

httpswww.vox.comfuture-perfect21504366science-replication-crisis-peerreview-statisticsfbclid=IwAR3IIJXfXBVwFWaE5aw4RXHKY

NHST, CI, EFFECT SIZES AND STATISTICAL POWER

Ph.D Programme in Psychology, Linguistics and Cognitive Neurosciences

QUICK REFRESH ON GLIMs

- From the General Linear Model to the Generalised Linear Model
- Results form first application
- Bridge from GLIM to GLIMM
- Which assumption of the GLIM are violated when GLIMM is needed?
- Are there any ways for checking the need for a GLIMM instead of a GLIM?

PLAN OF THE LESSON

- Part I
 - Icebreakers: NHST and *p*-values
- Part II
 - Effect sizes, P-values, & Power
 - The language of power analysis
 - Types of power analysys

• Part III

- Conducting, running and reporting a power analysis
- Software for Power Analysis:
 - G*Power
 - R (introduction)

Ph.D. School - University of Milano-Bicocca Prof. Franca Crippa

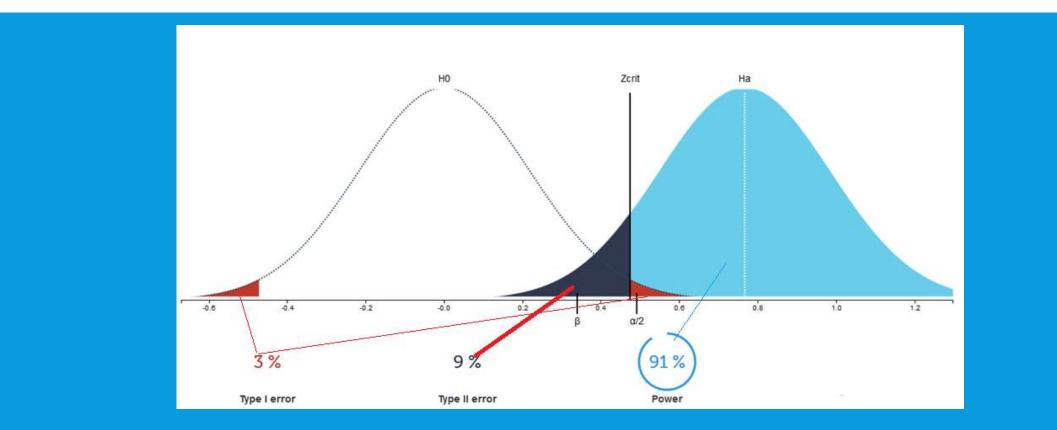
Icebreakers: NHST and *p*-values

A SHORT PREMISE: SOME HISTORY

- Ronald Fisher in the 20's, described the testing of a null hypothesis and used *p* values to this purpose. He did not set the 0.05, 0.01 criteria
- Neyman and Pearson, in the 30's, described the extension of Fisher's model by adding the notion of the alternative or research hypothesis
- The use of the *p*-value as compared with standards of 0.05 and 0.01 followed soon after that
- In early 90's there were suggestions to include effect sizes in reporting (APA Style Manual, 1994).
- In 1999, the Task Force on Statistical Inference (TFSI) was formed to report on the controversy about significance testing and to promote the use of alternative methods The TFSI also described the different effect sizes that could be used.
- Many of the methods for effect size were introduced a long time ago, pre-Fisher, as r and η
- Fisher described eta-squared or the correlation ratio as a measure of variance accounted for
- Cohen's *d* about 1962 Glass effect size about 1976 Hedges effect size about 1981.

NULL HYPOTHESIS SIGNIFICANCE TESTING (NHST)

- Critical value and corresponding *p* level of significance (criterion of significance):
 - *p* value the proportion of null experiments, out of all possible experiments, that will turn out significant even when the null hypothesis is true (α usually o₅, more seldom .01)
- It is related to sampling (false positive) [Analogously for type II error, false negative].
 - We sample (evidence) from all possible values in the population (the sample space). In the long run, sooner or later, we will sample from the 'extremes', which are eccentric and in this case the evidence not the general 'true' behavior.
- *p*-value: probability of observing test statistics greater than the (absolute value of) the critical value, under the null hypothesis (false positive)


****	CAN P-VALUES BE MEASLEADING?	¥
***	(I WANT TO SEE THE STARS!)	***
*		****

- Statistical significance provides no information about size of effects and other aspects. Many *p*-values are not very meaningful if not read together with the effect size and in a replicability conceptual framework.
- *p*-values can be so specific that they don't tell researchers what they need to know
 - Information on p cannot be used to make decisions about how to use the results
 - *p*-values indicate only that a difference could be or should not be attributed to chance in extracting that specific sample from all possible sample (this holds under the NHST).

NHST: THE LOGIC REJECTING OR FAILING TO REJECT (FTR)

	Reality: NO EFFECT		Type I and II errors Coeteris paribus, when
Research concludes: FAIL TO REJECT NULL; NO EFFECT	CORRECT FTR		type I decreases, type II increases
Researcher concludes: REJECT NULL; EFFECT EXISTS	TYPE 1 ERROR (α)	CORRECT REJECT (1-β)	

NHST: THE GRAPH

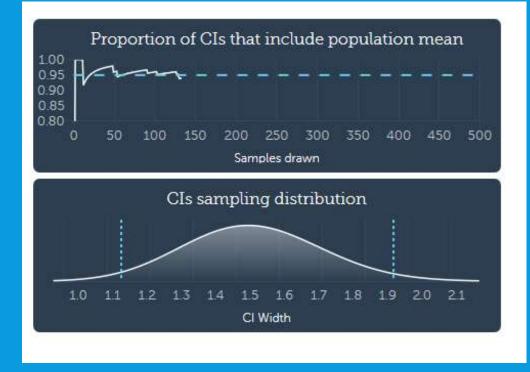
TYPE I ERROR RATE

- The first error rate, the significance level, is chosen by the experimenter and is conventionally one of 5%, 1% or 0.1% or (P=0.05) (P=0.01) or (P=0.001). Each error rate gives a threshold value (on the X axis) that must be exceeded for significance.
- Interpretation: in 5% of experiments in which there is no real treatment effect the t statistic will exceed the threshold value due to chance in sampling
- Choice of Type I error rate. The smaller the rate chosen the stronger the evidence that there is an effect of treatment.

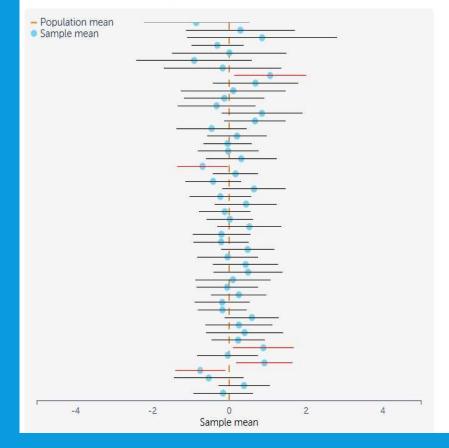
The typical reference t-test for the difference in the means of two population Example: difference in height between basket players and the general population, treatment vs control.

BEWARE

- *nominal alpha*: the probability of making a Type I error when all the assumptions are met
- <u>real alpha</u>: the probability of making a Type I error when one or more of the assumptions are violated
- Real alpha higher then nominal alpha: <u>alpha inflation</u>


NHST VERSUS CI

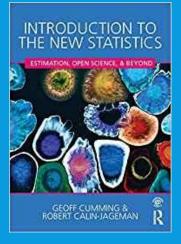
+	+.	-	


	mean under the null hypothesys: 120 sentences								
	t	df	Sign. (two tails)	mean diff	959 Iower	6 CI upper			
tot_frasi	8462673,000	101	,000	67049020,00	51332092,00	82765947,00			

What is the main difference between NHST and CI?

- NHST: acceptance region is the bilateral CI under the null hypothesis, i.e. when the value of the null hypothesis is considered the TRUE mean in the population
- CI: no hypothesis or knowledge whatsoever about the value of the mean (or means difference) in the population
- Is the CI informative? When its precision its high, i.e. when the CI width is small: (upper limitlower limit)

95% confidence intervals



NEW VERSUS OLD (?)

The accent is on replicability. The 'novelty' lies in this perspective.

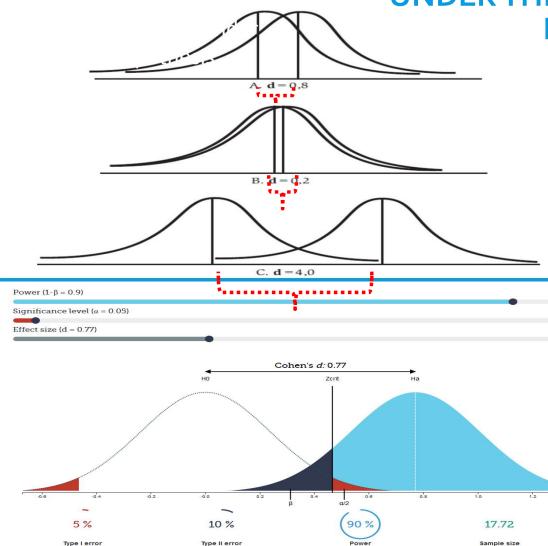
The need for a larger use of CIs has been underlined by APA and it does not imply NHST neglection.

Contents have been largely known and discussed (see article discussing NHST and CI, written in 1979 and later papers in *Psychological Science*)

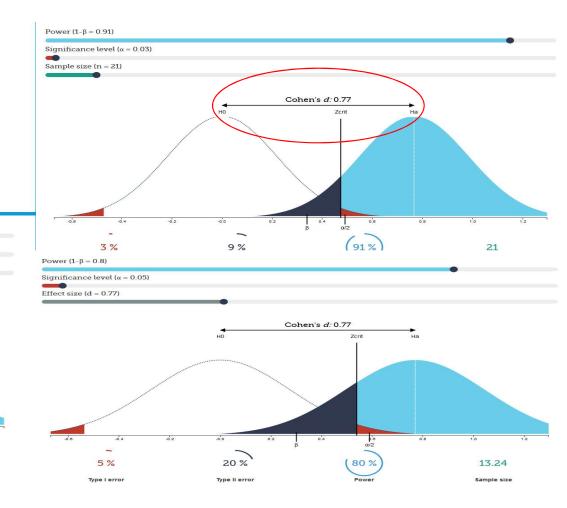
Understanding The New Statistics Effect Sizes, Confidence Intervals, and Meta-Analysis

Effect sizes, P-values, sample size and Power

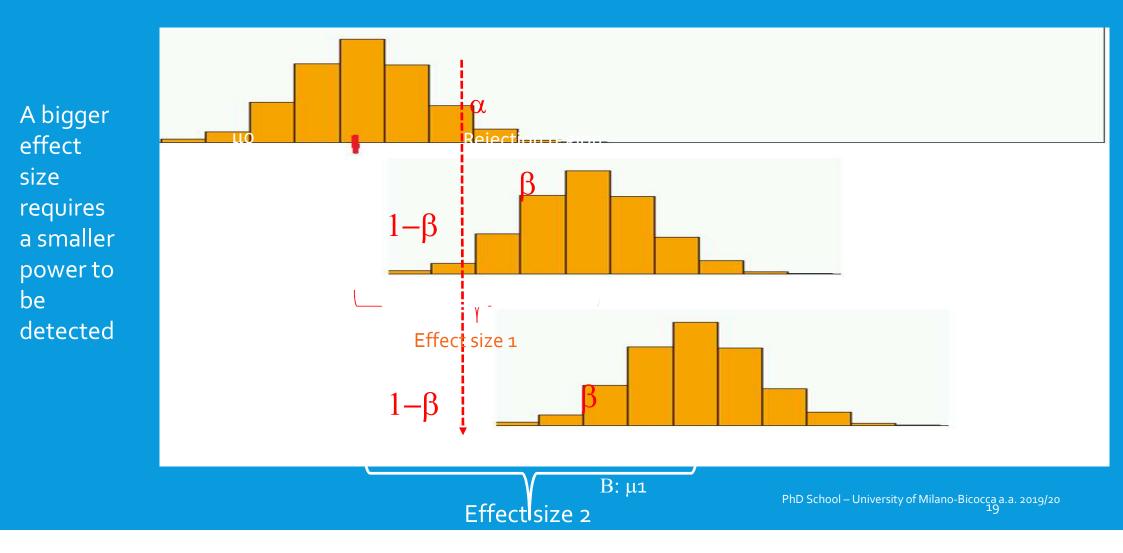
TYPE I ERROR RATE AND THE EFFECT SIZE


- In research, p values are one of the two measures used to report study results. The other one is the
 effect size (ES).
- An ES is what the result found, e.g. the difference found in the mean scores between two groups. It measures the strength of the result and it is pure, as it does not depend on sample size., unlike p-values.
- ES = (Meantreatment Meancontrol)/Sdpooled

It is a pure number!


- A general definition of ES is that it is a family of indexes that measure the magnitude of a treatment effect
- What is the probability of detecting an effect when the effect exists in the population?
- Real effects may be very important or very unimportant. Is the ES generalizable?

EFFECT SIZE


- Knowledge of the magnitude of a treatment effect is qualitatively different than knowing if the effect is real.
- Real ES may be very important or very unimportant (negligible).
- Two types of ES:
 - 1. standardized units of difference
 - 2. Variance-accounted-for statistics

UNDER THE NORMALITY ASSUMPTION: THE BIGGER D, THE BETTER

Bigger and bigger effect size d

ES IN STANDARDIZED UNITS

An ES is the observed difference between means, proportions, etc. To be useful for comparative purposes, this difference needs to be standardized. Standardization relies on the *pooled variance*, i.e. on the variance computed on all subjects.

- Cohen's d (most common)
- Glass's g

EFFECT SIZES IN STANDARDIZED UNITS OF DIFFERENCE

- Observed difference on means, proportions, etc. The difference needs to be standardized
- Cohen's d (most common), Glass's g'

First recognized effect size. Mean differences in units of common population standard deviation (called pooled sd). Cohen used this as the basis his research on power.

Glass proposed a modification of the Cohen *d* the common standard deviation replaced with the standard deviation of the control group. PhD School – University of Milano-Bicocca a.a. 2019/20 21

VARIANCE-ACCOUNT-FOR STATISTICS

- Very similar to the correlation coefficient (*r*) and the coefficient of determination (*r*₂). These provide indications of the proportion of variance that can be attributed to the treatment.
- For mixed models, the intraclass correlation coefficient, estimates the effect size. It measures the proportions of total variance in the second (higher) level of the model.
- In case of nominal variables, Cramer's V is applied, as a transform of the Chi-square
 - Eta-squared, η₂
 - Intraclass Correlation, ICC
 - Cramer's V

EFFECT SIZES AS VARIANCE-ACCOUNTED-FOR STATISTICS

Model	Effect size		
Regression, anova	Eta-squared, η2 More often used in meta-analysis A η ² of 0.25 would indicate that 25% of thetotal variation is accounted for by the treatment variation.		$\eta^{2} = \frac{SS_{Treatment}}{SS_{Total}}$
Mixed models	intraclass Correlation, ICC Interaction can be tricky: Results showed that power varies significantly as a function of model type and whether or not the model is the main model for the study	ρ=	e between level-two units
chi-square applications	Cramwhere $df^* = \min(r - 1, c - 1)$ and $r = \text{number of rows and } c = \text{number of rows}$	of columns	$V = \sqrt{\frac{\chi^2}{n \cdot df^*}}$
Mathieu, J Relating η2 t	o Effect Size <i>d (Coehn, 1988)</i>		$r = \frac{d}{\sqrt{d^2 + 4}}$

EFFECT SIZES THRESHOLDS

Cohen's Standard	d	r	r ²		general			
LARGE	0.8	.371	.138					
	0.7	.330	.109	Ву				
	0.6	.287	.083	stuc				
JEDIUM	0.5	.243	.059	desi	gn 🖌 📃			
	0.4	.196	.038					
	0.3	.148	.022			Effec	t Size Bench	marks
SMALL	0.2	.100	.010		Statistic	Small	Medium	Large
	0.1	.050	.002	Cramer's V	Means - Cohen's d	0.2	0.5	0.8
	0.0	.000	.000	Cramer's v	ANOVA - f	0.1	0.25	0.4
df*	ŧ	small	medium	large	ANOVA - eta squared	0.01	0.06	0.14
1		.10	.30	.50	Regression f-test	0.02	0.15	0.35
2		.07	.21	-35	Correlation - r or point serial	0.1	0.3	0.5
		.06	.17	.29	Correlation - r squared	0.01	0.06	0.14
3		.00			Conclation - 1 Separed			
		.05	.15	.25	Association - 2 x 2 table -OR	1.5	3.5	9

INTERPRETING THE EFFECT SIZES/ STANDARDIZED MEASURES

• A *d* or *g*A *d* or *g*' or *g* of 1.2 indicates that the range of difference among the means is one and two-tenths of the size of the standard deviation.

Cohen chose three values that had been used extensively as standards for effect size.

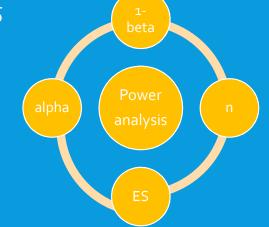
Beware: Cohen warned about using these standards in practice. The major problem is that effect sizes are influenced by the number of samples and the sample sizes.

POWER

- High error rate II β means that a real difference between treatments is unlikely to be detected.
- A rate of 0.5 means that 50% of all possible experiments will not detect effects.
- Power = 1β = : The probability of rejecting the null hypothesis when it is false, i.e. to detect a real difference.
- In everyday language, power is the probability of concluding that the group means differ on the basis of your sample evidence, when the groups means actually differ in the population.

SAMPLE SIZE, TYPE I ERROR RATE, EFFECT SIZE AND POWER POWER ANALYSIS

• Type II error rate is related to:


sample size Effect size SD Type I error rate a (the smaller type I error, the higher type II, coeteris paribus).

- These factors ES, sample size, a , power, form a closed system. Once any three are established, the fourth is completely determined.
- What is a power analysis? A process by where one of several statistical parameters can be calculated given others.
- Usually, a power analysis calculates needed sample size given some expected effect size, alpha, and power.

A POWER ANALYSIS INVOLVES FOUR STATISTICAL MEASURES, 'FIXING' THREE OF THEM RESEARCHERS SOLVE FOR THE FOURTH

Probability of Type I error α

- Probability of finding significance where there is none
- False positive
- Usually set to .05

n

• The sample size - usually the parameter you are solving for

Power 1-b

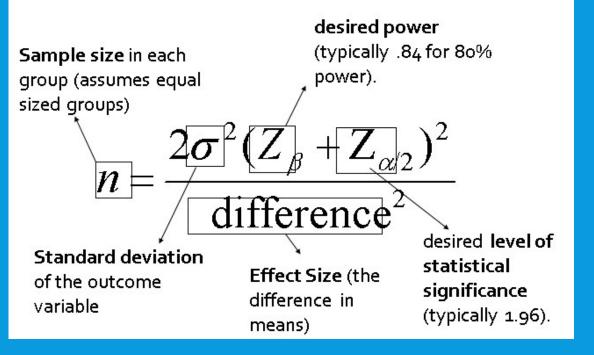
- Probability of finding true significance
- True positive
- e beta is :
- Usually set to .80

ES

- The 'expected effect' is ascertained from:
- Pilot study results
- Published findings from a similar study or studies
- Sometimes calculated from results if not reported
- Field defined 'meaningful effect'
- knowledge of the field)

THE LANGUAGE OF POWER ANALYSYS

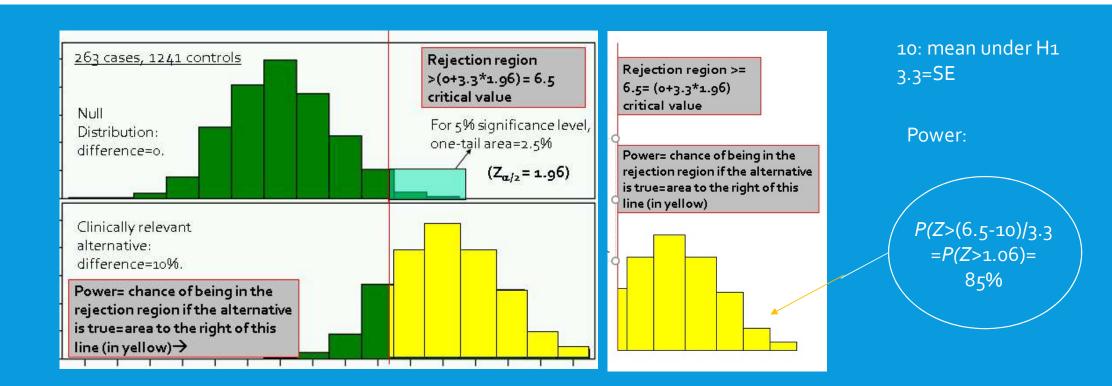
Factors Affecting Power

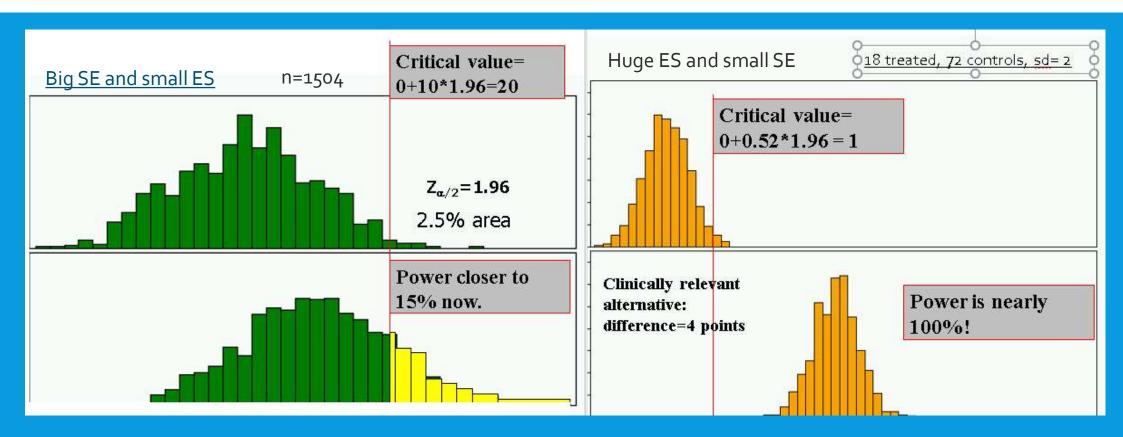

- 1. Size of the effect
- 2. Standard deviation of the characteristic
- 3. Bigger sample size
- 4. Significance level desired

Other factors in GLIMs

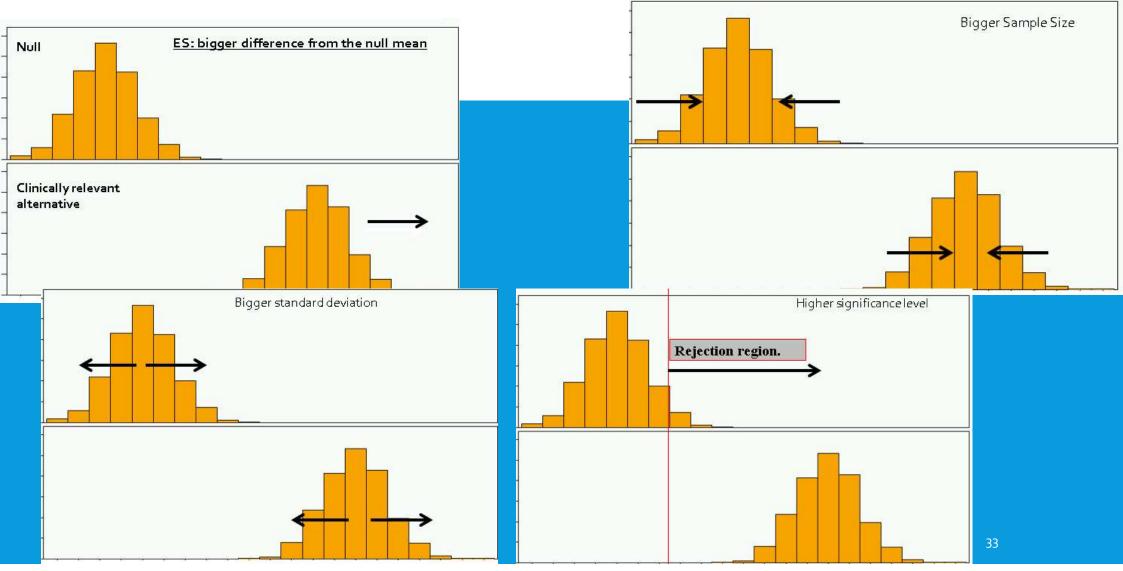
In a more complex model with more parameters or with more complex effects, power because SE gets larger

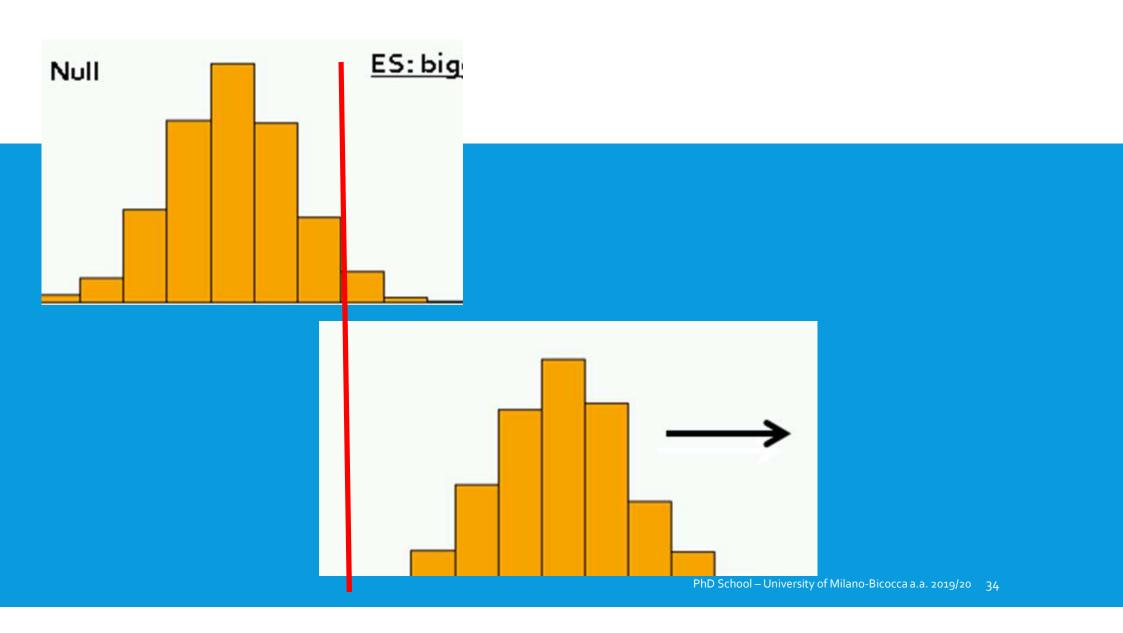
Bigger error (unexplained variance and therefore smalle R² power larger error means larger standard error of parameter estimates.


THE LANGUAGE OF POWER/2


All-purpose power formula

$$Z_{power} = \frac{\text{difference}}{\text{standard error(difference)}} - Z_{\alpha/2}$$


HOW α (es, etc.) DETERMINES POWER



HOW ES AND VARIABILITY DETERMINES POWER

A BRIEF GRAPHICAL OVERVIEW

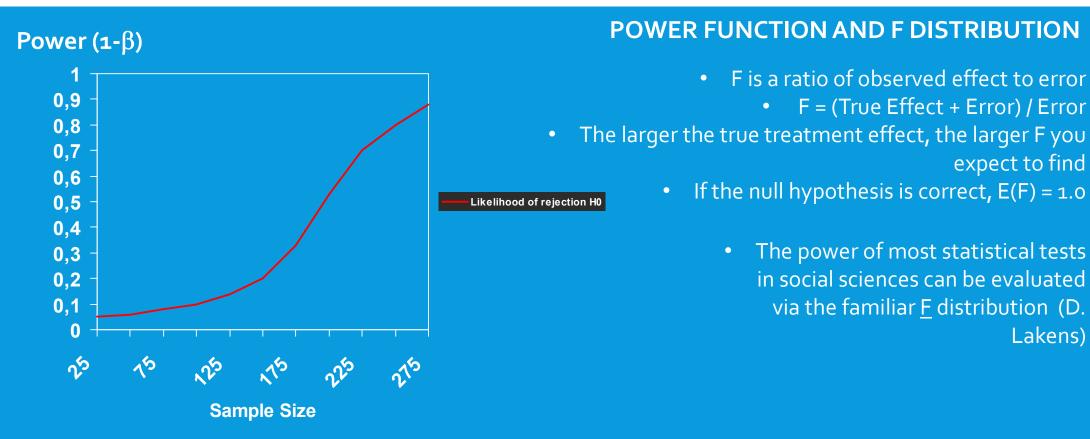
TYPES OF POWER ANALYSIS

Power conventions

- Desired level of power: the more the better, value of .80 minimum threshold standard
- Higher power means more precision in estimating ES (tighter CI)

Strategies, determine:

- number of subjects needed (n*) for given level of power (e.g. .80)
- power for a given design (e.g., completed experiment with fixed n)


Types of power analysis

A priori: compute n, given alpha, power, ES (advised)

Post-hoc: compute power, given alpha, n, ES (controversial, in designing a study you need a priory)

Criterion: compute alpha, given power, ES, n (not much used)
Sensitivity: compute ES, given alpha, power, n (useful for Minimal Detectable Effect MDE)

POWER FUNCTIONS

HOW TO INCREASE POWER

Increase n

 Effects of adding more subjects are not identical to those of adding more observations

Increase ES

- Choose a different research question
- Use stronger treatments or interventions
- Use better measures

Effects of implementing power analysis:

• Stronger studies: larger samples, better measures

• Fewer studies: adequate studies are harder to do than most people realize

CONDUCTING A POWER ANALYSIS

Are all tests the same in the face of power?

- Some statistical tests are more powerful (i.e., better at detecting real/non-zero population effects) than others.
- Parametric tests often are more powerful than non-parametric, because they work with more information from the data.
- GLIM is Minimum Variance (Estimator) when assumptions are met

Power can be calculated for tests of

•Effect for single regressor, subset of regressors controlling for other regressors in model, or all regressors in the model.

CONDUCTING A POWER ANALYSIS

A priori power analysis (sample size planning)

- set α level (max .o5), and desired power (min .8o)
- Specify (calculate)
 expected
 ES(conservative).
- n is a function of the above factors.

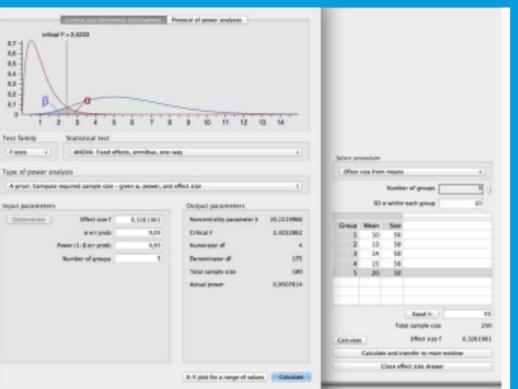
- For GLIMs G*Power http://www.gpower.hhu.de/
- Most popular by far, free download available for both the PC and Mac.
 - It includes an effect size calculator
 - On online tutorial manual

Software

For (few) GLIMMs Optimal Design <u>http://hlmsoft.net/od/</u>

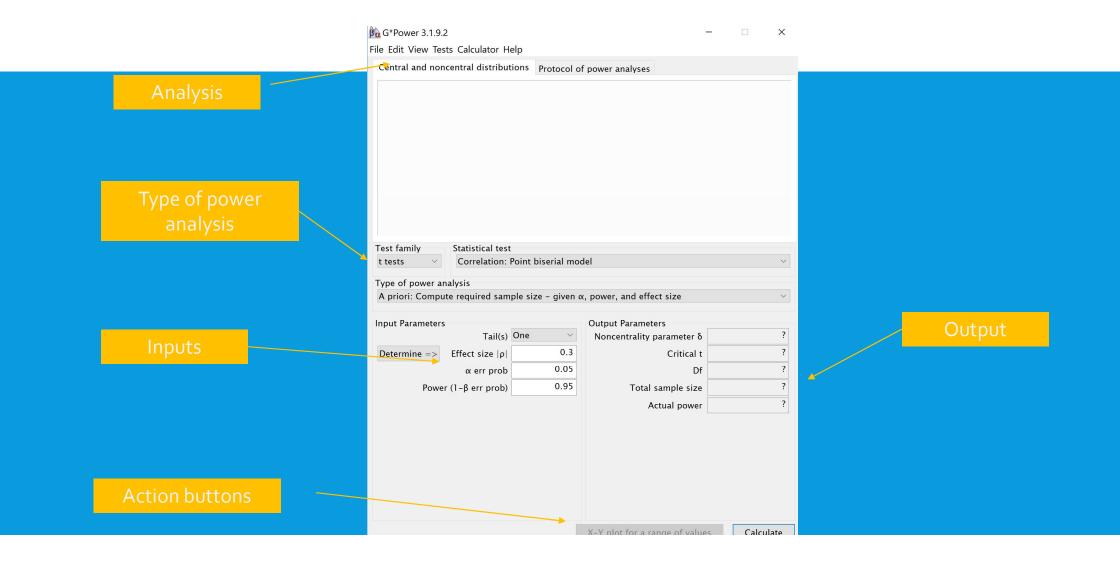
It is somehow related to HLM, the free version is very basic

Commercial scientific software Mplus GLIMMs, Latent Models • HLM GLIMMs


All models open source R packages

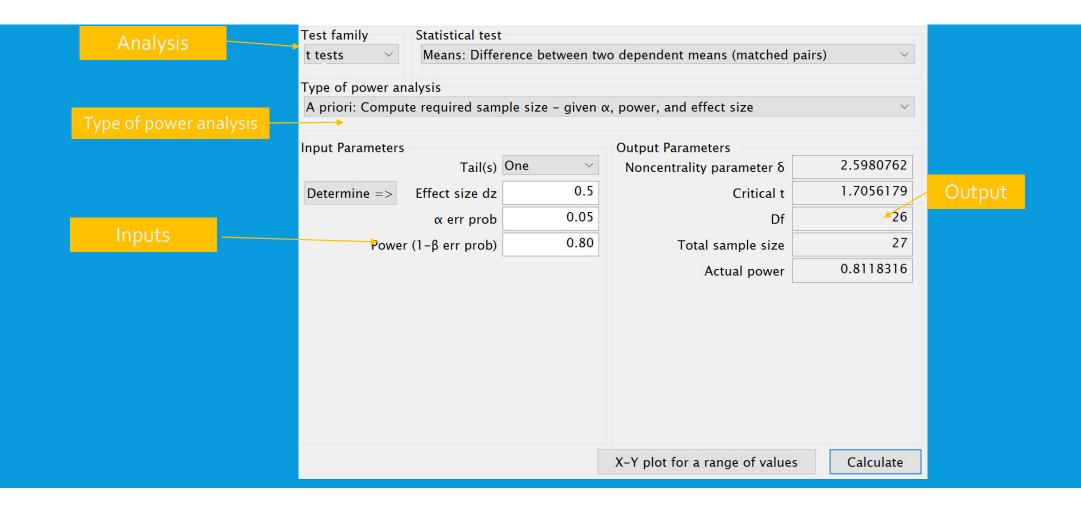
CONDUCTING A POWER ANALYSIS WITH G*POWER

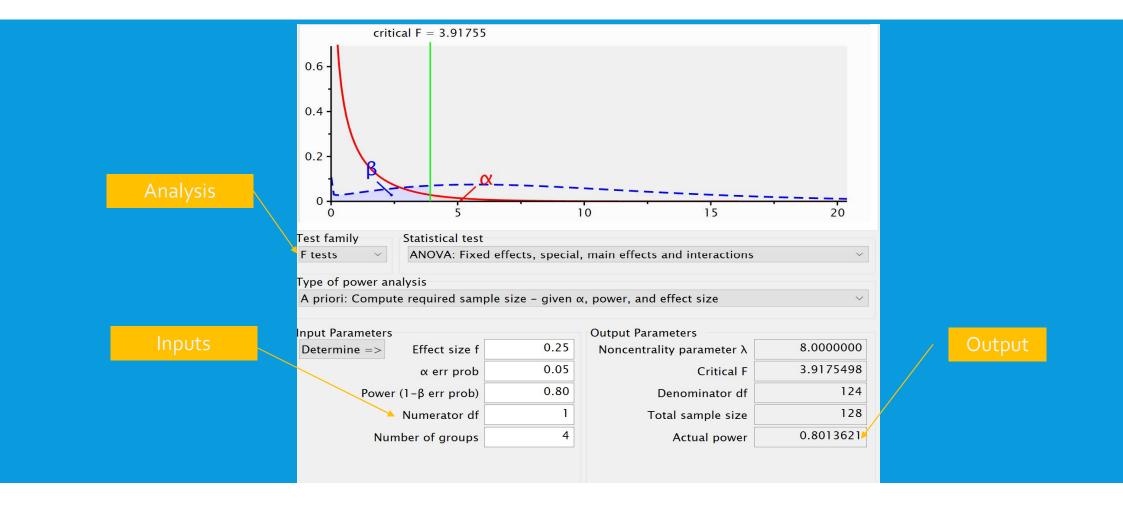
Detailed illustrations can be found on the related UCLA Idre web page: https://stats.idre.ucla.edu/other/gpower/


The UCLA idre web page provides also an introductory seminar to power analysis https://stats.idre.ucla.edu/other/mult-pkg/seminars/intropower/

CONDUCTING A POWER ANALYSIS WITH G*POWER

Big GPower 31.9.2 X File Edit View Tests Calculator Help Central and noncentral distributions Prosocol of power analyses	Two windows	G-Power: how to run power analysis
Test ferminy Statistical test Ttest ✓ Correlation: Four biserial model ✓ Type of poses analysis ✓	 Central and non central sampling distributions Protocol of power analysis 	Central and none Correlation and regression Means Proportions Proportions Gameric Two dependent groups (matched pairs) Two independent groups T
A priori Compute required sample size - given a, power, and offers size V Input Parameters Talksi One V Talksi One Value Parameters Value Parameters Determine -> Effect size (a) 0.3 ere prob 0.55 Of Rever(-)	The only difference is that 'protocol' allows to save, cancel and print	Many groups: ANCOVAL Main effects and interactions Many groups: ANOVALOne-way (one independent variable) Many groups: ANOVAL Main effects and interactions (two or more independent variables)
Actual power 2 PhD School – University of Milano-Bit	cocca a.y. zosiljisg 7	Text family Statistical text Repeated measures: Between factors, ANOVA-approach Text family Statistical text Repeated measures: Between factors, MANOVA-approach Itests Correlation: Point biserial model Repeated measures: Within factors, ANOVA-approach Type of power analysis Repeated measures: Within factors, MANOVA-approach
		A priori: Compute required sample size - given a, power, Repeated measures: Within- between interactions, ANOWA-approach Repeated measures: Within- between interactions, MANOWA-approach
		Input Parameters Ov Tail(s) One Determine => Effect size (p) 0 err prob 0.05 Power (1-β err prob) 0.55 Power (1-β err prob) 0.55

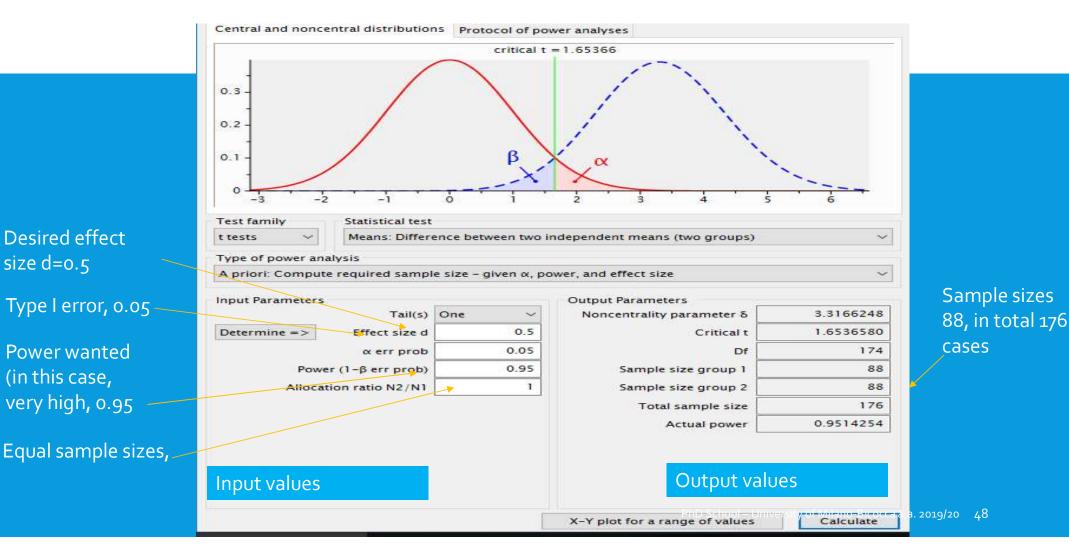

G*Power


Two sample means

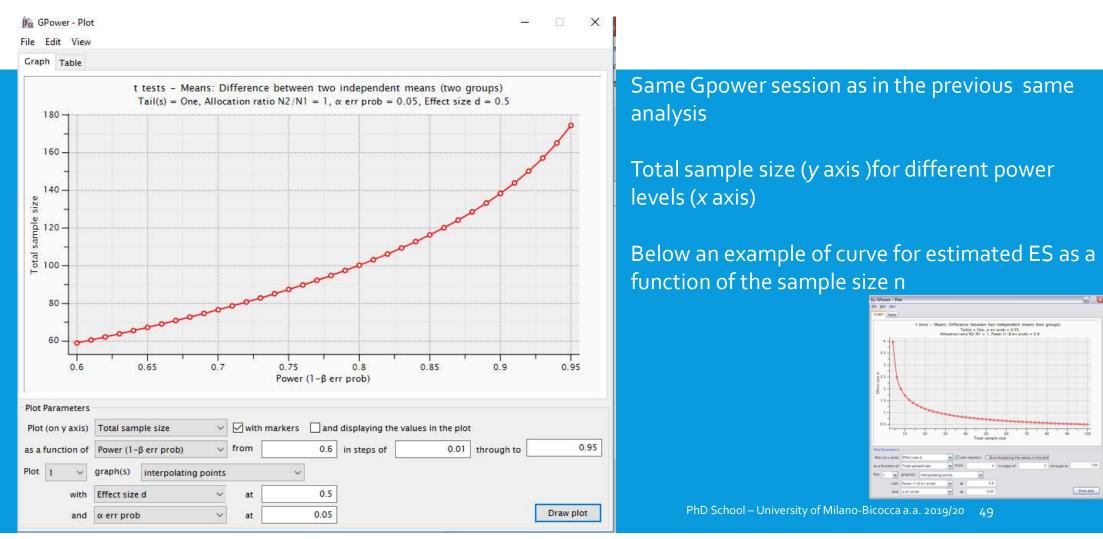
Analysis	Test family Statistical test	t		
	t tests 🛛 👋 Means: Diffe	rence between tw	o independent means (two group	os) ~
	Type of power analysis			
	A priori: Compute required sam	iple size – given d	x, power, and effect size	\checkmark
Type of power analysis	Input Parameters		Output Parameters	
	Tail(s)	One ~	Noncentrality parameter δ	2.5248762
	Determine => Effect size d	0.5	Critical t	1.6602343
	α err prob	0.05	Df	100
	Power (1-β err prob)	0.80	Sample size group 1	51
	Allocation ratio N2/N1	1	Sample size group 2	51
Inputs —			Total sample size	102
			Actual power	0.8058986
			X-Y plot for a range of values	Calculate

Example 2: Two repeated means

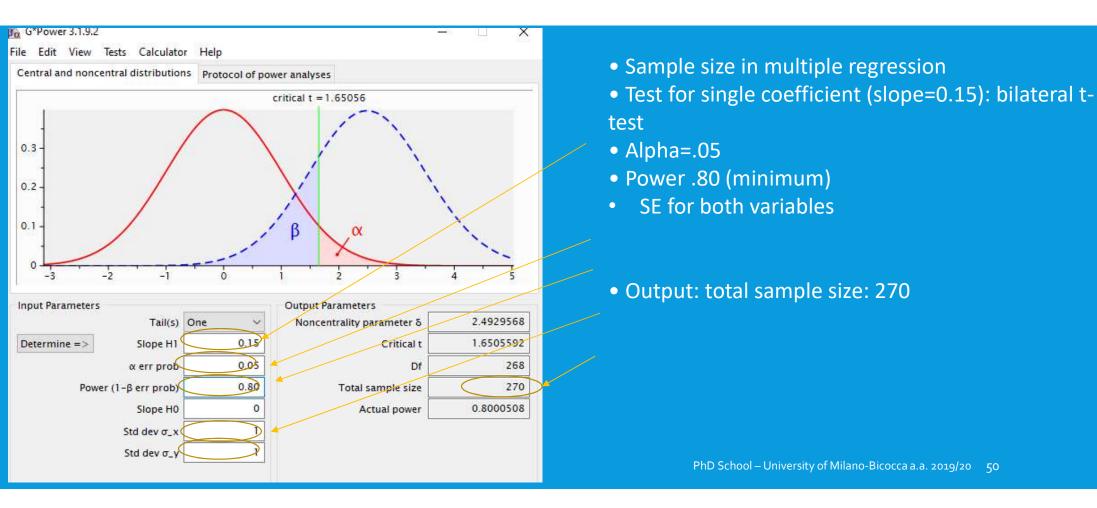
ANOVA 2 X 2


G-POWER: PROTOCOL OF POWER ANALYSIS. HAVE WE FOUND WHAT WE ARE LOOKING FOR?

₿‱ G*Power 3.1.9.2 File Edit View	T <mark>est</mark> s Calculator	Help			ļ ,	A priori: the 'ideal' way of
Central and nonce	entral distributions	Protocol of power	analyses	Clear Save		determining power Post hoc: the 'I could not help it' way of determining power Sensitivity analysis: I have a feeling
Test family	Statistical test			Print		that there is an effect, but I do not
t tests 🛛 🗸	Correlation: Po	int biserial model		~		have evidence so far.
Type of power and	alysis					
A priori: Comput	e required sample	size – given α, powe	r, and effect size			How much do I have to increase my
Compromise: Co Criterion: Compu Post hoc: Compu	mpute implied α & te required α – giv te achieved power	size – given α, power power – given β/α r en power, effect size – given α, sample siz size – given α, power	atio, sample size, and effect size , and sample size , and effect size			sample size to find (if I am wright) what I am looking for?
	α err prob	0.05	Df	?		
Powe	er (1-β err prob)	0.95	Total sample size	?		PhD School – University of Milano-Bicocca a.a. 2019
			Actual power	?		46


G-POWER: HOW TO CHOOSE THE GLIM

	Correlation and regression >	alyses			
Means >		One group: Difference from constant			
	Proportions >	One group: Wilcoxon (non-parametric)			
	Variances >	Two dependent groups (matched pairs)			
	Generic >	Two dependent groups (matched pairs): Wilcoxon (non-parametric)			
- 10-		Two independent groups			
		Two independent groups: Wilcoxon (non-parametric)			
		Many groups: ANCOVA: Main effects and interactions			
		Many groups: ANOVA: One-way (one independent variable)			
		Many groups: ANOVA: Main effects and interactions (two or more independent variables)			
		Repeated measures: Between factors, ANOVA-approach			
Test family	Statistical test	Repeated measures: Between factors, MANOVA-approach			
t tests 🗸 🗸	Correlation: Point biserial model	Repeated measures: Within factors, ANOVA-approach			
Type of power ana	lysis	Repeated measures: Within factors, MANOVA-approach			
A priori: Compute	required sample size – given α , power	Repeated measures: Within-between interactions, ANOVA-approach			
		Repeated measures: Within-between interactions, MANOVA-approach			
		Multivariate: Hotelling T ² , one group			
Input Parameters					
	Tail(s) One 🗸				
Input Parameters Determine =>	Tail(s) One ✓ Effect size ρ 0.3	Multivariate: Hotelling T ² , two groups			
Input Parameters Determine =>					


A COMPLETED EXERCISE : POWER ANALYSIS FOR TEST FOR TWO INDEPENDENT MEANS

A COMPLETED EXERCISE: SENSITIVITY ANALYSIS FOR T TEST FOR TWO INDEPENDENT MEANS

POWER ANALYSIS: WHAT DO WE EXPECT IN A REGRESSION?

POWER ANALYSIS IN R

HTTPS://CRAN.R-PROJECT.ORG/WEB/PACKAGES/PAMM/PAMM.PDF

The search string was "pwr"

Help pages:

pwr::pwr-package	Basic power calculations pwr
pwr::pwr.2p.test	Power calculation for two proportions (same sample sizes)
pwr::pwr.2p2n.test	Power calculation for two proportions (different sample sizes)
pwr::pwr.anova.test	Power calculations for balanced one-way analysis of variance tests
pwr::pwr.chisq.test	power calculations for chi-squared tests
pwr::pwr.f2.test	Power calculations for the general linear model
pwr::pwr.norm.test	Power calculations for the mean of a normal distribution (known variance)
pwr::pwr.p.test	Power calculations for proportion tests (one sample)
pwr::pwr.r.test	Power calculations for correlation test
pwr::pwr.t.test	Power calculations for t-tests of means (one sample, two samples and paired samples)
pwr::pwr.t2n.test	Power calculations for two samples (different sizes) t-tests of means

Random effects ICC (effect size) in package sjstats Power analysis for random effects in package pamm (and others) <u>effect size : Package 'effsize'</u>

Simulations Superpower in R Lakens, D., & Caldwell, A. R. (2019). "Simulation-Based Power-Analysis for Factorial ANOVA Designs"

```
> pwr.t.test(n = 30, d = 0.5, sig.level = 0.05)
     Two-sample t test power calculation
              n = 30
                                                                      d = 0.5
              d = 0.5
      sig.level = 0.05
                                                                  power = 0.8
          power = 0.4778965
    alternative = two.sided
NOTE: n is number in *each* group
```

Very low power

'ex post', it is debatable theoretically for some methodologists. We need at least .8 power (Lakens is requires .9!)

> pwr.t.test(d = 0.5, power = 0.80, sig.level = 0.05)

Two-sample t test power calculation

n = 63.76561sig.level = 0.05alternative = two.sided

NOTE: n is number in *each* group

This is 'ex ante', we need 64 subjects in each group

n= sample size

d: effect size

We can either specify directly d value or the 'intended' difference between means D and the pooled standard deviation

PhD School – University of Milano-Bicocca a.a. 2019/20 52

J 1

Now, we need a different es. We know that the pooled sd is 2.25, we need to detect a difference between the means equal or smaller than .50. This difference is called delta in library pwr

We need at least 638 subjects

Power curves (power functions)

> power.t.test(delta = 0.50, sd = 2.25, sig.level = 0.05, power = 0.8)

Two-sample t test power calculation

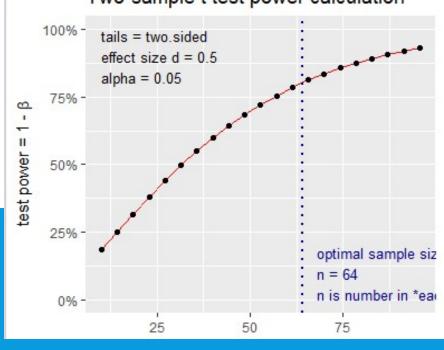
n = 318.8428 delta = 0.5 sd = 2.25 sig.level = 0.05 power = 0.8 alternative = two.sided

NOTE: n is number in *each* group

```
> p.t.two <- pwr.t.test(d=0.5, power = 0.8, type= "two.sample", alternative = "two.sided")
> plot(p.t.two)
> plot(p.t.two, xlab="sample size per group")
> |
```

pwr - developed by Stéphane Champely- power analysis as outlined by Cohen (1988)

<u>https://www.statmethods.net/stats/power.html</u>

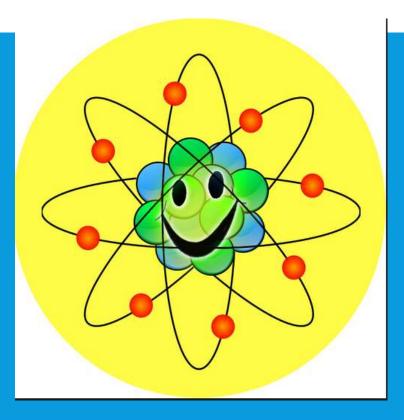

• powerAnalysis: power for experimental design

https://cran.r-project.org/web/packages/powerAnalysis/powerAnalysis.pdf

• simr - Power Analysis for Generalised Linear Mixed Models (Ime4) by Simulation

https://cran.r-project.org/web/packages/simr/simr.pdf

Two-sample t test power calculation



54

CONSEQUENCES OF LOW POWER

- Low probability of finding true effects: ow power means that the chance of discovering effects that are really true is low. Low-powered studies produce more false negatives than high-powered studies.
- Low positive predictive value : the lower the power of a study, the lower the probability that an observed "significant" effect (among of all significant effects) actually reflects a true non-zero effect in the population (vs. a false positive).
- When an underpowered study discovers a true effect, it is likely that the estimate of the magnitude of that effect will be exaggerated. Effect inflation is worst for small, low-powered studies, because they can only detect sample parameter estimates effects when they are large.

ENJOY BEING POWERFUL!

PhD School – University of Milano-Bicocca a.a. 2019/20 56