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Introduction

A simple statistical model 1s an efficient and concise

representation of the data describing an empirical phenomenon
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Introduction

The statistical model and 1ts representation 1s aimed at:

Histogram
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® Efficient and Concise Description
® Prediction of future 15

® Generalization to a population
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That is: understanding of main
trends in data
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GLM

® The majority of the statistical technique that we use belong to
one single general model

General Linear Model

yi=a+ byxt by xyt L boxte,

B o

Dependent variable

Independent variables Errors




GLM Example

The aim of regression analysis 1s to fit the data using a

function

10.00-
For most applications, we just
need a linear function: straight
line

8.00-

6.00-

y;i=a+bxte,

smiles

4.00-

y,=a+t b'xi

.00-




GLM

pl‘OS
® [t allows to estimate the effects of one or several [Vs on a DV
® [t can be applied in many different research problems

® It allows to estimate many different types of effects
cons

@ It assumes data have a very simple structure

@® It applies on a limited amount of dependent variables (continuous or

semi-continuous DV)



GLM Assumptions

y;i=ate,

a0 -

1) The exist one and only one
value of each parameter (e.g.
the mean) in the population

™

2) Any observed deviation
from the population value is
deemed to be error

N | 7




GLM Assumptions

yi:a-l- ei

3
2

Errors are independ.

related to each other

S~

ent (not

)
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GLM Assumptions

The estimated value 1s a fixed
parameter

y [ =at ei - / Ejgfﬁlel;a::(riiations are
corr (el-,ej) =0




GLM Assumptions

The estimated value 1s a fixed
parameter

y [ =at ei - / Ejgfﬁlel;a::(riiations are
corr (el-,ej) =0




GLM

When the assumptions are NOT met because the data, and thus

the errors have more complex structures, we generalize the GLM

to the Linear Mixed Model




GLM

Regression
T-test
ANOVA
ANCOVA
Moderation
Mediation

Path Analysis

Linear Mixed Model

)

LMM

Random coefficients models
Random intercept regression models
One-way ANOVA with random effects
One-way ANCOVA with random effects
Intercepts-and-slopes-as-outcomes models

Multi-level models




Software

SPSS

jamov

B Stots.

Open.
Moy,

o




Jamovi
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Example “beers”

Let's consider the case where the beer-smile research was conducted by

gathering data in several different bars

For each participant

we measured # of

beers and # of smiles

bar
Curmulative
Frecuency FPercent Walid Percent Fercent
Walid a E 1.2 1.2 1.2
u] 14 &0 &0 7.2
C 22 9.4 9.4 167
d 21 9.0 9.0 25.6
2 14 &0 &0 216
T 20 B8.5 8.5 40,2
ad 24 10.2 10.2 S04
h 12 5.1 5.1 556
i 16 .8 6.8 B2,
I 22 9.4 9.4 718
I 21 9.0 .0 808
M 15 &4 &4 BY.2
0 1l .8 .8 940
u] 11 4.7 4.7 Q8.7
(B S 1.2 1.2 1000
Total 224 1000 1000

For a total of 234 participants




Example “beers” 2

As compared with the example with a few participants, now we have a

very different scatterplot
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Example “beers” 2

A simple regression confirms that results are indeed different

15.00-
10.00-
s
£
n
Coefficients?
Standardized .
Unstandardized Coefficients i_oefficients o
Mol B St Errar Beta t 5ig. *
1 {Canstant) 9.303 227 28.440 Qa0 : | :
heer -.432 D8E -313 | -%.0l14 Qa0 4.00 6.00 8.00

Negative effect

a. Dependant Yariable: smils ‘V\ beer




Why

Results may be biased by a mis-specification of the
model, where the structure of the data 1s not taken into
account

® |n fact:

* Subjects are sampled in clusters specified by bars

* Each bar may have specific characteristics (quality,

entertainment, etc) that may affect the measured variables

* Subjects within the same bar may be more similar than

across bars



Scatterplot by Bar

Let's see the data broken down by bar

Bar
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Scatterplot by Bar

Let's see the data only for bar “f” and “0”
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Scatterplot by Bar

It seems that the relations between IV and DV is positive, but within each

bar 15.00—

Bar

10.00—

smile

5.007

.00




Scatterplot by Bar

Bar
15.00=— a

Intercepts seem to
be different from
bar to bar

10.00—

smile

5.007

.00




Scatterplot per Bar

15.00—

10.00—

smile

5.007

Slopes are all
positive

e AL Bar

Slopes seem to
vary across bars

.00




The Model

® [t seems that considering the participants as all equivalent and
independent one each other (GLM assumption) does not fit our
data

® [t seems that a better model should allow each bar (each
cluster) to have a different regression line (a different intercept
and b coefficient)



The Model

® [ ct's define a model with a regression line for each cluster

ylj Smiles of subject i in the cluster j

yia:aa-l- ba.xia
Vp=ayt by x,
yic:ac-l- bc.xic

yi=a+ b].-xl.j

K

In these regressions the

not Fixed

.

coefficients may vary from
cluster to cluster: they are

\

7




Varying coefficients

® [f coefficients may vary, they will have a distribution

1.20-

. ™

A possible distribution of
coefficients b estimated for
different clusters

. 7

B coeficient

L00=




Random coetficients

® Varying coefficients are called random coefficients

- ™

Coefficients will exhibit
variability e

N

That is: in the population
there exist different
coefficients, a sample of
which we estimated using

Qe clustered data / oo~

1.20-

80—

By

ﬂéﬁci¥

.40

.20




Average of the coefficients

® [f coefficients vary as a variable in the population, they will
have a mean and a variance, that we can estimate in our data

.
.
B coeficient




Fixed coefficients

® [f coefficients vary as a variable in the population, they will
have a mean and a variance, that we can estimate in our data

1.20-
Mean

1.00+

Lh g
b= k

g

B coeficient

.40

.20

Recall the mean is a fixed
parameter for a pe
distribution, and so is the
mean of the coefficients:

&s a fixed effect /




The Model

® We can now define a model with a regression for each cluster
and the mean values of coefficients

One regression per cluster y l] — /! ]+ b ] X l]

Each coefficient is defined b |/ b b
as the deviation from the ] — ] o

mean coefficient

Overall model

A _ / PR
V=t by bex,



The Model

® We can now define a model with a regression for each cluster
and the mean value of coefficients

Overall model

= /b’ ”+<""

Random coefficients Fixed coefficient




The mixed model

® The same goes for the intercepts

A
One regression per cluster y l] — Cl ]+ b ] ’ X l]
Intercepts as deviations from Q ’ =4 .— C_l
the average intercept ] ]

Overall model

A = / . I
y,=ata j+bxi].+b SX



The mixed model

® We can now define a model with a regression for each cluster
and the mean values of coefficients

Overall model

A= / . I
y;=ata j+bxl.].+b SX;

Random coefficients Fixed coefficients

A GLM which contains both fixed and
random effects is called a
Linear Mixed Model



The mixed model

® [nterpretation

A= / . I
y;=a+a j+bxl.].+b X

T

The DV score (smiles) for

j

participant 1 in the cluster (bars) j
is a function of ...




The mixed model

Interpretation: y 1j 1s a function of...

A= r I
y;=a+a j+bxl.j+b S X

The average of the expected
value for x=0, across clusters

That is: For x=0, how big is y on
average




The mixed model

Interpretation: y 1j 1s a function of...

AN — / /
y,=ata'+ b xl.].+b S X

cach cluster (bar) as a deviation from

Each expected value of y for x=0, in
the overall intercept

subtract to the average intercept

For x=0, how much to add or
for that particular cluster




The mixed model

Interpretation: y 1j 1s a function of...

N = ' o h. I
y=ata j+bxl.j+b oX;

/‘ j

The average effect of x on vy,

averaged across clusters

in the DV for a unit change in

On average, the expected change
the IV




The mixed model

Interpretation: y 1j 1s a function of...

N — / /
y;=a+a j+bxl.j+b X

/

The deviation from the average

j

effect of x for cluster j

increases (or decreases) in that

How much the effect of x
particular cluster




GLM as a special case

It 1s clear that everything we know for the GLM applies here: the

GLM is in fact a special case of the LMM, where there are not random

effects

AN = / /
LMM y,=ata'# b xl.j+b X

j

aw | V;=atbx,




For clarity, 1t's better to use the following notation

y;=ata+bx+b xte,

y 17 ) x 7 Scores for case i in cluster j
I i

a y b Fixed effects

a b Effetti random as deviation from their
] ) ] mean
e X Error associated to the case i

J



Variance

For clarity, 1t's better to use the following notation

y=ata+ b-xl.j+ bj-xl.].+ 2

O a Coefficients a variance
O b Coefficients b variance
G Error variance (residual)

O q b Covariance between a and b coefficients




The mixed model

® [n practice, mixed models allow to estimate the kind of effects
we can estimate with the GLM, but they allow the effects to vary
across clusters.

® Effects that vary across clusters are called random effects

® Effects that do not vary (the ones that are the same across
clusters) are said to be fixed effects



The mixed model

® To specify a correct model, we only need to understand if there
are clusters of cases (measures or subjects) and decide which
coefficients (intercepts or b coefficients) may vary across those
clusters

® The fixed effects of the model are interpreted like in the GLM
(regression/ANOVA)

® Random effects are generally not interpreted, but we can look
at their variance to decide to keep them as random (variance>0)
or fix them.

® |n this way we take into the account the dependence among
data



Building a model

To build a model 1n a simple way, we need to answer very few

questions:

® What 1s (are) the cluster variable(s)?
® What are the fixed effects?

® What are the random effects?



A clustering variable

® What is (are) the cluster variable(s)?

* Any variable that groups observations (cases or
measurements) such that scores may be more similar within
each group than across groups

* Any variable whose levels (groups) are a sample of a larger
population of levels (groups)

* Example: bars created groups of scores (participants) that
may be more similar within the bar that across bars



Fixed effects

® What are the fixed effects?

* Any effect that we are interested 1n on average (as in a
standard ANOV A/Regression)

* Example: the effect of beer on smiles in general



Fixed effects

® What are the random effects?

* Any effect that may vary from cluster to cluster
* (Thus:) Any effect that can be computed within each cluster

*Example: the intercepts and the effect of beer on smiles each
bar



Beers at the bar

We start with a simple model

Bar
15.00 d
Intercepts may
vary across bars
0700
=
=
L1y}
5.00

.00




Beers at the bar

We define a model where each cluster is allow to have a different

intercept, the rest of the model 1s like a standard regression

=a+a.+b-x.te.
y lJ J i i
® Fixed effects? Intercept and beer effect
® Random effects? Intercepts

® Clusters? bar

Authors and books may call this model.:
Random-intercepts regression
or
Intercepts-as-outcomes model



SPSS Input

Analyze — Mixed Models — Linear

Eile Edit View Data Transforrn Analyze Graphs LUtilities Extensions Window Help

£5 i b= 5 Reports » /_\"1“‘;“ EE 4] A
j — H ['E"] E Descriptive Statistics 3 E = E A \@ ‘ v%
1:case 11.00 Tables . \Visible: 4 of 4 Variables
| &case | Compare Means » | #beer | var | var
1 100 a General Linear Model 3 52 ﬂ
Generalized Linear Models 3
= 217
2 1.00a Mixed Models ' | ELinear...
3 1.00a Correlate ’ [ Qer‘%ralized Linear...
4 1.00b Regression » Z.Ul
5 1.00b =i ' 1.69
MNeural Networks 3
3 1.00b Classify . 1.03
7 100 b Dimension Reduction 3 3 26
8 1.00b | Scae b 2.43 i
9 100 b Nonparametric Tests 3 1 48
Forecasting 3
10 1.00b Survival R 2.10
11 1.00b Multiple Response » .33
12 1.00b B2 Missing Value Analysis... 2 .55
Multiple Imputation »
13 1.00b Complex Samples 3 2.87
14 100b %Sirr‘ulation... 225
15 100 b Qu ality Control 3 52
12 [ 1 AN~ EROC Qurve... 2 70 IFIE
Spatial and Temporal Modeling... »

lData View“Variable \.ﬁew|

|Linear... [IBM SPSS Statistics Processor is ready| | |Unicode:ON| | | |




SPSS Input

Analyze — Mixed Models — Linear

Linear Mixed Models: Specify Subjects and Repeated

Click Continue for models with uncorrelated terms.
Specify Subject variable for models with correlated random effects.

Specify both Repeated and Subject wariables for models with correlated
residu als within the random effects.

Subjects:
&5 case &4 bar
& smile
& beer t&
//
Repeated:

Cluster variable

Repeated Covariance Type:

[Cuntime” Beset H Cancel H Help ]




SPSS Input

Analyze — Mixed Models — Linear Then select Fixed

Linear Mixed Models

Dependent Variable: [ — |
&) case | & smile | —

[ Random...

da bar Factor(s): : _J
Estimation... |
-» [ Statistics. .. |

. , EM Means... |
Covariate(s):
& beer | [ Save.. |

Residual Weight:
= | |

| 8] 4 | Paste || Reset || Cancel HE|E

N




SPSS Input

Analyze — Mixed Models — Linear

Linear Mixed Models: Fixed EFfects

rFixed Effects
@ Build terms Build nested terms
Factors and Covariates: Model:
|+ beer beer
Factorial > | [}
+ E W Clear Termr Add Bemove
Sum of squares: |[Type ll =

¥ Include intercept
[antimen Cancel ” Help ]




SPSS Input

Analyze — Mixed Models — Linear

hen select Random

Linear Mixed Models

Dependent Variable:;
&, case € | | & smile |

da bar Factor(s):

Fixed... |

Random... ]

Statistics. .. ]
EM Means... ]

Save. ., ]

Covariate(s):

& beer |

Residual Weight:
= | |

| 8] 4 | Paste || Reset || Cancel Help

[
[
[Estimatiun. . ]
[
[
[

N




SPSS Input

Analyze — Mixed Models — Linear

Linear Mixed Models: Random Effects Random Intercept

rRandom Effect 1 of 1

f14]
=
(1]
[
—t

Cowvariance Type: Variance Components -4 ‘
Random Effects ;
@ Build terms Build nested terms [ Include intercept
Factors and Covariates: Model:
|+ beer
Factorial = [}

I
L)
]
Ll
|
[17]
I
I
[17]
[1°]

Subject Groupings
Subjects: Combinations:

& bar \&a bar

[antime” Cancel H Help ]




SPSS Input

Analyze — Mixed Models — Linear

Linear Mixed Models: Statistics X

- Summary Statistics
[7] Descriptive statistics
[[] Case Processing Summary

- Model Statistics
méEarameter estimates

[7] Tests for covariance parameters

[] Correlations of parame[:?r estimates
[7] Covariances of parameter estimates
[ Covariances of random effects

[ Covariances of residu als

[ Contrast coefficient matrix

Confidence interval: |95 %%

[antime” Cancel H Help ]

Print coefficients




SPSS syntax

y,=ata+ b-xl.].+ ¢,

LI MIXED smile WITH beer by bar

[CRITERIA=CIN(95) MXTER(100) MXSTEP(10) SCORING(1) SINGULAR(D.000000000001) HCONVERGE(D,
) LCONVERGE(D, ) PCONVERGE(0,000001, )

[FIXED =beer| 55TYPE(3) - |

IMETHOD =REML

M| /print solution TESTCOY

“ (] [random intercept | SUBJECT(bar) COVTYPE(un).

Fixed effects (intercept is
included by default)

Random effects Cluster variable




SPSS Output

Let's see if the model 1s how intended

Model Dimension®

Mumber of Cowariance Mumber of Subject
Lewels structure Parameters Yariables
Fixed Effects Intercept 1 1
3 beer 1 1
Fandom Effects  Intercept 1 | ldentity 1 | bar
Fesidual 1
Total 3 4

a. Dependent Yariahle: smile:

OK!




SPSS Output

We then check the variability of the random effects. If there 1s
variability across bars, it means we were right to model the coefficients
as random
Covariance Parameters

Estimates of Covariance Parameters?

L% Confidence [nterval
Pararneter Estimate std. Error ald £ 5i. Lower Bound | Upper Bound
Fesidual 1.284725 122256 | 10,423 000 1.064501 1550509
I&E]rn:ept [subject = Yariance | £.531614 | 2.584158 2528 011 2007824 14 183668

a. Dependent Wariable: smile.

Variance greater than 0




SPSS Output

If everything 1s fine, we interpret the fixed effects as in any other GLM

(regression)
Estimates of Fixed Effects?
95% Conficlence Interyval
Parameter | Estimate | 5td. Error dif 1 Sin. Lower Bound | Upper Bound
Intercept | 5.551071 | 724180 | 18285 7.665 000 4.031354 7070783
heer BIBT04 | 077680 | 227.901 8221 000 485621 F917E7

a. Dependent Yariahle: smile.

Intercept: On average, for zero
beers we expect 5.5 smiles




SPSS Output

If everything is fine, we interpret the fixed effects as in any other GLM

(regression)
Estimates of Fixed Effects?
95% Conficlence Interyval
Parameter | Estimate | 5td. Error dif 1 Sin. Lower Bound | Upper Bound
Intercept | 5.551071 | 724180 | 18285 7.665 000 4.031354 7070783
heer BIBT04 | 077680 | 227.901 8221 000 485621 F917E7

a. Dependent Yariahle: smile.

B coefficient: On average,for each
beer more, we expect
.638 more smiles




R syntax

y;=ata+ b-xl.j+ 2

(% random_beers.R* Load the required libraries

] [ ] SourceonSave < / -
setwd(" /home /marcello/Ski
library(lmed)
library(lmerTest)
library(foreign)
dat<-read.spss( 'datafregression_beers_bars.sav',to.data.frame = T)
head(dat)
mml<-lmer(smile~1+beer+(1|bar),data=dat)
summary(mml)

Teaching/Phd/MIB")

WOOCD =] Oh LN B LD P e

Random effects Cluster variable

Fixed effects (intercept can be
omitted as t1 is included by default)




R Output

Let's see if the model 1s how 1t was intended

e - = - = - « 4 m— = =y o - ——

> summary(mml)
Linear mixed model fit by REML [ 'merModLmerTest']
Formula: smile ~ 1 + (1 | bar) + beer

Data: dat

REML criterion at convergence:




R Output

We then check the variability of the random effects. If there 1s
variability across bars, it means we were right to model the coefficients

as random

Random effects:

Groups Name Variance Std.Dev.
bar (Intercept) 6.532 2.556
Residual 1.2 1.133

Number of obs: 234, groups: bar, 15

Variance greater than 0




R Output

If you need a test for the random variances (Likelihood Ratio Test) run

this:

dat<-read.spss( 'data/regression_beers_bars.sav',to.data.frame = 1)
head(dat)

ile-1+beer+(1|bar),data=dat)

> rand(mm1)

Analysis of Random effects Table:
Chi.sq Chi.DF p.value

bar 201 1 <2e-16 ***

Signif. codes: @ “***’ g.pe1 “**’ @.01 ‘*' 9.05 *." 0.1 * ' 1

-



R Output

If everything 1s fine, we interpret the fixed effects as in any other GLM

(regression)

Fixed effects:

Estimate Std. Error df t value Pr(=|t]|)
(Intercept) 5.55107 0.72419 18.29000 7.665 4.03e-07 ***
beer 0.63870 0.07769 227.88000 8.221 1.53e-14 ***

Signif. codes: 0 “***’ @,001 “**’ 9.01 “*’ 0.65 .’ 0.1 ° ' 1

Intercept: On average, for zero
beers we expect 5.5 smiles

Note that without library(ImerTest) you do not get the p.values!



R Output

If you prefer the F-test, use anova()
Default DF

> anova(mml)
Analysis of Variance Table of type 3 with Satterthwailte
approximation for degrees of freedom
Sum Sq Mean Sq NumDF DenDF F.value Pr(>F)
beer 86.831 86.831 1 227.88 67.588 1.532e-14 ***



R Output

Plot fixed effects:

! summary(mml)

} plot(datismile-datsbeer,col=datsbar)
1 abline(fixef(mml))
)

fixef extracts fixed coefficients from the
model

8 10 12

dat$smile
6

datbbeer



R Output

Plot random effects effects:

16
17
18
19

dat$smile

plot(datssmile-datibeer,col=datibar)

apply(coef(mmi1)[[1]],1,abline)

8 10 12

6

coef extracts random coefficients from the
model

dat$beer



Plots

® Plotting fixed effects 1s simply plotting the straight line as in any

linear model

8 10 12

dat$smile
6

4

dat$beer



Plots

® Plotting random effects effects is plotting each specific sub-model of

each cluster

10 12

dat$smile

2 4 6 8

dat$beer



Jamovi

®]n jamovi mixed models can be estimated with the GAMLj module

jamouvi @

Installed Available Sideload

GAML] - General Analyses for Linear Models 0.9.2

Marcello Galluece

A suite for estimation of linear models, such as the general linear model, linear mixed model, generalized
linear models. For each family, models can be estimated for with categorical and/or continuous
variables, with options to facilitate estimation of interactions, simple slopes, simple effects, post-hoc
tests, contrast analysis and visualization of the results.

NSTALLED

MAJOR - Meta Analysis 1.0.0
Kyle Hamilton
A meta-analysis suite based on the R package metafor by Wolfgang Viechtbauer.

NSTALLED

scatr 1.0.0
Ravi Selker

A module that lets you make scatter plots in jamovi. You can find it under the "Exploration” menu.

NSTALLED

Docs and examples: https://mcfanda.github.io/gamlj docs/




Jamovi

®]n jamovi mixed models can be estimated with the GAML1 module

beers_bars.csv

Analyses

o o~ o X oM (m] m}
¢ e2% ¢ din (R O% &» O% ot
Exploration TTests ANOVA Regression Frequencies Factor Base R TOSTER MAJOR medmad Linear Models Modules
Mixed Model @ Mixed Model
A Dependent Variable Meodel Info
& case i % | info
smile Factors Get started  Select the dependent variable
 beer 5 Getstarted  Select at least one cluster variable
&, bar Get started  Select at least one term in Random Effects
a Optional Select factors and covariates
Fixed Effect ANQVA
Covariates F Num df Den df P
S
EEEr Fixed Effects Parameter Estimates
N Effect  Contrast Estimate SE Lower Upper df t ]
Estimation Confidence Intervals Random Components
| REML +| Confidence intervals |nteryal | 95 % Groups Name o Variance

> | Fixed Effects

> | Random Effects

> | Factors Coding

> o s All options are in expandable

> | Post Hoc Tests

> | Fixed Effects Plots panels

> | simple Effects

> | Estimated Marginal Means



Jamovi

®]n jamovi mixed models can be estimated with the GAML;j module

Define the variables roh

Mixed Model -
& A Dependent Variable
o case = < smile
Factors
+
Covariates
= & beer
Cluster variables
> | | &5 bar

Estimation Confidence Intervals

«'| REML '+ Confidence intervals |nterval 95 5%



Jamovi

®]n jamovi mixed models can be estimated with the GAMLj module

Define the fixed effects

v | Fixed Effects

Components Model Terms

beer - beer

#'| Fixed Intercept



Jamovi

®]n jamovi mixed models can be estimated with the GAMLj module

Define the random component

v | Random Effects

Components Random Coefficients

beer | bar = Intercept | bar

«'| Correlated Effects



Jamovi

®As soon as you define the random component, you get the results

Mixed Model
R-squared Marginal: How much
Model Info variance can the fixed effects
Info alone explain of the overall
Estimate Linear mixed model fit by REML VEIEINIGE
Call smile ~ 1+ (1 | bar) + beer
AIC 811.1613
R-squared Marginal 0.0894 .
R-squared Conditional  0.8172 R-squared Conditional: How much

variance can the fixed and

random effects together explain of
the overall variance

\\




Jamovi

®As soon as you define the random component, you get the results

F-test for the main effect of beer

Fixed Effect ANOVA
F Mum df Den df D
beer 46.0 1 229 < .001

Note. Satterthwaite method for degrees of freedom



Jamovi

®As soon as you define the random component, you get the results

coefficients for the main effect of
beer

Fixed Effects Parameter Estimates

95% Confidence Interval

Effect Contrast  Estimate SE Lower Upper df t p

(Intercept)  Intercept 7778 0.6276 6.548 9.008 13.2 12.39 < .001
beer beer 0.548 0.0808 0.390 0.706 229.4 6.79 <.001




Jamovi

®As soon as you define the random component, you get the results

Random components

Random Components

Groups MName sSD Variance
bar (Intercept) 2.40 5.77
Residual 1.20 1.45

Note. Mumer of Obs: 234 , groups: bar, 15



Jamovi

® Jamovi can plot up to a 3-way interactio

Plot (here just one line)

v | Fixed Effects Plots

Horizontal axis

= | | 4 beer
Separate lines
+
Separate plots
+




Jamovi

® Jamovi can plot up to a 3-way interaction fixed effects

Plot (here just one line)

Fixed Effects Plots

smile
(']

|

beer



Jamovi

® Jamovi can plot up to a 3-way interaction fixed effects

Random effects

Fixed Effects Plots

10 4

smile




Beers at the bar 2

We can now try a model where also the b coefficients are allow to

vary across clusters

=ata+bx+bxte,
y J J J l J
® Fixed effects? Intercept and beer effect
® Random effects? Intercepts and b coefficients

® (Clusters? bar

Some authors may call this model:
Random-coefficients regression
or
Intercepts- and Slopes-as-outcomes model



SPSS syntax

Now we have all the fixed effects and also the random effects

y=ata+ b-xl.j+ b-xlj+ e;

MIXED smile WITH haer by bar
JCRITERIA=CIN(S5) MXITER(100) MXSTEP(10) SCORING(1) SINGULAR(0.000000000001) HCONVERGE(D,
) LCONVERGE(D, ) PCONVERGE(0.000001, )

JFIED=beer| SSTYPEQ) |
IMETHOD =REML Fixed effects (intercept is
Jprint solution TESTCOV included by default)

[random intercept beer | SUBJECT(har) COVTYPE(un).

Random effects Cluster variable




SPSS Output

Let's see if the model 1s how intended

Model Dimension®
Murmber of Cowvariance Mumber of Subject
Lewels structure Parameters Yariables
Fixed Effects Intercept 1 1
bieer 1 1
Randorm Effects  Intercept + heerd 2 | Unstructured 3 | bar
Fesidual 1
Total 4 £

a. As of wersion 11.5%, the =
command syntax may yield re
using wersion 11 syntax, please
. Dependent Yariable: smile.

rules for the RANDOM subcommand have changed. Your
hiat differ from those produced by prior wersions. [If wou are
the current ssntax reference guide for mare information.




SPSS Output

We then check the variability of the random effects. If there 1s

variability across bars, it means we were right to model the coefficients

as random
Covariance Parameters

Estimates of Covariance Parameters?

95% Confidence Interval

Parameter Estimate 5td. Error rald 7 210 Lower Bound | Upper Bound
Residual 1258808 | 125848 | 10.003 | 000 | 1034814 | 1531292
Intercept + beer UN (LD | 9334205 | 4379192 | 2131 | 033 | 3.721616 | 23.411169
[subject = bar] UN 2,1 | - 446262 | 434661 | -1.027 | 305 | -1298181 405657

UNE,2y | 034518 | 053446 | 646 | 7518 001660 717792

a. Dependent Yariable: smile.

Notice that the variance of beer 1s not
significantly different from zero. We do not
care




Variance

Variances of random coefficients inform us on the variability of the

effects
® Even when they are not significant, we keep them as random

® When variances are exactly zero (and SPSS gives a general warning),

effects should be set only as fixed

Covariance Parameters

Estimates of Covariance Parameters?

95% Confidence Interval

Pararmetar Estimate std. Error Wald 7 Sig. Lower Bound | Upper Bound
Residual 1258808 | 125848 | 10003 000 1034814 1531292
Intercept + heer UM (L1 | 9334205 | 4379192 | 2.131 033 3.721616 | 23.41116%
[subject = bar] UM 2,1 | - 446262 | 434861 | -1.027 205 | -1z9s181 405657

U (2,27 | 024518 | 053446 546 518 001660 717742

a. Dependent Yariable: smile.



If everything is fine, we interpret the fixed effects as in any other GLM

SPSS Output

(regression)
Estimates of Fixed Effects®
45% Confidence Interyal
Parameter | Estimate | 5td. Error oif 1 4. Loweer Bound | Upper Bound
Intercept 5373312 | B50810 | 11597 5.315 000 2512154 7.234465
beer B41676 | 0923395 4336 6945 000 4337596 844555

a. Dependent Wariable: smile.

Intercept: On average, for zero
beers we expect 5.37 smiles

B coefficient: On average,for each

beer more, on average we expect

.641 more smiles




Random effect covariance

We noticed that the covariance parameters are 3

Covariance Parameters

Estimates of Covariance Parameters?®

45% Confidence Interval
Parameter Estimate Std. Error | Wald 7 400 Lower Bound | Upper Bound
Fesidual 1258803 25848 | 10,003 000 1.024814 1531292
Intercept + beer 9334205 | 437919 2.131 033 3721616 | 23411164
[sunject = bar] ~446262 | 434661 | -1.027 | 205 | -1.298181 405657
034518 053446 646 518 001660 T17792

a. Dependent Yariable: smile.




Random effect covariance

We noticed that the covariance parameters are 3

Covariance Parameters

Intercept B (beer)

Estimates

Parameter

Kesidual

Intercept + beer M
[subject = bar]

simee [ntercept  (1,1);

1258809

0 B (beer) (;Z,/; ) (2,2)

a Dependent Yariable sl M Ob
Variance of random effects




Random effect covariance

We noticed that the covariance parameters are 3

Covariance Parameters

Intercept B (beer)

Estimates
Parameter sinze|ntercept (1 ,16
Fesidual 1258809 a
I[ntetjrpept +hbeler UM (1,10 | 9.334205
sUbject = bar
UM 2,10 | - 446262
UM (2, 2) 024518 B (beer) (2’1) (212)0

a. Dependent Yariable: smile. / Oab b

Covariance between random
coefficients




Covariance

Example of positive covariance between a and b

10.00

8.00

6.00

4.004

2.007

e

.00

The higher the interce
the stronger the effect

T T T
6.00 8.00 10.00

i the gluster,”
of X :

X



Covariance

Example of negative covariance between a and b

10.00

8.00

6.00

4.00

2.007

.00+

The higher the intercept in the cluster, X
the weaker the effect of X



Plots

dat$smile

o
[ ]
(= 9]
[{w]
=t
N | | | Random effects
0 2 4 6
(Y]
dat$beer 3
(]
E e
S &
[ 73]
®=
1] D
=

dat$beer



Mixed Linear Models

® With the mixed model one can take into the account dependency

among measures (within clusters) almost in any situation
® [t allows applying the GLM logic to a broader range of designs
® [Interactions with any kind of variable
® Efficient handling of missing values
® Continuous repeated measures variables

® Hierarchical organization of the data



Repeated Measures ANOVA as
a linear mixed model

Next Meeting
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