider ¢ > 0 and & > 0.
The outward normal of Cqy, along B, in the point x(t) = (z(t), y(¢)) in (ZI33) i

p(x(t)) = (p1(x(t), (1)), p2(=(t), y(t))) = (sina™, cos a™) : (4.134)

hence in (£I32]) we obtain
P(zy)=a’,  @i(zy) =1L (4.135)

8Note that, by @EI33), x(t) = k(—cosa™,sina™) and by [@I34) we have %(t) L p(x(t)).
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Let us verify that the third, the fourth and the fifth equations in (£I31]) are satisfied: using (Z133))—(Z134)

we obtain that the mentioned relations in (£.I3T])

~kcosat =wl —sina™

Esinat = —cosa™

sina®(wl —sina™) — cosat cosat =
are true, choosing k = —cotana*.

A similar argument holds for x; . Hence we obtain:

RU

0




Appendix A

Optimal control tools

Let us consider the problem

( t1
Ju)= [ f(t,x,u)dt +p(x(t))
to
x = g(t, %, u)
X(to) = (Al)
max J(u),
uecC
[ C = {u:[to,t1] = U CR¥, u admissible}

where ¢ty and t; are fixed.

A.1 Variational approach
We define the Hamiltonian function H : [tg,t;] x R” x RF x R" — R for the problem (AI) by
H(t,x,u,}\) = f(t,x,u) +A- g(t,x,u).

The following result is fundamental:

Theorem A.1 (Pontryagin). Let us consider the problem (A1) with f € C'([to,t1] x R***) and g €
Cl([tg,tl] X Rn+k).

Let u* be an optimal control and x* be the associated trajectory.

Then there exists a continuous multiplier X* : [to,t1] = R™ such that

i) (Pontryagin Maximum Principle) for all T € [ty,t1] we have

u*(7) € arg maa_( H(r,x*(1),v, Ay, X*(7));
ve

ii) (adjoint equation) in [to, t,] we have X* = —Vy H (£, x*, u*, A*);
ii1) (transversality condition) X*(t1) = Vxtp(x(t1));
A first sufficient condition is the following

Theorem A.2 (Mangasarian). Let us consider the mazimum problem (A1) with f € C' and g € CL.
Let the control set U be conver. Let u* be a normal extremal control, x* the associated trajectory and
A* = (A, ..., \}) the associated multiplier (as in theorem [A]).

Consider the Hamiltonian function H and let us suppose that

v) the function (x,u) — H(t,x,u, X*(t)) is, for every t € [to, 1], concave.
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Then u* is optimal.
Another and useful sufficient condition is due to Arrow.

Theorem A.3 (Arrow). Let us consider the mazimum problem (A1) with f € C' and g € C'. Let u* be a
normal extremal control, x* be the associated trajectory and X* be the associated multiplier.
Let us suppose that exists the mazimized Hamiltonian function HO : [tg,t;] x R* x R" — R by

HO(t,x,\) = ax H(t,x,u, ), (A.2)

where H(t,x,u,A) = f(t,x,u) + X - g(t,x,u) is the Hamiltonian.  Let us suppose that, for every t €
[to, t1] x R™, the function
x — HO(t,x, \*(t))

is concave. Then u* is optimal.

A.1.1 Infinite horizon problems

Let us consider the problem:

¢ o¢]

t dt
max | f(t,x,u)

x = g(t,x,u)

X(to) =« . . (A3)
tlim x;i(t) = Bi, for1<i<n

—00

lim z;(t) free forn' <i<n

t—00

(C = {u: [ty,00) = U C R¥, u admissible}

where a and 8 = (B4, ..., 3,) are fixed in R”. We give a sufficient condition in the spirit of the theorem of
Mangasarian:

Theorem A.4. Let us consider the infinite horizon mazimum problem (A3) with f € C' and g € C'.
Let the control set U be convex. Let u* be a normal extremal control, x* the associated trajectory and
A* = (A,...,A}) the associated multiplier, i.e. the tern (x*,u*,X*) satisfies the PMP and the adjoint
equation.

Suppose that

v) the function (x,u) — H(t,x,u, X*) is, for every t € [ty,00), concave,

vi) for all admissible trajectory x,

lim A*(t) - (x(t) — x*(t)) > 0. (A.4)

t—00
Then u* is optimal.

Remark A.1. Suppose that in the problem (A.3) we have only a condition of the type limy_, z;(t) = B;.
Suppose that there exists a constant ¢ such that

NOl<e  Visr (A5)
for some T, then the transversality condition in ([A-7)) holds.

In many problems of economic interest, future values of income and of expenses are discounted: if 7 > 0
is the discount rate, we have the problem

J(u) = /too e " f(t,x,u)dt
% = g(t.x,u) A6
X(t[)) = ( )

el
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Let us define the current Hamiltonian H€ as
Hc(tvxa u, )‘C) = f(taxa 'I.l) + AC . g(t,x, 11),
where A, is the current multiplier. Clearly we obtain

HC=¢"'H (A.7)
Af ="

A necessary condition for the problem (AL6) is
Remark A.2.

u* € arg I‘Irlea,[}(Hc(t,X*,V, A7)
Ao =rXS — Vo HO(t, x*, u*, \¥)

In order to use a necessary condition of optimality as in Theorem [A4] we note that (A7) implies that
the concavity of
(x,u) — H(t,x,u, \*(t)), Vit

is equivalent to the concavity
(x,u) = H(t,x,u, AL(t)), Vi

A.2 Dynamic Programming

Let us consider the problem for the problem (A.Il); we define the Hamiltonian of Dynamic Programming
Hpp : [to, t1] X R?® — (=00, +00] defined by

Hpp(t,%,8) = max(f(t,%,v) + A - g(t,x.v)) (A.8)

We have the following necessary condition

Theorem A.5. Let us consider the problem (A1) and let us suppose that for every (1,€) € [to,t1] x R"
there exists the optimal control u*,¢ for the problem with initial data x(7) = §. Let V be the value function
for the problem (A1) and let V be differentiable. Then, for every (t,x) € [to,t1] X R™, we have

ov
{ E(tvx) + HDP(t7X7 VXV(t,X)) =0 fOT (t,X) € [tovtl] x R* (Ag)
V(t1,x) = 9(x) forx e R”

We give a sufficient condition for a more general problem: let us consider the problem

( T
J(u) = t f(t,x,u)dt + (T, x(T))
x =g(t,x,u
x(tg)g(: o ) (A.10)
(T,x(T)) e S

max J(u
Pond (u),

with a control set U C R¥, with the target set S C (g, 00) x R™. Let us consider the reachable set for the
target set S defined by

R(S) ={(r,8) : Cre # 0},

i.e. as the set of the points (7,&) from which it is possible to reach the terminal target set S with some
trajectory.
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Theorem A.6. Let us consider the problem (A10) with S closed. Let W : [to,t1] x R" — R be a C* solution
of the BHJ equation

ow
W(t,x) + I‘Irlezag(f(t,x,v) + VW (t, x) -g(t,x,v)) =0,

for every (t,x) in the interior of the reachable set R(S). Suppose that the final condition
W (t,x) = (t,x), V(t,x) € S (A.11)

holds. Let (ty, &) be in the interior of R(S) and let u* : [to, T*] — U be a control in Cy, o with corresponding
trajectory x* such that

ow

¢ (X (@) + (X7 (1), u™(2)) + VW (2, x7(2)) - g(£,x7 (1), w* (1)) = 0,

for every € [to, T*]. Then u* is the optimal control with exit time T*.

e Multiplier as shadow price

Theorem A.7. Let xj, o be the optimal trajectory, Aj, o be the optimal multiplier and let V' be the value
function for the problem [A 1 with initial data x(ty) = a. If V is differentiable, then

ViV (1t %,0 () = Agy a(b), (A.12)

for every t € [to, t1].
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