Linear mixed models Part II

Marcello Gallucci
University of Milano-Bicocca

GLM

When the assumptions are NOT met because the data, and thus the errors, have more complex structures, we generalize the GLM to the Linear Mixed Model

Linear Mixed Model

GLM

LMM

Random coefficients models

Random intercept regression models
One-way ANOVA with random effects

One-way ANCOVA with random effects
Intercepts-and-slopes-as-outcomes models

Multi-level models

The mixed model

- We can now define a model with a regression for each cluster and the mean values of coefficients

$$
\hat{y}_{i j}=\bar{a}+a_{j}^{\prime}+\bar{b} \cdot x_{i j}+b_{j}^{\prime} \cdot x_{i j}
$$

Random coefficients

Fixed coefficient

A GLM which contains both fixed and
random effects is called a Linear Mixed Model

The mixed model

- In practice, mixed models allow to estimate the kind of effects we can estimate with the GLM, but they allow the effects to vary across clusters.
- Effects that vary across clusters are called random effects
- Effects that do not vary (the ones that are the same across clusters) are said to be fixed effects

Building a model

To build a model in a simple way, we need to answer very few questions:

- What is (are) the cluster variable(s)?
- What are the fixed effects?
- What are the random effects?

Software

SPSS

jamovi ide

Jamovi

www.jamovi.org

iamoul som Open. Now.

Repeated Measures Anova as a linear mixed model

A repeated measures design

- Consider now a classical repeated measures design (withinsubjects) the levels of the WS IV (5 different trials) are represented by different measures taken on the same person

Participants	trial						
	1		2		3	4	5
	1	Y11	Y21	Y31	Y41	Y51	
	2	Y12	Y22	Y32	Y42	Y52	
	3	Y13	Y23	Y33	Y43	Y53	
	...						
	N	Y1n	Y2n	Y3n	Y4n	Y5n	

Standard file format

- As for many applications of the repeated-measure design, each level of the WS-factor is represented by a column in the file

Long file format

- For the mixed model we need to tabulate the data as if they came from a between-subject design
File Edit View Data Iransform Analyze Direct Marketing Craphs Utilities

One measure, one row

	id	group	x	trial	error	va
1	1	1	-. 04	1	. 14	
2	1	1	-. 04	2	. 22	
3	1	1	-. 04	3	. 44	
4	1	1	-. 04	4	. 27	
5	1	1	-. 04	5	. 01	D
6	2	1	-. 36	1	. 43	
7	2	1	-. 36	2	. 52	
8	2	1	-. 36	3	. 49	
9	2	1	-. 36	4	. 48	
10	2	1	-. 36	5	. 43	
11	3	1	-1.77	1	. 61	
12	3	1	-1.77	2	. 43	
13	3	1	-1.77	3	. 45	
14	2	1	-1 77	4	51	

Participant scores

Plot for 1 participant

Participant average trait

Estimated Marginal Means of error

Where does the score come from?

Plot for 1 participant

Participant average trait

Averages of the sample (fixed effect)

Participant component

Plot for 1 participant

Estimated Marginal Means of error

Solution

Thus, we should consider an extra residual term which represents participants individual characteristic. This term is the same within each participant one participant one trait

$$
\begin{aligned}
& Y_{11}=a+b_{1} \cdot T_{1}+u_{1}+e_{11} \\
& Y_{21}=a+b_{2} \cdot T_{2}+u_{1}+e_{21}
\end{aligned} \quad\left[\begin{array}{l}
\text { Each score } \\
\text { one residual }
\end{array}\right.
$$

$$
\underset{\text { Average effects }}{Y}=a+b_{3} \cdot T_{3}+u_{1}+e_{31}
$$

of trials

$$
\begin{aligned}
& Y_{1 \mathrm{j}}=a+b_{1} \cdot T_{1}+u_{j}+e_{1 \mathrm{j}} \\
& Y_{2 \mathrm{j}}=a+b_{2} \cdot T_{2}+u_{j}+e_{2 \mathrm{j}} \\
& Y_{3 \mathrm{j}}=a+b_{3} \cdot T_{3}+u_{j}+e_{3 \mathrm{j}}
\end{aligned}
$$

Each score, one error

One participant one trait

Participant component

$$
Y_{51}=a+b \cdot T_{5}+u_{1}+e_{51}
$$

Estimated Marginal Means of error

Building the model

We translate this in the standard mixed model

$$
\begin{aligned}
& Y_{i j}=a+b^{\prime} \cdot T_{i}+u_{j}+e_{i j} \\
& y_{i j}=\bar{a}+\dot{a}_{j}+\bar{b} \cdot x_{i j}+e_{i j}
\end{aligned}
$$

- Fixed effects? Intercept and trial effect
- Random effects? Intercepts
- Clusters? participants

SPSS: General mixed models

Click Continue for models with uncorrelated terms

Here we put the variablect variable for models with correlated random effects. which specifies to which Repeated and Subject variables for models with correlated participant the measure

Subjects:

Here we do not put anything: repeated measures are modelled

Repeated:
as random effeetsd Covariance Type: Diagonal

```
Continue
Reset
Cancel
Help
```


SPSS: General mixed models

SPSS: General mixed models

SPSS: General mixed models

SPSS: General mixed models

Model Dimension ${ }^{b}$

		Number of Levels	Covariance Structure	Number of Parameters	Subject Variables
Fixed Effects	Intercept	1		1	
Random Effects	trial $^{\text {Intercepta }}{ }^{\text {a }}$	5		4	
Residual		1	Variance Components	1	id
Total				1	

a. As of version 11.5, the syntax/rules for the RANDOM subcommand have changed. Your command syntax may yield results that differ from those produced by prior versions. If you are using version 11 syntax, please consult the current syntax reference guide for more information.

The model is as intended

SPSS: General mixed models

Fixed Effects

Type III Tests of Fixed Effects ${ }^{\text {a }}$

Source	Numerator df	Denominator df	F	Sig.
Intercept	1	199.000	3535.735	.000
trial	4	796.000	4.724	.001

a. Dependent Variable: error.

Covariance Parameters

Estimates of Covariance Parameters ${ }^{\text {a }}$

Parameter		Estimate	Std. Error
Residual		.030204	.001514
Intercept [subject $=$ id]	Variance	.007804	.001421

a. Dependent Variable: error.

Interpreting the effects

- As in GLM (Anova). We interpret the main effect looking at the means

Dependency of scores

We can quantify the dependency of scores within clusters (participants) by computing the intra-class correlation

$$
I C R=\frac{\sigma_{a}}{\sigma_{a}+\sigma}
$$

Estimates of Cowariance Parameters ${ }^{\text {a }}$

Farameter	Estimate	Std. Error	
Residual	.030204	.001514	
Intercept [subject = id]	Variance	.007804	.001421

σ
a. Dependent Variable: error.

Dependency of scores

We can quantify the dependency of scores within clusters (participants) by computing the intra-class correlation

$$
I C R=\frac{.0078}{.0078+.0302}=.205
$$

Estimates of Covariance Parameters ${ }^{\text {a }}$

Parameter	Estimate	Std. Error
Residual	.030204	.001514
Intercept [subject = id]	Variance	.007804

a. Dependent Variable: error.

GAMLj: mixed models

GAMLj: mixed models

GAMLj: random coefficients

Random intercepts

All possible random coefficients

$\checkmark \mid$ Random Effects		
Components		
Trial \| id		

GAMLj: fixed coefficients

GAMLj: Results: model

Model Info
Info

R-squared	Estimate Call	Linear mixed model fit by REML error $\sim 1+(1 \mid$ id $)+$ trial
	AlC	-463.8270 R-squared Marginal
0.0148		

R-squared Conditional: How much variance can the fixed and random effects together explain of the overall variance

R-squared Marginal: How much variance can the fixed effects alone explain of the overall variance

GAMLj: Results: random

	Random Components			
Variance of intercepts	Groups	Name	SD	Variance
	id	(Intercept)	0.0883	0.00780
	Residual		0.1738	0.03020

Note. Numer of Obs: 1000 , groups: id, 200

As long as the variance is nonzero, we are fine

GAMLj: Results: fixed

Fixed Effect ANOVA

F-tests	F	Num df	Den df	P	
	trial	4.72	4	796	$<.001$

Note. Satterthwaite method for degrees of freedom

Coefficients

Fixed Effects Parameter Estimates

Effect	Contrast	Estimate	SE	95\% Confidence Interval		df	t	P
				Lower	Upper			
(Intercept)	Intercept	0.49474	0.00832	0.4784	0.51104	199	59.4620	$<.001$
trial1	$2-(1,2,3,4,5)$	-0.01791	0.01099	-0.0395	0.00363	796	-1.6296	0.104
trial2	$3-(1,2,3,4,5)$	-7.92e-4	0.01099	-0.0223	0.02075	796	-0.0720	0.943
trial3	$4-(1,2,3,4,5)$	0.04094	0.01099	0.0194	0.06248	796	3.7246	$<.001$
trial4	$5-(1,2,3,4,5)$	0.00634	0.01099	-0.0152	0.02788	796	0.5764	0.564

Contrasts used to cast the categorical IV

GAMLj: plot

GAMLj: plot

Fixed Effects Plots

GAMLj: post-hoc

- As in GLM (Anova), sometimes we want to compares conditions using post-hoc tests. GAMLj allows for Bonferroni and Holm (more liberal) p-value adjustement
| Post Hoc Tests

Correction
\square No correction

- Bonferroni
(Holm

GAMLj: post-hoc

- The interpretation follows as for any standard ANOVA

Post Hoc Tests

Post Hoc Comparisons - trial

Comparison			Difference	SE	t	df	Pbonferroni	Pholm
trial		trial						
1	-	2	-0.01066	0.0174	-0.613	796	1.000	1.000
	-	3	-0.02778	0.0174	-1.598	796	1.000	0.552
	-	4	-0.06951	0.0174	-4.000	796	$<.001$	<. 001
	-	5	-0.03491	0.0174	-2.009	796	0.449	0.314
2	-	3	-0.01712	0.0174	-0.985	796	1.000	0.975
	-	4	-0.05885	0.0174	-3.386	796	0.007	0.007
	-	5	-0.02425	0.0174	-1.395	796	1.000	0.653
3	-	4	-0.04173	0.0174	-2.401	796	0.166	0.133
	-	5	-0.00713	0.0174	-0.410	796	1.000	1.000
4	-	5	0.03460	0.0174	1.991	796	0.468	0.314

Between and Repeated Measures Anova

linear mixed model

Standard design

- There are two groups - a Control group and a Treatment group, measured at 4 times. These times are labeled as 1 (pretest), 2 (one month posttest), 3 (3 months follow-up), and 4 (6 months follow-up).
- The dependent variable is a depression score (e.g. Beck Depression Inventory) and the treatment is drug versus no drug. If the drug worked about as well for all subjects the slopes would be comparable and negative across time. For the control group we would expect some subjects to get better on their own and some to stay depressed, which would lead to differences in slope for that group (*)

Standard design

- There are two groups - a Control group and a Treatment group, measured at 4 times. These times are labeled as 1 (pretest), 2 (one month posttest), 3 (3 months follow-up), and 4 (6 months follow-up).

Contingency Tables

Contingency Tables

	group		
time	1	2	Total
0	12	12	24
1	12	12	24
3	12	12	24
6	12	12	24
Total	48	48	96

[^0]
Standard design: data

- Data are in the long format

One subject 4 rows

	O subi	Q time	, group	- dv	
1	1	0	1	296	
2	$\bigcirc \quad 1$	1	1	175	
3	1	3	1	187	
4	1	6	1	192	
5	2	0	1	376	
6	2	1	1	329	
7	2	3	1	236	
8	2	6	1	76	
9	3	0	1	309	
10	3	1	1	238	
11	3	3	1	150	
12	3	6	1	123	
13	4	0	1	222	
14	4	1	1	60	
15	4	3	1	82	
16	4	6	1	85	
17	5	0	1	150	
18	5	1	1	271	

Mixed model

We can translate this in a standard mixed model

- Fixed effects? Intercept and group,time, and interaction effect
- Random effects? Intercepts
- Clusters? subjects

Variables

- Definition of the analysis

Model

Fixed Effects

Results

- Interpretation of results Mixed Model

Model	Model Info	
	I_ Info	
	Estimate	Linear mixed model fit by REML
	Call	dv $\sim 1+(1 \mid$ subj $)+$ time + group + time:group
	AIC	1011.895
	R-squared Marginal	0.554
	R-squared Conditional	0.768

Random Components

Random effects	Groups				Name
		Subj	(Intercept)	50.4	2539
		Residual		52.5	2761

Note. Numer of Obs: 96 , groups: subj , 24

Results

- Interpretation of results

Fixed F-tests	Fixed Effect ANOVA				
		F	Num df	Den df	p
	time	45.14	3	66.0	< 001
	group	13.71	1	22.0	0.001
	time:group	9.01	3	66.0	< 001

Note. Satterthwaite method for degrees of freedom

- For the moment we ignore the coefficients of the parameter estimates

Results: plot

- Interpretation of results

```
| Fixed Effects Plots
```


Fixed Effects Plots

Probing the results

- We can probe the interaction (and the pattern of means) in different ways (all available in GAMLj):
- Simple effects: Test if the effects of time is there (and how strong it is) for different groups
- Trend analysis: Checking the polynomial trend for time in general and for different groups
- Post-hoc test: not nice, but doable

Simple effect analysis

Simple Effects

- Simple effects are effects of one variable evaluated at one level of the other variable (like simple slopes for continuous variables)

Simple Effects

- Simple effects are effects of one variable evaluated at one level of the other variable (like simple slopes for continuous variables)

Simple Effects

- Simple effects are effects of one variable evaluated at one level of the other variable (like simple slopes for continuous variables)

Is the effect of B for A3 different from zero?

	A1	A2	A3	Totals
B1			E	
B2			E	
B3			E	
Totals				Is there an effect here?

Simple effects

- Internretation of results

Fixed Effects Plots

Is there an effect here?

Is there an effect here?
group
-1
-2

Simple effects

- We should declare which is the variable we want the effect for and which is the moderator

Simple effects

- We can say that the treatment works for both groups, although in a different way (recall the interaction)

Simple Effects ANOVA

Simple effects of time

Effect	Moderator Levels	df Num	df Den	F	p
time	group at 1	3.00	66.0	18.9	$<.001$
time	group at 2	3.00	66.0	35.3	$<.001$

In both groups there is an affect of time

Trend analysis

Polynomial Contrasts

Trend analysis is based on Polynomial contrasts: each contrast features weights which follow well-known shapes (polynomial functions)

$$
\begin{aligned}
& L=\left(\begin{array}{llll}
-3 & -1 & 1 & 3
\end{array}\right) \\
& Q=\left(\begin{array}{llll}
-1 & 1 & 1 & -1
\end{array}\right) \\
& C=\left(\begin{array}{llll}
-1 & 2 & -2 & 1
\end{array}\right)
\end{aligned}
$$

Trend analysis

- It is useful to test what kind of trend is present in the pattern of means
- It can be applied to any ordered categorical variables
- It is often used (and SPSS gives it by default) in repeated measures analysis
- One can estimate K-1 trends (linear, quadratic, cubic etc), where K is the number of means (conditions)

Trend analysis

- Each trend (linear, quadratic, etc) tests a particular shape of the mean pattern

Fixed Effects Plots

Linear: on average means go down (or up, not flat)

Trend analysis

- Each trend (linear, quadratic, etc) tests a particular shape of the mean pattern

Fixed Effects Plots

Quadratic: on average means go down and then up

Trend analysis

- Each trend (linear, quadratic, etc) tests a particular shape of the mean pattern

Fixed Effects Plots

Cubic: on average means fluctuate

Trend analysis

- Each significant trend justifying interpreting a particular characteristic of the mean pattern

Fixed Effects Plots

GAMLj:Trend analysis

- First, we should code the categorical variable "time" as a polynomial contrast

- We can leave "group" as deviation (default) which means "centered contrasts"

GAMLj:Trend analysis

- Second, look at the parameter estimates

Contrast interaction with group

GAMLj:Trend analysis

- Average effects of the contrasts

Fixed Effects Parameter Estimates

Effect	Contrast	Estimate	SE	95\% Confidence Interval		df	t	p
				Lower	Upper			
(Intercept)	Intercept	188.437	11.6	165.7	211.17	22.0	16.2444	< 0001
time1	linear	-114.356	10.7	-135.4	-93.34	65.9	-10.6626	<. 001
time2	quadratic	43.250	10.7	22.2	64.27	65.9	4.0326	<. 001
time3	cubic	-25.044	10.7	-46.1	-4.02	65.9	-2.3351	0.023

The pattern (on average) shows all three trends:

1. it goes down (linear)
2. it tend to go down and then up
3. if fluctuates a bit

GAMLj:Trend analysis

- Trend analysis by group

Fixed Effects Parameter Estimates

Effect	Contrast	Estimate	SE	95\% Confidence Interval		df	t	p
				Lower	Upper			
(Intercept)	Intercept	188.437	11.6	165.7	211.17	22.0	16.2444	< 001
time1	linear	-114.356	10.7	-135.4	-93.34	65.9	-10.6626	< . 001
time2	quadratic	43.250	10.7	22.2	64.27	65.9	4.0326	< 001
time3	cubic	-25.044	10.7	-46.1	-4.02	65.9	-2.3351	0.023
time 1 * group1	linear * 2-(1,2)	-0.894	10.7	-21.9	20.13	65.9	-0.0834	0.934
time2 $*$ group1	quadratic $* 2-(1,2)$	52.875	10.7	31.9	73.90	65.9	4.9301	<. 001
time3* group1	cubic $* 2-(1,2)$	-17.721	10.7	-38.7	3.30	65.9	-1.6523	0.103

Those tell us if the trend is different between the two groups:

Linear: no
Quadratic: yes
Cubib: no

Both groups decreases Group 2 curve is stronger They both fluctuates a bit

GAMLj:Trend analysis

- Trend analysis by group

Fixed Effects Parameter Estimates

Effect	Contrast	Estimate	SE	95\% Confidence Interval		df	t	p
				Lower	Upper			
(Intercept)	Intercept	188.437	11.6	165.7	211.17	22.0	16.2444	< 001
time1	linear	-114.356	10.7	-135.4	-93.34	65.9	-10.6626	<. 001
time2	quadratic	43.250	10.7	22.2	64.27	65.9	4.0326	< 0001
time3	cubic	-25.044	10.7	-46.1	-4.02	65.9	-2.3351	0.023
time * group 1	linear * 2-(1,2)	-0.894	10.7	-21.9	20.13	65.9	-0.0834	0.934
time $2 *$ group1	quadratic $* 2-(1,2)$	52.875	10.7	31.9	73.90	65.9	4.9301	< 001
time $3 *$ group 1	cubic * 2-(1,2)	-17.721	10.7	-38.7	3.30	65.9	-1.6523	0.103

Those tell us if the trend is different between the two groups:

Linear: no
Quadratic: yes
Cubic: mild

Both groups decreases One group has a stronger curve

They both fluctuates a bit

GAMLj:Trend analysis

Fixed Effects Plots

Those tell us if the trend is different between the two groups:

Linear: no
Quadratic: yes
Cubic: mild

Both groups decreases Group 2 curve is stronger The fluctuation is similar

GAMLj:Trend analysis

- Simple effects trend analysis: We can now look at the parameters of the simple effects analysis

Simple Effects Parameters

Time 1: linear Time2: quadratic Time3: cubic

Simple effects of time

Effect	Moderator Level	Estimate	SE	t	p
time1	group at 1	-113.46	15.2	-7.481	$<.001$
time2	group at 1	-9.63	15.2	-0.635	0.528
time3	group at 1	-7.32	15.2	-0.483	0.631
time1	group at 2	-115.25	15.2	-7.599	$<.001$
time2	group at 2	96.13	15.2	6.338	$<.001$
time3	group at 2	-42.76	15.2	-2.820	0.006

- In group 1 there's only a linear trend
- In group 2 all three trend are there

GAMLj:Trend analysis

- Simple effects trend analysis: We can now interpret the parameters of the simple effects analysis

Fixed Effects Plots

- In group 1 there's only a linear trend
- In group 2 all three trends are there

Interactions between continuous variables

Two continuous variables

- In the multiple regression we have seen, lines are parallels, making a flat surface
- The effect of one IV is constant (the same) for each level of the other

IV Spin Plot

Interactions lines

- Interaction: Lines are not parallel
- The effect of one IV is different for each level of the other IV

Interactions line

- The bigger the interaction, the less parallel the lines: Bigger difference in the slopes

Interactions line

- The bigger the interaction, the less parallel the lines: Bigger difference in the slopes

Multiplicative effect

- The interaction effect is captured in the regression by a multiplicative term

The product of the two independent variables

$$
\hat{y}_{i}=a+b_{1} \cdot x_{1}+b_{2} \cdot x_{2}+b_{\mathrm{int}} x_{1} x_{2}
$$

The coefficient of x_{1} is changing as x_{2} changes

$$
\hat{y}_{i}=a+\overbrace{\left(b_{1}+b_{\mathrm{int}} x_{2}\right) \cdot x_{1}+b_{2} \cdot x_{2}}^{\boldsymbol{A}}
$$

The effect of one IV changes at different levels of the other IV

Conditional effect

- We say that the effect of one IV is conditional to the level of the other IV

$$
\begin{gathered}
\begin{array}{|l}
\hline \begin{array}{l}
\text { For Women }(0) \text { the } \\
\text { slope is different }
\end{array} \\
\hat{y}_{i}=a+\left(b_{2}+b_{\text {int }} 0\right) \cdot x_{2}+b_{1} \cdot 0 \\
\ldots \text { than for Men }(1)
\end{array} \\
\hline
\end{gathered}
$$

$$
\hat{y}_{i}=a+\left(b_{2}+b_{\text {int }} 1\right) \cdot x_{2}+b_{1} \cdot 1
$$

Conditional vs linear effect

- A linear effect (when no interaction is present) tells you how much change there is in the DV when you change the IV

$$
\hat{y}_{i}=a+b_{1} \cdot x_{1}+b_{2} \cdot x_{2}+b_{\mathrm{int}} x_{1} x_{2}
$$

Change in the DV

- An interaction effect (the B of the product term) tells you how much change there is in the effect of one IV on the DV when you change the other IV

$$
\hat{y}_{i}=a+\left(b_{1}+b_{\text {int }} x_{2}\right) \cdot x_{1}+b_{2} \cdot x_{2}
$$

Change in the effect
Change in the DV

Terminology

- When there is an interaction term in the equation, one refers to the linear effect (the ones that are not interactions) as the first-order effect

$$
\hat{y}_{i}=a+b_{1} \cdot x_{1}+b_{2} \cdot x_{2}+b_{\mathrm{int}} x_{1} x_{2}
$$

First order effects

First-order effects with interaction

- When the interaction is in the regression, the first order effects become the effect of the IV while keeping the other IV's constant to zero

$$
\hat{y}_{i}=a+b_{1} \cdot x_{1}+b_{2} \cdot 0+b_{\mathrm{int}} x_{1} 0=a+b_{1} \cdot x_{1}
$$

Making zero meaningful

- We can always make zero a meaningful value by centering the variables before computing the product term:

For each participant, compute a new variable as the old minus the average

$$
c=x_{1}-\bar{x}_{1}
$$

The new variable has mean $=0$

Centering

- The first-order effects computed on centered variables represent the average effect (the one in the middle) of the IV, across all levels of the other IV

Simple slope analysis

- We can study the interaction by evaluating the effect of one
 SD) levels of the moderator
- We pick three lines out of many in the regression plane, and plot them

Simple slope analysis

- We represent them in two dimensions

Example

- 50 different school classes were assessed on students reading ability and selfefficacy. In each class, the teacher was assessed as well for her/his self-efficacy.

1182 subjects 50 school clasess

Frequencies of schoolclass

Levels	Counts	\% of Total	Cumulative \%
1	24	2.0%	2.0%
2	23	1.9%	4.0%
3	24	2.0%	6.0%
4	24	2.0%	8.0%
5	23	1.9%	10.0%
6	25	2.1%	12.1%
7	22	1.9%	14.0%
8	25	2.1%	16.1%
9	23	1.9%	18.0%
10	24	2.0%	20.1%
11	24	2.0%	22.1%
12	23	1.9%	24.0%
13	23	1.9%	26.0%
14	23	1.9%	27.9%
15	24	2.0%	29.9%
16	24	2.0%	32.0%
17	25	2.1%	34.1%
18	24	2.0%	36.1%
19	25	2.1%	38.2%
20	24	2.0%	40.3%
21	24	2.0%	42.3%
22	23	1.9%	44.2%
23	23	1.9%	46.2%
24	23	1.9%	48.1%
25	25	2.1%	50.3%
-	--	\ldots.	.---

Example

- Efficacy and reading ability varies from participant to participant, whereas teaching efficacy varies from class to class, but not within each class

	- efficacy	read	teacheffic	Schoolcla...
T0	\cdots	<0	<2	
17	57	8	22	1
18	41	13	22	1
19	43	16	22	1
20	47	17	22	1
21	58	13	22	1
22	41	8	22	1
23	42	14	22	1
24	30	11	22	1
25	54	16	21	2
26	44	11	21	2
27	75	17	21	2
28	48	12	21	2
29	50	11	21	2
30	61	20	21	2
31	31	15	21	2
32	46	9	21	2
33	61	20	21	2
n.	10	11	n	\bigcirc

Example

- We wish to estimate the effect of reading ability to participants selfefficacy, the effect of teacher efficacy and the interaction between reading ability and teacher efficacy

$$
\hat{S E}=a+b_{1} R E A+b_{2} T E+b_{3} T E \cdot R E A
$$

- We want to use a mixed model to take into the account the school class clustering effect

Mixed model

We can translate this in a standard mixed model

$$
\hat{S E}=a+b_{1} R E A+b_{2} T E+b_{3} T E \cdot R E A
$$

- Fixed effects? Intercept and read ,teacher, and interaction effect
- Random effects? Intercepts read effect
- Clusters? School class

Example jamovi

- First we define the variables in the model and their role

Example: fixed effects

- We define the fixed effects in the model

Main effects and interactions

Example: random effects

- We define the random effects in the model

Main that can be computed within each school class

Results: model recap

- R-squared measures

Model Info

Info	
Estimate	Linear mixed model fit by REML
Call	efficacy $\sim 1+$ (read $+1 \mid$ schoolclass $)+$ read + teacheffic + teacheffic:read
AlC	8788.131
R-squared Marginal	0.119
R-squared Conditional	0.551

Results: model fixed effects

- F-tests and p-values: we interpret them as any regression with interaction

Fixed Effect ANOVA

	F	Num df	Den df	P
read	23.84	1	47.0	$<.001$
teacheffic	1.73	1	47.9	0.194
read.teacheffic	9.05	1	45.5	0.004

Note. Satterthwaite method for degrees of freedom

Results: model fixed effects

- B coefficients and p-values: To interpret the linear effects we should know the meaning zero of the independent variable: jamovi centers the independent variable by default

B coefficients

Fixed Effects Parameter Estimates

Effect	∇			95\% Confidence Interval		df	t	p
	Contrast	Estimate	SE	Lower	Upper			
(Intercept)	Intercept	49.8077	1.0620	47.7262	51.889	48.1	46.90	<. 001
read	read	0.8262	0.1692	0.4945	1.158	47.0	4.88	<. 001
teacheffic	teacheffic	0.2239	0.1701	-0.1095	0.557	47.9	1.32	0.194
read * teacheffic	read * teacheffic	0.0809	0.0269	0.0282	0.134	45.5	3.01	0.004

Linear effects are average effects

Centering IV

- Jamovi by default centers the IVs to their means, but different options are available

- Centered: centered using total sample mean
- Cluster-based centered: centered using each cluster mean
- Standardized: using mean and standard deviation of the total sample
- Cluster-based Standardized: using means and standard deviations of each cluster

Simple slope analysis

- Estimating the effect of one independent variable (read) at different levels of the moderator (teachefficacy) and make a plot

Simple slope analysis

- Estimating the effect of one independent variable (read) at different levels of the moderator (teachefficacy) and make a plot

Fixed Effects Plots

Simple slope analysis

- One can add confidence bands: confidence intervals for continuous predicted values

Fixed Effects Plots

- At the moment, the moderator is set to +1SD, mean, -1 SD. More options will be added in the future

Simple slope analysis

- Estimating the effect of one independent variable (read) at different levels of the moderator (teachefficacy) and test the effects

\checkmark Simple Effects

Simple slope analysis

- Estimating the effect of one independent variable (read) at different levels of the moderator (teachefficacy) and test the effects

Simple Effects ANOVA

Simple effects of read						
Effect	Moderator Levels	df Num	df Den	F	P	
read	teacheffic at -6.26	1.00	46.7	1.78	0.188	
read	teacheffic at 0	1.00	47.9	23.83	$<.001$	
read	teacheffic at 6.26	1.00	47.5	31.27	$<.001$	

- At the moment, the moderator is set to +1SD, mean, -1 SD. More options will be added in the future

Simple slope analysis

- Estimating the effect of one independent variable (read) at different levels of the moderator (teachefficacy) and test the effects

Simple Effects Parameters

Simple effects of read					
Effect	Moderator Level	Estimate	SE	t	p
read	teacheffic at -6.26	0.320	0.239	1.34	0.188
read	teacheffic at 0	0.826	0.169	4.88	$<.001$
read	teacheffic at 6.26	1.333	0.238	5.59	$<.001$

- At the moment, the moderator is set to +1 SD, mean, -1 SD. More options will be added in the future

Questions

- How many clusters, how many scores within cluster
- Convergences
- Multiple classifications
- Subjects by items design

[^0]: *) https://www.uvm.edu/~dhowell/StatPages/More_Stuff/Mixed-Models-Repeated/Mixed-Models-for-Repeated-Measures $1 . h t m 1$

