Linear mixed models Part II

Marcello Gallucci University of Milano-Bicocca

GLM

When the assumptions are NOT met because the data, and thus the errors, have more complex structures, we generalize the GLM to the Linear Mixed Model

Linear Mixed Model

The mixed model

• We can now define a model with a regression for each cluster and the mean values of coefficients

A GLM which contains both fixed and random effects is called a Linear Mixed Model

The mixed model

• In practice, mixed models allow to estimate the kind of effects we can estimate with the GLM, but they allow the effects to vary across clusters.

• Effects that vary across clusters are called **random effects**

• Effects that do not vary (the ones that are the same across clusters) are said to be **fixed effects**

Building a model

To build a model in a simple way, we need to answer very few questions:

- What is (are) the cluster variable(s)?
- What are the fixed effects?
- What are the random effects?

Software

Jamovi

www.jamovi.org

File /	Analyse														
11.	22	242			8										
Exploration	T-Tests	ANOVA	Regression F	requencies Fa	ctor										
<i></i>	🥏 y	1	🤣 y2	🤣 y3	🤣 y4	🤣 y5									
1	1	2.50	0.000	3.333	0.000		Reliabilit	ty Ana	lysis						
2	2	1.25	0.000	3.333	0.000			-	-						
3	3	7.50	8.800	10.000	9.200		Scale Relia	bility Stat	istics						
4	4	8.90	8.800	10.000	9.200			Cronba	ch's a	McDon	ald's ω				
5	5	10.00	3.333	10.000	6.667			0.01100	000		0.024				
6	6	7.50	3.333	6.667	6.667		scale	U	.929	6	1.934				
7	7	7.50	3.333	6.667	6.667										
8	8	7.50	2.233	10.000	1.496										
9	9	2.50	3.333	3.333	3.333		Correlat	tion He	atmap						
10	10	10.00	6.667	10.000	8.900									_	
11	11	7.50	3.333	10.000	6.667		V8							1	
12	12	7.50	3.333	6.667	6.667		1.0						_		
13	13	7.50	3.333	10.000	6.667		v7	-	Pearson					0.71	
14	14	7.50	7.767	10.000	6.667		y,		oneiauon				1	0.71	
15	15	7.50	10.000	3.333	10.000			-1.0 -0.1	5 0.0 0.5	5 1.0					
16	16	7.50	10.000	10.000	7.767		у6					1	0.61	0.75	
17	17	2.50	3.333	6.667	6.667						1	1000			
18	18	1.25	0.000	3.333	3.333		y5				1	0.56	0.68	0.63	
19	19	10.00	10.000	10.000	10.000										
20	20	7.50	3.333	3.333	6.667		y4			1	0.65	0.66	0.68	0.74	
21	21	10.00	10.000	10.000	10.000										
22	22	1.25	0.000	0.000	0.000		y3		1	0.61	0.58	0.43	0.65	0.53	
23	23	2.50	0.000	3.333	3.333			_							
24	24	7.50	6.667	10.000	10.000		12	1	0.45	0.72	0.54	0.71	0.58	0.61	
25	25	8.50	10.000	6.667	6.667		, -								
26	26	6.10	0.000	5.400	3.333			0.0	0.69	0.60	0.74	0.05	0.67	0.67	
27	27	3.30	0.000	6.667	3.333		ył, ł	0.6	0.68	0.69	0.74	0.65	0.67	0.67	
28	28	2.90	3.333	6.667	3.333		0	Q,	0	.0	6	6	4	8	
29	29	9.20	0.000	9.900	3.333		4	4.	4	4	4.	4	4	4	
30	30	6.90	0.000	6.667	3.333										

Repeated Measures Anova as a linear mixed model

A repeated measures design

Consider now a classical repeated measures design (withinsubjects) the levels of the WS IV (5 different trials) are represented by different measures taken on the same person

		1	2		3	4	5
Participants	1	Y11	Y21	Y31	Y41	Y51	
	2	Y12	Y22	Y32	Y42	Y52	
	3	Y13	Y23	Y33	Y43	Y53	
	Ν	Y1n	Y2n	Y3n	Y4n	Y5n	

4			
t	rI	a	

Standard file format

As for many applications of the repeated-measure design, each level of the WS-factor is represented by a column in the file

	<u>F</u> ile <u>E</u> dit	: <u>V</u> iew <u>D</u> ata	Fransform	<u>A</u> nalyze Dire	ct <u>M</u> arketing	<u>G</u> raphs <u>U</u> tilit	ies Add– <u>o</u> ns	<u>W</u> indow <u>H</u> el	lp
One participant,				· 📰 🛓			- S		9
one row	1: group								
UIIC TOW		group	err_t0	err_t1	err_t2	err_t3	err_t4	х	
	1	1	.14	.22	.439	.27	.01	04	
	2	1	.43	.52	.492	.48	.43	36	
	3	1	.61	.43	.446	.51	.57	-1.77	
	4	0	.29	.70	1.000	.89	.75	1.63	
	5	1	.16	.49	.500	.56	.29	32	
	6	0	.70	.36	.573	.57	.69	-1.16	
	7	0	.35	.51	.572	.46	.77	87	
	8	1	.45	.49	.545	.41	.43	-1.79	
	9	1	.05	.55	.333	.54	.53	1.01	
	10	1	.10	.35	.358	.57	.67	.58	
	11	0	.14	.45	.373	.25	.29	88	
	12	0	.04	.74	.541	.53	.35	27	
	13	1	.62	.73	.529	.31	.48	1.36	
	14	1	.15	.22	.101	.17	.17	32	

Long file format

 For the mixed model we need to tabulate the data as if they came from a between-subject design

Participant scores

Where does the score come from?

Participant component

Solution

Thus, we should consider an extra residual term which represents participants individual characteristic. This term is the same within each participant one participant

$$Y_{11} = a + b_1 \cdot T_1 + u_1 + e_{11}$$

$$Y_{21} = a + b_2 \cdot T_2 + u_1 + e_{21}$$

$$Y_{31} = a + b_3 \cdot T_3 + u_1 + e_{31}$$

Average effects
of trials

$$Y_{1j} = a + b_1 \cdot T_1 + u_j + e_{1j}$$

$$Y_{2j} = a + b_2 \cdot T_2 + u_j + e_{2j}$$

$$Y_{3j} = a + b_3 \cdot T_3 + u_j + e_{3j}$$

One participant
one trait
We assume the 5 trials are dummy coded

Participant component

 $Y_{51} = a + b \cdot T_5 + u_1 + e_{51}$

Building the model

We translate this in the standard mixed model

$$Y_{ij} = a + b' \cdot T_i + u_j + e_{ij}$$
$$y_{ij} = \overline{a} + \overline{a}_j + \overline{b} \cdot x_{ij} + e_{ij}$$

- Fixed effects? Intercept and trial effect
- Random effects? Intercepts
- Clusters? participants

Model	Dimen	sion ^b
-------	-------	-------------------

		Number of Levels	Covariance Structure	Number of Parameters	Subject Variables
Fixed Effects	Intercept	1		1	
	trial	5		4	
Random Effects	Intercept ^a	1	Variance Components	1	id
Residual				1	
Total		7		7	

a. As of version 11.5, the syntax rules for the RANDOM subcommand have changed. Your command syntax may yield results that differ from those produced by prior versions. If you are using version 11 syntax, please consult the current syntax reference guide for more information.

The model is as intended

Fixed Effects

Type III Tests of Fixed Effects^a

Source	Numerator df	Denominator df	F	Sig.
Intercept	1	199.000	3535.735	.000
trial	4	796.000	4.724	.001

a. Dependent Variable: error.

Covariance Parameters

Estimates of Covariance Parameters^a

Parameter		Estimate	Std. Error
Residual		.030204	.001514
Intercept [subject = id]	Variance	.007804	.001421

a. Dependent Variable: error.

Interpreting the effects

As in GLM (Anova). We interpret the main effect looking at the means

Dependency of scores

We can quantify the dependency of scores within clusters (participants) by computing the intra-class correlation

Estimates of Covariance Parameters^a

Parameter	Estimate	Std. Error	σ
Residual	.030204 ◄	<mark>■ .001514</mark>	— U
Intercept [subject = id] Variance	.007804	.001421	
B 1 11 11	V		

a. Dependent Variable: error.

Dependency of scores

We can quantify the dependency of scores within clusters (participants) by computing the intra-class correlation

$$ICR = \frac{.0078}{.0078 + .0302} = .205$$

Estimates of Covariance Parameters^a

Parameter		Estimate	Std. Error	
Residual		.030204◄	⊢ <u>.001514</u>	— U
Intercept [subject = id]	Variance	.007804	.001421	

a. Dependent Variable: error.

GAMLj: mixed models

	Mixed Model
Variables	 id group x trial error Covariates → Cluster variables →
	Estimation Confidence Intervals Image: Confidence Intervals Image: REML Image: Confidence Intervals Image: REML
	Fixed Effects
	Random Effects
Ontions	> Factors Coding
options	Covariates Scaling
	Post Hoc Tests
	Fixed Effects Plots
	> Simple Effects
	Estimated Marginal Means

GAMLj: mixed models

GAMLj: random coefficients

GAMLj: fixed coefficients

GAMLj: Results: model

R-squared Conditional: How much variance can the fixed and random effects together explain of the overall variance R-squared Marginal: How much variance can the fixed effects alone explain of the overall variance

GAMLj: Results: random

	Random Co			
Variance of intercepts	Groups	Name	SD	Variance
	id	(Intercept)	0.0883	0.00780
	Residual		0.1738	0.03020
	Note. Num	ner of Obs: 1000	, groups: i	d , 200

As long as the variance is nonzero, we are fine

GAMLj: Results: fixed

GAMLj: plot

GAMLj: plot

Fixed Effects Plots

As in GLM (Anova), sometimes we want to compares conditions using post-hoc tests. GAMLj allows for Bonferroni and Holm (more liberal) p-value adjustement

✔ Post Hoc Tests		
	\rightarrow	trial
Correction		
No correction		
🕑 Bonferroni		
✓ Holm		

GAMLj: post-hoc

• The interpretation follows as for any standard ANOVA

Post Hoc Tests

Post Hoc Comparisons - trial

Co	mpa	rison	_					
trial		trial	Difference	SE	t	df	Pbonferroni	Pholm
1	-	2	-0.01066	0.0174	-0.613	796	1.000	1.000
	-	3	-0.02778	0.0174	-1.598	796	1.000	0.552
	-	4	-0.06951	0.0174	-4.000	796	< .001	< .001
	-	5	-0.03491	0.0174	-2.009	796	0.449	0.314
2	-	3	-0.01712	0.0174	-0.985	796	1.000	0.975
	-	4	-0.05885	0.0174	-3.386	796	0.007	0.007
	-	5	-0.02425	0.0174	-1.395	796	1.000	0.653
3	-	4	-0.04173	0.0174	-2.401	796	0.166	0.133
	-	5	-0.00713	0.0174	-0.410	796	1.000	1.000
4	-	5	0.03460	0.0174	1.991	796	0.468	0.314

Between and Repeated Measures Anova

linear mixed model

Standard design

- There are two groups a Control group and a Treatment group, measured at 4 times. These times are labeled as 1 (pretest), 2 (one month posttest), 3 (3 months follow-up), and 4 (6 months follow-up).
- The dependent variable is a depression score (e.g. Beck Depression Inventory) and the treatment is drug versus no drug. If the drug worked about as well for all subjects the slopes would be comparable and negative across time. For the control group we would expect some subjects to get better on their own and some to stay depressed, which would lead to differences in slope for that group (*)

Standard design

There are two groups - a Control group and a Treatment group, measured at 4 times. These times are labeled as 1 (pretest), 2 (one month posttest), 3 (3 months follow-up), and 4 (6 months follow-up).

Contingency Tables

Contingency	Contingency Tables				
	gro	up			
time	1	2	Total		
0	12	12	24		
1	12	12	24		
3	12	12	24		
6	12	12	24		
Total	48	48	96		

96 observations 24 subjects

Standard design: data

• Data are in the long format

	≡	Data	Analyses			
	Exploration	T-Tests		Regression Fre	quencies Factor	Linear Models
	🔒 s	ubj	🐣 time	🤌 group	🤌 dv	
One subject 4 rows	1	1	0	1	296	
	2	1	1	1	175	
	3	1	3	1	187	
	4	1	6	1	192	
	5	2	0	1	376	
	6	2	1	1	329	
	7	2	3	1	236	
	8	2	6	1	76	
	9	3	0	1	309	
	10	3	1	1	238	
	11	3	3	1	150	
	12	3	6	1	123	
	13	4	0	1	222	
	14	4	1	1	60	
	15	4	3	1	82	
	16	4	6	1	85	
	17	5	0	1	150	
	18	5	1	1	271	
	10	5	2	1	250	

Mixed model

We can translate this in a standard mixed model

- Fixed effects? Intercept and group,time, and interaction effect
- Random effects? Intercepts
- Clusters? subjects

Variables

Definition of the analysis

Model

Interpretation of results Mixed Model

Model	Model Info					
Model	Info					
	Estimate	Linear mixed model fit by REML				
	Call	dv ~ 1 + (1 subj) + time + group + time:group				
	AIC	1011.895				
	R-squared Marginal	0.554				
	R-squared Conditional	0.768				

Random Components

Groups	Name	SD	Variance
subj	(Intercept)	50.4	2539
Residual		52.5	2761

Note. Numer of Obs: 96 , groups: subj , 24

Results

Interpretation of results

Fixed F-tests	Fixed Effect AN	AVOI			
		F	Num df	Den df	р
	time	45.14	3	66.0	< .001
	group	13.71	1	22.0	0.001
	time:group	9.01	3	66.0	< .001

Note. Satterthwaite method for degrees of freedom

• For the moment we ignore the coefficients of the parameter estimates

Results: plot

Probing the results

- We can probe the interaction (and the pattern of means) in different ways (all available in GAMLj):
- Simple effects: Test if the effects of time is there (and how strong it is) for different groups
- Trend analysis: Checking the polynomial trend for time in general and for different groups
- Post-hoc test: not nice, but doable

Simple effect analysis

Simple Effects

 Simple effects are effects of one variable evaluated at one level of the other variable (like simple slopes for continuous variables)

Simple Effects

 Simple effects are effects of one variable evaluated at one level of the other variable (like simple slopes for continuous variables)

Simple Effects

 Simple effects are effects of one variable evaluated at one level of the other variable (like simple slopes for continuous variables)

Is the effect of B for A3 different from zero?

	A1	A2	A3	Totals
B1			Е	
B2			E 🥿	
B3			E	
Totals				Is there an effect here?

Simple effects

Simple effects

• We should declare which is the variable we want the effect for and which is the moderator

Simple effects

• We can say that the treatment works for both groups, although in a different way (recall the interaction)

Simple Effects ANOVA

Effect	Moderator Levels	df Num	df Den	F	р
time	group at 1	3.00	66.0	18.9	< .001
time	group at 2	3.00	66.0	35.3	< .001

Simple effects of time

In both groups there is an affect of time

Polynomial Contrasts

Trend analysis is based on Polynomial contrasts: each contrast features weights which follow well-known shapes (polynomial functions)

- It is useful to test what kind of trend is present in the pattern of means
- It can be applied to any ordered categorical variables
- It is often used (and SPSS gives it by default) in repeated measures analysis
- One can estimate K-1 trends (linear, quadratic, cubic etc), where K is the number of means (conditions)

• Each trend (linear, quadratic, etc) tests a particular shape of the mean pattern

• Each trend (linear, quadratic, etc) tests a particular shape of the mean pattern

• Each trend (linear, quadratic, etc) tests a particular shape of the mean pattern

• Each significant trend justifying interpreting a particular characteristic of the mean pattern

• First, we should code the categorical variable "time" as a polynomial contrast

✓ Factors Coding	
🐣 time	polynomial 🔻
🐣 group	deviation •
 Contrasts in estimates table 	

• We can leave "group" as deviation (default) which means "centered contrasts"

• Second, look at the parameter estimates

Contrast average	Contras	st labels						
				95% Confide	nce Interval			
Effect	Contrast	Estimate	SE	Lower	Upper	df	t	р
(Intercept)	Intercept	188.437	11.6	165.7	211.17	22.0	16.2444	< .001
time1	linear	-114.356	10.7	-135.4	-93.34	65.9	-10.6626	< .001
time2	quadratic	43.250	10.7	22.2	64.27	65.9	4.0326	< .001
time3	cubic	-25.044	10.7	-46.1	-4.02	65.9	-2.3351	0.023
group1	2-(1,2)	-42.958	11.6	-65.7	-20.22	22.0	-3.7033	0.001
time1 * group1	linear 🕸 2 - (1, 2)	-0.894	10.7	-21.9	20.13	65.9	-0.0834	0.934
time2 * group1	quadratic 粩 2 - (1, 2)	52.875	10.7	31.9	73.90	65.9	4.9301	< .001
time3 * group1	cubic * 2 - (1, 2)	-17.721	10.7	-38.7	3.30	65.9	-1.6523	0.103

Contrast interaction with group

• Average effects of the contrasts

time

95% Confidence Interval Effect df Contrast Estimate SE Lower Upper t р (Intercept) Intercept 188.437 11.6 165.7 211.17 22.0 16.2444 < .001 time1 linear -114.35610.7 -135.4-93.3465.9 -10.6626< .001 quadratic 10.7 22.2 time2 43.250 64.27 65.9 4.0326 < .001 time3 cubic -25.04410.7 -46.1 -4.0265.9 -2.33510.023 Fixed Effects Plots .9 20.13 65.9 1.9 73.90 65.9 4.9301 < .001 300 8.7 3.30 65.9 -1.65230.103 250 ş The pattern (on average) shows all 200 three trends: 1. it goes down (linear) 150 2. it tend to go down and then up O 3. if fluctuates a bit 0 1 3 6

Fixed Effects Parameter Estimates

• Trend analysis by group

Fixed Effects Parameter Estimates

			95% Confidence Interval					
Effect	Contrast	Estimate	SE	Lower	Upper	df	t	р
(Intercept)	Intercept	188.437	11.6	165.7	211.17	22.0	16.2444	< .001
time1	linear	-114.356	10.7	-135.4	-93.34	65.9	-10.6626	< .001
time2	quadratic	43.250	10.7	22.2	64.27	65.9	4.0326	< .001
time3	cubic	-25.044	10.7	-46.1	-4.02	65.9	-2.3351	0.023
group1	2(1,2)	- 42.059	11.6	-65.7	-20.22	22.0	-3.7033	0.001
time1 * group1	linear 🗱 2 - (1, 2)	-0.894	10.7	-21.9	20.13	65.9	-0.0834	0.934
time2 * group1	quadratic * 2 - (1, 2)	52.875	10.7	31.9	73.90	65.9	4.9301	< .001
time3 * group1	cubic * 2 - (1, 2)	-17.721	10.7	-38.7	3.30	65.9	-1.6523	0.103

Those tell us if the trend is different between the two groups: Linear: no Quadratic: yes Cubib: no

Both groups decreases Group 2 curve is stronger They both fluctuates a bit

• Trend analysis by group

Fixed Effects Parameter Estimates

Effect	Contrast			95% Confidence Interval				
		Estimate	SE	Lower	Upper	df	t	р
(Intercept)	Intercept	188.437	11.6	165.7	211.17	22.0	16.2444	< .001
time1	linear	-114.356	10.7	-135.4	-93.34	65.9	-10.6626	< .001
time2	quadratic	43.250	10.7	22.2	64.27	65.9	4.0326	< .001
time3	cubic	-25.044	10.7	-46.1	-4.02	65.9	-2.3351	0.023
group1	2(1,2)	- 42.059	11.6	-65.7	-20.22		-3.7033	0.001
time1 * group1	linear 🗱 2 - (1, 2)	-0.894	10.7	-21.9	20.13	65.9	-0.0834	0.934
time2 * group1	quadratic * 2 - (1, 2)	52.875	10.7	31.9	73.90	65.9	4.9301	< .001
time3 * group1	cubic * 2 - (1, 2)	-17.721	10.7	-38.7	3.30	65.9	-1.6523	0.103

Those tell us if the trend is different between the two groups: Linear: no Quadratic: yes Cubic: mild

Both groups decreases One group has a stronger curve They both fluctuates a bit

Fixed Effects Plots

• Simple effects trend analysis: We can now look at the parameters of the simple effects analysis

Simple effects of time Time1: linear Effect Moderator Level Estimate SE t р Time2: quadratic time1 group at 1 -113.4615.2 -7.481< .001 Time3: cubic group at 1 15.2 time2 -9.63 -0.6350.528 -0.483time3 group at 1 -7.32 15.2 0.631 time1 group at 2 -115.2515.2 -7.599< .001 15.2 time2 group at 2 96.13 6.338 < .001 group at 2 time3 -42.7615.2 -2.8200.006

Simple Effects Parameters

- In group 1 there's only a linear trend
- In group 2 all three trend are there

• Simple effects trend analysis: We can now interpret the parameters of the simple effects analysis

Fixed Effects Plots

- In group 1 there's only a linear trend
- In group 2 all three trends are there

Interactions between continuous variables
Two continuous variables

- In the multiple regression we have seen, lines are parallels, making a flat surface
- The effect of one IV is constant (the same) for each level of the other Spin Plot IV y=0+0*x1+0*x2+0.02*x1*x2+0*x1x1+0*x2x2+0*x1x1x2+0*x1x2x2 Y 50 0 -50 - 10 Π X2 - 10 0 X1 10 D

Interactions lines

- Interaction: Lines are **not** parallel
- The effect of one IV is different for each level of the other IV

Interactions line

• The bigger the interaction, the less parallel the lines: Bigger difference in the slopes

Interactions line

• The bigger the interaction, the less parallel the lines: Bigger difference in the slopes

Multiplicative effect

The interaction effect is captured in the regression by a multiplicative term

The product of the two independent variables

$$\hat{y}_i = a + b_1 \cdot x_1 + b_2 \cdot x_2 + b_{int} x_1 x_2$$

The coefficient of x_1 is changing as x_2 changes

$$\hat{y}_i = a + (b_1 + b_{int} x_2) \cdot x_1 + b_2 \cdot x_2$$

The effect of one IV changes at different levels of the other IV

Conditional effect

We say that the effect of one IV is conditional to the level of the other IV

For Women (0) the slope is different

$$\hat{y}_i = a + (b_2 + b_{int} 0) \cdot x_2 + b_1 \cdot 0$$

 \dots than for Men (1)

$$Women$$

Mon

CITS

80000

$$\hat{y}_i = a + (b_2 + b_{int} 1) \cdot x_2 + b_1 \cdot 1$$

Conditional vs linear effect

• A linear effect (when no interaction is present) tells you how much change there is in the DV when you change the IV

$$\hat{y}_i = a + b_1 \cdot x_1 + b_2 \cdot x_2 + b_{int} x_1 x_2$$

Change in the DV

• An interaction effect (the B of the product term) tells you how much change there is **in the effect** of one IV on the DV when you change the other IV

$$\hat{y}_i = a + (b_1 + b_{int} x_2) \cdot x_1 + b_2 \cdot x_2$$

Change in the effect Change in the DV

Terminology

• When there is an interaction term in the equation, one refers to the linear effect (the ones that are not interactions) as the first-order effect

First-order effects with interaction

 When the interaction is in the regression, the first order effects become the effect of the IV while keeping the other IV's constant to zero

$$\hat{y}_i = a + b_1 \cdot x_1 + b_2 \cdot 0 + b_{int} x_1 0 = a + b_1 \cdot x_1$$

Making zero meaningful

We can always make zero a meaningful value by centering the variables before computing the product term:

Centering

• The first-order effects computed on centered variables represent the average effect (the one in the middle) of the IV, across all levels of the other IV

- We can study the interaction by evaluating the effect of one independent variables for low (-1 SD), average (Mean), and high (+1 SD) levels of the moderator
- We pick three lines out of many in the regression plane, and plot them

• We represent them in two dimensions

Example

Frequencies

Frequencies of schoolclass

50 different school classes were assessed
on students reading ability and self-
efficacy. In each class, the teacher was
assessed as well for her/his self-efficacy.

1182 subjects 50 school clasess

Levels	Counts	% of Total	Cumulative %
1	24	2.0 %	2.0 %
2	23	1.9 %	4.0 %
3	24	2.0 %	6.0 %
4	24	2.0 %	8.0 %
5	23	1.9 %	10.0 %
6	25	2.1 %	12.1 %
7	22	1.9 %	14.0 %
8	25	2.1 %	16.1 %
9	23	1.9 %	18.0 %
10	24	2.0 %	20.1 %
11	24	2.0 %	22.1 %
12	23	1.9 %	24.0 %
13	23	1.9 %	26.0 %
14	23	1.9 %	27.9 %
15	24	2.0 %	29.9 %
16	24	2.0 %	32.0 %
17	25	2.1 %	34.1 %
18	24	2.0 %	36.1 %
19	25	2.1 %	38.2 %
20	24	2.0 %	40.3 %
21	24	2.0 %	42.3 %
22	23	1.9 %	44.2 %
23	23	1.9 %	46.2 %
24	23	1.9 %	48.1 %
25	25	2.1 %	50.3 %

Example

 Efficacy and reading ability varies from participant to participant, whereas teaching efficacy varies from class to class, but not within each class

	🤶 efficacy	🧼 read	🧼 teacheffic	😪 schoolcla
10		20	22	I
17	57	8	22	1
18	41	13	22	1
19	43	16	22	1
20	47	17	22	1
21	58	13	22	1
22	41	8	22	1
23	42	14	22	1
24	30	11	22	1
25	54	16	21	2
26	44	11	21	2
27	75	17	21	2
28	48	12	21	2
29	50	11	21	2
30	61	20	21	2
31	31	15	21	2
32	46	9	21	2
33	61	20	21	2
24	10	11	01	0

• We wish to estimate the effect of reading ability to participants selfefficacy, the effect of teacher efficacy and the interaction between reading ability and teacher efficacy

$$\hat{SE} = a + b_1 REA + b_2 TE + b_3 TE \cdot REA$$

• We want to use a mixed model to take into the account the school class clustering effect

Mixed model

We can translate this in a standard mixed model

$$\hat{SE} = a + b_1 REA + b_2 TE + b_3 TE \cdot REA$$

• Fixed effects? Intercept and read ,teacher, and interaction effect

- Random effects? Intercepts read effect
- Clusters? School class

Example jamovi

First we define the variables in the model and their role

Example: fixed effects

• We define the fixed effects in the model

mponents	Model Terms
read teacheffic	→ read → teacheffic → teacheffic * read

Main effects and interactions

Example: random effects

• We define the random effects in the model

Main that can be computed within each school class

Results: model recap

R-squared measures

Model Ir	٦fo
----------	-----

Info	
IIIIO	
Estimate	Linear mixed model fit by REML
Call	efficacy ~ 1 + (read + 1 schoolclass) + read + teacheffic + teacheffic:read
AIC	8788.131
R-squared Marginal	0.119
R-squared Conditional	0.551

Results: model fixed effects

• F-tests and p-values: we interpret them as any regression with interaction

Fixed Effect ANOVA

	F	Num df	Den df	р
read	23.84	1	47.0	< .001
teacheffic	1.73	1	47.9	0.194
read:teacheffic	9.05	1	45.5	0.004

Note. Satterthwaite method for degrees of freedom

Results: model fixed effects

B coefficients and p-values: To interpret the linear effects we should know the meaning zero of the independent variable: jamovi centers the independent variable by default

			B coefficients					
Fixed Effects Parame	eter Estimates							
				95% Confide	nce Interval			
Effect	Contrast	Estimate	SE	Lower	Upper	df	t	р
(Intercept)	Intercept	49.8077	1.0620	47.7262	51.889	48.1	46.90	< .001
read	read	0.8262	0.1692	0.4945	1.158	47.0	4.88	< .001
teacheffic	teacheffic	0.2239	0.1701	-0.1095	0.557	47.9	1.32	0.194
read * teacheffic	read * teacheffic	0.0809	0.0269	0.0282	0.134	45.5	3.01	0.004

Linear effects are average effects

Centering IV

Jamovi by default centers the IVs to their means, but different options are

🔶 read	centered	•
teacheffic	centered	•
· · · · · · · · · · · · · · · · · · ·		

- Centered: centered using total sample mean
- Cluster-based centered: centered using each cluster mean
- Standardized: using mean and standard deviation of the total sample
- Cluster-based Standardized: using means and standard deviations of each cluster

 Estimating the effect of one independent variable (read) at different levels of the moderator (teachefficacy) and make a plot

✓ Fixed Effects Plots	
	Horizontal axis
	→ <pre> </pre> Pread
	Separate lines
	→ <pre></pre>
	Separate plots
	\rightarrow
Display	Plot
None	Observed scores
Oconfidence intervals	Y-axis observed range
Interval 95 %	
Standard Error	

 Estimating the effect of one independent variable (read) at different levels of the moderator (teachefficacy) and make a plot

Fixed Effects Plots

One can add confidence bands: confidence intervals for continuous predicted values
 Fixed Effects Plots

• At the moment, the moderator is set to +1SD, mean, -1SD. More options will be added in the future

 Estimating the effect of one independent variable (read) at different levels of the moderator (teachefficacy) and test the effects

 Estimating the effect of one independent variable (read) at different levels of the moderator (teachefficacy) and test the effects

Simple Effects ANOVA

Effect	Moderator Levels	df Num	df Den	F	р
read	teacheffic at -6.26	1.00	46.7	1.78	0.188
read	leacheilic al U	1.00	47.9	23.83	< .001
read	teacheffic at 6.26	1.00	47.5	31.27	< .001

Simple effects of read

 At the moment, the moderator is set to +1SD, mean, -1SD. More options will be added in the future

Estimating the effect of one independent variable (read) at different levels of the moderator (teachefficacy) and **test the effects**

 At the moment, the moderator is set to +1SD, mean, -1SD. More options will be added in the future

Questions

- How many clusters, how many scores within cluster
- Convergences
- Multiple classifications
 - Subjects by items design

