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A simple statistical model is an efficient and concise 

representation of the data describing an empirical phenomenon



Introduction

28.4

The statistical model and its representation is aimed at:

 Efficient and Concise Description 

 Prediction of future

 Generalization to a population

That is: understanding of main 
trends in data

X



GLM

 The majority of the statistical technique that we use belong to 
one single general model

y i=a+ b1⋅x1i+ b2⋅x2i+ ..bk⋅xki+ e i

Independent variables

General Linear Model

Dependent variable

Errors



The aim of regression analysis is to fit the data using a 

function

GLM Example

For most applications, we just 
need a linear function: straight 
line

y i=a+ b⋅x i+ e i

ŷ i=a+ b⋅x i



GLM

 It allows to estimate the effects of one or several IVs on a DV

 It can be applied in many different research problems

 It allows to estimate many different types of effects

pros

 It assumes data have a very simple structure

 It applies on a limited amount of dependent variables (continuous or 

semi-continuous DV)

cons



GLM Assumptions

Mean

1) The exist one and only one 
value of each parameter (e.g. 
the mean) in the population

2) Any observed deviation 
from the population value is 
deemed to be error

y i=a+ e i



GLM Assumptions

Mean

Errors are independent (not 
related to each other)

y i=a+ e i



GLM Assumptions

The estimated value is a fixed 
parameter

Random variations are 
uncorrelated

y i=a+ e i
corr (e i ,e j)=0



GLM Assumptions

The estimated value is a fixed 
parameter

Random variations are 
uncorrelated

y i=a+ e i
corr (e i ,e j)=0



GLM

When the assumptions are NOT met because the data, and thus 

the errors have more complex structures, we generalize the GLM 

to the Linear Mixed  Model



Linear Mixed Model

Regressione

T-test

ANOVA

ANCOVA

Moderazione

Mediazione

Path Analysis

Regressione
Logistica

GLM

Regression

T-test

ANOVA

ANCOVA

Moderation

Mediation

Path Analysis

LMM

Random coefficients models

Random intercept regression models

One-way ANOVA with random effects

One-way ANCOVA with random effects

Intercepts-and-slopes-as-outcomes models

Multi-level models



Software

SPSS R



Jamovi

www.jamovi.org



Example “beers” 

Let's consider the case where the beer-smile research was conducted by 

gathering data in several different bars

For a total  of 234 participants

For each participant 

we measured # of 

beers and # of smiles



As compared with the example with a few participants, now we have a 

very different scatterplot

Example “beers” 2



A simple regression confirms that results are indeed different

Negative effect

Example “beers” 2



Why

Results may be biased by a mis-specification of the 
model, where the structure of the data is not taken into 

account

 In fact:

• Subjects are sampled in clusters specified by bars

• Each bar may have specific characteristics (quality, 

entertainment, etc) that may affect the measured variables

• Subjects within the same bar may be more similar than 

across bars



Scatterplot by Bar

Let's see the data broken down by bar
Bar



Scatterplot by Bar

Let's see the data only for bar “f” and “o”
Bar



It seems that the relations between IV and DV is positive, but within each 

 bar

Scatterplot by Bar

Bar



Scatterplot by Bar

Bar

Intercepts seem to 
be different from 
bar to bar



Scatterplot per Bar

Bar

Slopes seem to 
vary across bars

Slopes are all 
positive



The Model

 It seems that considering the participants as all equivalent and 
independent one each other   (GLM assumption) does not  fit  our 
data

 It seems that a better model should allow each bar (each 
cluster) to have a different regression line (a different intercept 
and b coefficient) 



 Let's define a model with a regression line for each cluster

y ij Smiles of subject i in the cluster j

ŷ ia=aa+ ba⋅x ia
ŷ ib=ab+ bb⋅x ib
ŷ ic=ac+ bc⋅x ic
ŷ ij=a j+ b j⋅x ij

In these regressions the 
coefficients may vary from 
cluster to cluster: they are 
not Fixed

The Model



 If coefficients may vary, they will have a distribution

A possible distribution of 
coefficients b estimated for 
different clusters 

Varying coefficients



 Varying coefficients are called random coefficients

Coefficients will exhibit 
variability

That is: in the population 
there exist different 
coefficients, a sample of 
which we estimated using 
the clustered data

Random coefficients



 If  coefficients vary as a variable in the population, they will 
have a mean and a variance, that we can estimate in our data

b̄=
∑ j

b j
k

Mean

Average of the coefficients



 If  coefficients vary as a variable in the population, they will 
have a mean and a variance, that we can estimate in our data

b̄=
∑ j

b j
k

Mean

Recall the mean is a fixed 
parameter for a 
distribution, and so is the 
mean of the coefficients: 
it is a fixed effect

Fixed coefficients



The Model

 We can now define a model with a regression for each cluster 
and the mean values of coefficients

ŷ ij=a j+ b j⋅x ij

ŷ ij=a j+ b ' j⋅x ij+ b̄⋅x ij

b ' j=b j− b̄

One regression per cluster

Each coefficient is defined 
as the deviation from the 
mean coefficient

Overall model



The Model

ŷ ij=a j+ b ' j⋅x ij+ b̄⋅x ij

Overall model

Random coefficients Fixed coefficient

 We can now define a model with a regression for each cluster 
and the mean value of coefficients



The mixed model

 The same goes for the intercepts

ŷ ij=a j+ b j⋅x ij

ŷ ij= ā+ a' j+ b̄⋅x ij+ b ' j⋅x ij

a ' j=a j− ā

One regression per cluster

Intercepts as deviations from 
the average intercept

Overall model



The mixed model

Overall model

Random coefficients Fixed coefficients

A GLM which contains both fixed and 
random effects is called a 

Linear Mixed Model 

 We can now define a model with a regression for each cluster 
and the mean values of coefficients

ŷ ij= ā+ a' j+ b̄⋅x ij+ b ' j⋅x ij



The mixed model

 Interpretation

The DV score (smiles) for  
participant i in the cluster (bars) j 
is a function of ...

ŷ ij= ā+ a' j+ b̄⋅x ij+ b ' j⋅x ij



Interpretation: y_ij is a function of... 

The average of the expected 
value for x=0, across clusters

That is: For x=0, how big is y on 
average

The mixed model

ŷ ij= ā+ a' j+ b̄⋅x ij+ b ' j⋅x ij



The mixed model

Each expected value of y for x=0, in 
each cluster (bar) as a deviation from 
the overall intercept

For x=0, how much to add or 
subtract to the average intercept 
for that particular cluster

Interpretation: y_ij is a function of... 

ŷ ij= ā+ a' j+ b̄⋅x ij+ b ' j⋅x ij



The mixed model

The average effect of x on y, 
averaged across clusters

On average, the expected change 
in the DV for a unit change in 
the IV

Interpretation: y_ij is a function of... 

ŷ ij= ā+ a' j+ b̄⋅x ij+ b ' j⋅x ij



The mixed model

The deviation from the average 
effect of x for cluster j

How much the effect of x 
increases (or decreases) in that 
particular cluster

ŷ ij= ā+ a' j+ b̄⋅x ij+ b ' j⋅x ij

Interpretation: y_ij is a function of... 



GLM as a special case

It is clear that everything we know for the GLM applies here: the 

GLM is in fact a special case of the LMM, where there are not random 

effects

GLM

LMM ŷ ij= ā+ a' j+ b̄⋅x ij+ b ' j⋅x ij

ŷij=ā+ b̄⋅xij



Notation

For clarity, it's better to use the following notation

Scores for case i in cluster jy ij , x ij

y ij= ā+ a j+ b̄⋅x ij+ b j⋅x ij+ e ij

Fixed effectsā , b̄
Effetti random as deviation from their 

mean
a j , b j

Error associated to the case ie ij



Variance

Coefficients a variance σa

Coefficients b varianceσb

Error variance (residual)σ
Covariance between a and b coefficientsσab

For clarity, it's better to use the following notation

y ij= ā+ a j+ b̄⋅x ij+ b j⋅x ij+ e ij



The mixed model

 In practice, mixed models allow to estimate the kind of effects 
we can estimate with the GLM, but they allow the effects to vary 
across clusters. 

 Effects that vary across clusters are called random effects

 Effects that do not vary (the ones that are the same across 
clusters) are said to be fixed effects 



The mixed model

 To specify a correct model, we only need to understand if there 
are clusters of cases (measures or subjects) and decide which 
coefficients (intercepts or b coefficients) may vary across those 
clusters

 The fixed effects of the model are interpreted like in the GLM 
(regression/ANOVA)

 Random effects are generally not interpreted, but we can look 
at their variance to decide to keep them as random (variance>0) 
or fix them.

 In this way we take into the account the dependence among 
data



Building a model

To build a model in a simple way, we need to answer very few 

questions: 

 What is (are) the cluster variable(s)?

 What are the fixed effects? 

 What are the random effects? 

 



A clustering variable

• Any variable that groups observations (cases or 
measurements) such that scores may be more similar within 
each group than across groups

• Any variable whose levels (groups) are a sample of a larger 
population of levels (groups)

• Example: bars created groups of scores (participants) that 
may be more similar within the bar that across bars 

 What is (are) the cluster variable(s)?

 What are the fixed effects? 

 What are the random effects? 

 



Fixed effects

• Any effect that we are interested in on average (as in a 
standard ANOVA/Regression)

• Example: the effect of beer on smiles in general

 What is (are) the cluster variable(s)?

 What are the fixed effects? 

 What are the random effects? 

 



Fixed effects

• Any effect that may vary from cluster to cluster

• (Thus:) Any effect that can be computed within each cluster 

•Example: the intercepts and the effect of beer on smiles each 
bar

 What is (are) the cluster variable(s)?

 What are the fixed effects? 

 What are the random effects? 

 



Beers at the bar

We start with a simple model
Bar

Intercepts may 
vary across bars



Beers at the bar

We define a model where each cluster is allow to have a different 

intercept, the rest of the model is like a standard regression

y ij= ā+a j+b̄⋅x ij+e ij
  Fixed effects? Intercept and beer effect

 Random effects? Intercepts

 Clusters? bar

Authors and books may call this model:
Random-intercepts regression

or
Intercepts-as-outcomes model



SPSS Input

Analyze → Mixed Models → Linear



SPSS Input

Analyze → Mixed Models → Linear

Cluster variable



SPSS Input

Analyze → Mixed Models → Linear
Then select Fixed



SPSS Input

Analyze → Mixed Models → Linear



SPSS Input

Analyze → Mixed Models → Linear

Then select Random



SPSS Input

Analyze → Mixed Models → Linear

Random Intercept



SPSS Input

Analyze → Mixed Models → Linear

Print coefficients



SPSS syntax

y ij= ā+ a j+ b̄⋅x ij+ e ij

Fixed effects (intercept is 
included by default)

Random effects Cluster variable



SPSS Output

Let's see if the model is how intended

OK!



SPSS Output

We then check the variability of the random effects. If there is 

variability across bars, it means we were right to model the coefficients 

as random

Variance greater than 0



SPSS Output

If everything is fine, we interpret the fixed effects as in any other GLM 

(regression)

Intercept: On average, for zero 
beers we expect 5.5 smiles



SPSS Output

B coefficient: On average,for each 
beer more, we expect 
.638 more smiles

If everything is fine, we interpret the fixed effects as in any other GLM 

(regression)



R syntax

y ij= ā+ a j+ b̄⋅x ij+ e ij

Fixed effects (intercept  can be 
omitted as ti is included by default)

Random effects Cluster variable

Load the required libraries



R Output

Let's see if the model is how it was intended

OK!



R Output

We then check the variability of the random effects. If there is 

variability across bars, it means we were right to model the coefficients 

as random

Variance greater than 0



R Output

If you need a test for the random variances (Likelihood Ratio Test) run 

this:

OK!



R Output

If everything is fine, we interpret the fixed effects as in any other GLM 

(regression)

Intercept: On average, for zero 
beers we expect 5.5 smiles

Note that without library(lmerTest) you do not get the p.values!



R Output

If you prefer the F-test, use anova()
Default DF



R Output

Plot fixed effects:

fixef extracts fixed coefficients from the 
model



R Output

Plot random effects effects:

coef extracts random coefficients from the 
model



Plots

 Plotting fixed effects is simply plotting the straight line as in any 

linear model



Plots

 Plotting random effects effects is plotting each specific sub-model of 

each cluster 



Jamovi

In jamovi mixed models can be estimated with the GAMLj module

Docs and examples: https://mcfanda.github.io/gamlj_docs/



Jamovi

In jamovi mixed models can be estimated with the GAMLj module

All options are in expandable 
panels



Jamovi

In jamovi mixed models can be estimated with the GAMLj module

Define the variables role



Jamovi

In jamovi mixed models can be estimated with the GAMLj module

Define the fixed effects



Jamovi

In jamovi mixed models can be estimated with the GAMLj module

Define the random component



Jamovi

As soon as you define the random component, you get the results

R-squared Marginal: How much 
variance can the fixed effects 
alone explain of the overall 
variance

R-squared Conditional: How much 
variance can the fixed and 
random effects together explain of 
the overall variance



Jamovi

As soon as you define the random component, you get the results

F-test for the main effect of beer



Jamovi

As soon as you define the random component, you get the results

coefficients for the main effect of 
beer



Jamovi

As soon as you define the random component, you get the results

Random components



Jamovi

Plot (here just one line)

 Jamovi can plot up to a 3-way interaction



Jamovi

Plot (here just one line)

 Jamovi can plot up to a 3-way interaction fixed effects



Jamovi

Random effects

 Jamovi can plot up to a 3-way interaction fixed effects



Beers at the bar 2

We can now try a model where also the b coefficients are allow to 

vary across clusters

y ij= ā+ a j+ b̄⋅x ij+ b⋅x ij+ e ij

Some authors may call this model:
Random-coefficients regression

or
Intercepts- and Slopes-as-outcomes model

  Fixed effects? Intercept and beer effect

 Random effects? Intercepts and b coefficients

 Clusters? bar



SPSS syntax

Now we have all the fixed effects and also the random effects

y ij= ā+ a j+ b̄⋅x ij+ b⋅x ij+ e ij

Fixed effects (intercept is 
included by default)

Random effects Cluster variable



SPSS Output

OK!

Let's see if the model is how intended



Notice that the variance of beer is not 
significantly different from zero. We do not 
care

We then check the variability of the random effects. If there is 

variability across bars, it means we were right to model the coefficients 

as random

SPSS Output



Variance

Variances of random coefficients inform us on the variability of the 

effects

 Even when they are not significant, we keep them as random

 When variances are exactly zero (and SPSS gives a general warning), 

effects should be set only as fixed



SPSS Output

If everything is fine, we interpret the fixed effects as in any other GLM 

(regression)

Intercept: On average, for zero 
beers we expect 5.37 smiles

B coefficient: On average,for each 
beer more, on average we expect 
.641 more smiles



Random effect covariance

We noticed that the covariance parameters are 3



Random effect covariance

We noticed that the covariance parameters are 3

Intercept B (beer)

Intercept (1,1)

B (beer) (2,1) (2,2)

σa

σab
σb

Variance of random effects



Random effect covariance

We noticed that the covariance parameters are 3

Intercept B (beer)

Intercept (1,1)

B (beer) (2,1) (2,2)

σa

σab
σb

Covariance between random 
coefficients



Covariance

Example of positive covariance between a and b 

The higher the intercept in the cluster, 
the stronger the effect of X



Covariance

Example of negative covariance between a and b 

The higher the intercept in the cluster, 
the weaker the effect of X



Plots

Plots
Fixed effects

Random effects



Mixed Linear Models

With the mixed model one can take into the account dependency 

among measures (within clusters) almost in any situation

It allows applying the GLM logic to a broader range of designs

Interactions with any kind of variable

Efficient handling of missing values

Continuous repeated measures variables

Hierarchical organization of the data



Repeated Measures ANOVA as
a linear mixed model

Next Meeting



98

The End
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