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How to get It right I

(aka the signal and the noise):
Why you should think twice

before planning your next

study

Marco Perugini
Milan, 16/12/2020




The problem

« Assume that, as scientists, we all want to get it
right
« What can we do to increase our chances?

a) Get it right # I am right

b) Get it right # Get it published




M Outline

» Replicability in Psychology (sneak preview)
« Sample planning
» Refresh of a few basic statistical concepts

* |ssues in Power analysis
-Uncertainty
-Sensitivity
-Within vs. Between designs
« A first tip for getting it right
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Replicability in Psychology




> Why now?

« Inthe last decade, the issue of replicability has become
central in Psychology (and Science)

* Many developments in research methodology
« Rapid changes in standards for research
« Rapid changes in standards for publishing

« What is the problem, what do you mean exactly by
replicability, what can we do about it, why now?

«  This will be the main issue of my Open Science lecture
In February

Good things come to those who wait




Meanwhile...
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>  Why many effects are not replicated?

BICOCCA

« A mix of different factors and possible
explanations

« Two main factors

* Low power and publication bias

« Under these conditions, It is predictable that there
will be many results In the literature that are
difficult to replicate

« We will get back to this issue later
delayed sneak preview...




Power analysis

You already know what Is power and power
analysis

We need first to have a sense in what context
power analysis can be useful

... and to double-refresh a few basic statistical

concepts

... and, finally, we will articulate a few specific
Issues linked to power analysis
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> Sample planning

« When you plan a study/research/intervention, you
should think about the participants that you need

Some basic issues
Representativeness
Generalizability
Robustness

Feasibility
Efficiency
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« Match (reduce gap) between what you will see and what
you would like to say

« What you will see: data (behaviors, evaluations,
physiological responses, etc.) from some participants. Who
are these participants? Stratified sample? Specific sample?
Random sample? Convenience sample?

 What you would like to say: something about humans?
students? working people? people with clinical problems?

« The validity of your inference from the results derived in your
sample to a certain “population”

» Beware of the possible gap. Especially if you go for concrete
applications in real life (e.g., interventions)




- Generalizability

« How much what you will say based on what you
will see goes beyond the context in which you are
saying It

 Study on sample of psychology students about
prejudice. How much what you find can be
generalized to workers In the supermarket? to retired
people? to people living in a small village or a big
city?

» A form of stratified sample is desirable

» Beware of the possible gap (especially for
Interventions)
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 Be careful for applicability to real world

» Psychology has not developed yet a robust and
established translational tradition of results

Social and Behavioural Science

MATURE HUMAN BEHAVIOUR | VOL 4 | NOVEMBER 2020 | 1092-1094 | www.nature.com/mathumbehay Pl s the solution to successfully address a crisis
g situation; feedback evaluation to expand evidence

EAL
[1
comment | [ oo 8 Prprmites-vasmmdmerinbecrr ity

. . . . | Test the solution in a variety of settings and stimuli in a
lak ironment
Use caution when applying behavioural science L
. Establish causal inference and potential side effects in a
to p0||cy laby anvironment, testing replicability via cross-validation
Compane candaale solutiors in ohservational ssthings (reying
Social and behavioural scientists have attempted to speak to the COVID-19 crisis. But is behavioural research on drivan bechniquas], ganarat) .mh-r-l pradicti -mm-m“ﬁ
COVID-19 suitable for making policy decisions? We offer a taxonomy that lets our science advance in 'evidence el isieiod e
readiness levels' to be suitable for policy. We caution practitioners to take extreme care translating our findings to L&': Select measures; evaluate validity and measurement
applications. squivalence

. . , e . o Pl Conduct systematic reviews to select potential
Hans lJzerman, Neil A. Lewis Jr.,, Andrew K. Przybylski, Netta Weinstein, Lisa DeBruine, Stuart J. Ritchie, 3 of candidats soluti

Simine Vazire, Patrick 5. Forscher, Richard D. Morey, James D. lvory and Farid Anvari

Caonsult people in the target settings to assess tha
2 problem's/problema’ applicability

bl [hefine the problemie) in collaboration with
1 stakehalders

Fig. 2 | Proposed social and behavioural sciences

evidence readiness levels,




D Robustness

« How much what you will say based on what you
will see will be robust (e.g., in future studies you
or others will find similar results?)

 Everything else being equal, do you trust more
results from a study with 50 Ss or from a study with
5000 Ss?

 Attention to the uncertainty of the inference, both the
one that you can estimate statistically (known
unknown) and the one that you cannot estimate
(unknown unknown)
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The real problem (Unknown unknown)

he world Is uncertain
Knowledge is imperfect

We deal with “samples” rather than “population”
We try to make inferences from them

We try to predict what will happen based on what
has happened and on the regularities that we are
able to learn from that
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Bertrand Russell’s turkey

1000 and 1 Days in the Life of a
Thanksgiving Turkey

250 +

200 -

150 -

100 Surprise —

The Turkey's Well Being

50 -

0 !
1 101 201 301 401 501 601 701 801 901 1001

Days

“Essentially, all models are wrong, but some are
useful” (Box & Draper, 1987)




> Feasibility

« How much what you would like to know can be
known with the resources that you have

» There are always logistical constraints (time, money,
people, space)

 Attention to the feasibility of what you would like to
do

* Ask questions to “Nature” that can be reasonably
answered within your “budget”




BICOCCA

Efficiency

The minimum (or optimal) effort needed to know
what you would like to know

Sometimes there are high costs involved in research

Sometimes you could be in the position to ask yourself
what Is the minimum data needed to answer in a
reasonable way your question

Sometimes you might try to go for the optimal number

More data Is always better than less data but the
Informational value of every additional data decreases
over a certain point

Costs/benefits logic
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BICOCCA

» Accuracy: collect as many participants as needed to
have a certain level of accuracy in your parameter
estimation

« Efficiency: collect as few participants as needed to
reach the conclusion that you want to reach

« Redundancy: collect as many participants are
needed to reach a reliable conclusion concerning
what you want to reach
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Some statistical approaches to sample size planning

Accuracy
AIPE (Maxwell, 2008): decide sample size based on a chosen
level of Accuracy In Parameter Estimation

Efficiency

Sequential designs:

Frequentist (Lakens, 2014): Start with a planned N and
number of interim tests, add N if needed (but adjust alpha)
Bayesian (Schonbrodt et al., 2017, 2018): Start with a
minimum N, add N until BF reaches a pre-defined threshold

Efficiency/Redundancy

Heuristic: in different fields there are “magical” rules (N>20
per cell, N>100, ratio k/N). At best, approximate wise
suggestion, at worse misleading

Power analysis
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Some (advanced) references

S le Size Pl . European Journal of Social Psychology, Eur. J. Soc. Psychol. 44, 701710 (2014)
ample 51z¢€ rlanning Published online in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/ejsp.2023
for Statistical Power

and Accuracy in

Parameter Estimation Special issue article: Methods and statistics in social psychology: Refinements and

Scott E. Maxwell,! Ken Kelley,’ new deVG'OpmentS
and Joseph R. Rausch?

Deparancn of Pyl Uity o Noree D, Now Dane s 6555 P@rforming high-powered studies efficiently with sequential analyses

email: smaxwell@nd.edu

2 Inquiry Methodology Program, Indiana University, Bloomington, Indiana 47405;
email: kkiii@indiana.cdu

}Department of Psychology, University of Mi Minneapolis, M 55455, "
email: rausch@umn.edu DANIEL LAKENS*
Human Technology Interaction Group, Eindhoven University of Technology, Eindhoven, The Netherlands
Annu. Rev. Psychol. 2008. 59:537-63 Key Words
Psychon Bull Rev (2018) 25:128-142 @ CrossMark Pychological Methods © 2015 American Psychological Association
DOI 10.3758/513423-0 ”_1230_), 2017, Vol. 22, No. 2, 322-339 1082-989X/17/512.00  hutp:/fdx doi org/10. 1037/met000006 1

BRIEF REPORT
Sequential Hypothesis Testing With Bayes Factors: Efficiently Testing

) ) . . Mean Differences
Bayes factor design analysis: Planning for compelling

evidence Felix D. Schonbrodt Eric-Jan Wagenmakers

Ludwig-Maximilians-Universitit Miinchen University of Amsterdam

Felix D. Schonbrodt' - Eric-Jan Wagenmakers®

Michael Zehetleitner Marco Perugini
Ludwig-Maximilians-Universitit Miinchen University of Milan-Bicocca
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A refresh of already fresh

basic statistical concepts
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> Mean

A single value that reflects the central point of a
distribution

If the distribution is normal, it is also the best simple
way to summarize it

% - 2%
N




';: DEGLI STUDI

>4  Variance and standard deviation

5 &
BICOCCA

Reflects the dispersion (variability) around the mean

2 _ > (X; = X) _ ZNX e

N
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Standard error
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® \When we measure something, more data means less

measurement error

® Exit polls are more accurate (less error) the more the sampled

voters or polling stations

® \We have a sample but would like to say something about the

underlying population (or anyway something that generalizes

beyond that sample)
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Standard error and variance

® Standard error does not depend only from how big Is a sample

=NV TIN

UNIVER

=
—
[ ]
=
]
]

size but also from the variability (variance) of the study object

® If everyone answers in the same way, one needs to ask to only

one person...

® If people have very different opinions, one need many of them

to be able to say something about «what they think»...

e@Standard error provides a link between sample and population
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» Error in estimating a population

parameter (e.g., mean) from a sample | >
Goes up with W oii:

increasing variance 0.1
0.05 A
O T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 11
S 2 Variance (S?)

0.45
— — 0.4
0.35 -
n 0.3 -
0.25 -
L 0.2-
9 015 4

0.1 -
Goes down with 0.05

H H oOo—7——F—7FTT—F— 7T T 7T 17

increasing sample size s 3 4 5 6 7 R 9 1011 19 13 14 15 16 17 18
Sample size (n)
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Small variability = small SE Large variability = large SE
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- Remember: basically you have almost always results

from samples and not from populations

- There is an error in inferring results from samples as if

they apply to a population

- Greater variability means more errors
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The sample estimate does not correspond to the population value.

Confidence Interval provides a range of values that contain the population value with a
certain likelihood (e.g., 95%), should the study be repeated many times

To simplify, Cl 95% is roughly equal to the sample mean +/- 2 SE

L5 |

-
B

For example: M =5; DS = 4 N=100

MR
£

4? 4 2 Standard
SE = |- 0 — =0.4 — nlls

100 ~ V100 el X+ D L Error
Range: 2 x SE = 0.8 H [ "2 N n —
95% CI = [4.2, 5.8] -
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The Confidence Interval (CI)

The CI reflects the concept of accuracy in estimating a parameter

Imagine this research scenario. We want to understand the efficacy
of 2 ads for a product (e.g., snack). N=100
We computed the mean evaluation of the two ads

A) M =+3.10; DS = 15, p<.05
B) M =+2.50; DS = 10, p<.05

Which is the best ad? It is not obvious that it is A

A) 95% Cl= [0.16, 6.04]
B) 95% Cl= [0.54, 4.46]

A can be 6.04, but it can also be 0.16.

B is more accurate, so its possible values
are less spread: it is very unlikely that
its mean is lower than 0.54
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Also correlations have confidence intervals

Confidence intervals can be calculated for many statistical parameters

ClI for correlations (r) are bounded (-1, 1) and often asymmetrical
r=0, n=300

lnl::i—”‘]
Define Fisher Transformation: Z,=—"

&

The 100(1-a)% confidence interval is defined as:

EZL_l EZU_l

( )

?
e?l+1 g2V 41

1" Set correlation and set size

< > .
7
A I : |W Display caf’s eye.\merva\s e
Amount of bulge] 38
3 Descriptive statistics
r
upper Cl limit (UL) 113
lower Cl limit (LL) ~ -113

61

ro -

r=0.70, n=300

\'If " Ses how Fisher's 1 to 2 transformation
is used to calculate the CI.
SeeacatseyeClonr.

Al 3 5
| Set correlation and set size

1w
< >l

B
- [ Display cat's eye.iﬂtervalﬁ )
Amount of bulge]___ 35]%
3 Descriptive statistics

r
754
637

upper Cl limit (UL)
lower CI limit (LL)

81

6

ro

r=0, n=30

17 Set comelation and set size

< > .
P
: v Display cat's eye.mtem\s N
Amount of bulgs] __ 35] %
3" Descriptive statistics

upper Cl limit (L) 36
lower Cl limit (L1) -36

Clarmlength
h]
upper arm 36

r=0.70,

61

4

21

ro [

2

n=30

" S .
(@5 See the Cl on correlation r. 1,0
T See how Fisher's 1 to Z transformation
is used to calculate the CI
See acat's eye Clon . 81
r
| 1" Set correlation and set size r
6
4
P
2 ¥ Display cal's ey intemvals ™ 5 |
.
Amount of bulgd] 3] *
ro
3" Descriptive statistics
.
upper Cl limit (UL) 847 5]
lower CI limit (LL) 454 ’
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® When we have data, we can estimate some parameters from them
(e.g., mean, correlation)

® We saw that the estimate of this parameter can be more or less
accurate

® But we can also make inferences from the estimated parameter
® If the parameter is different from a certain value (e.g., 0)

® If the parameter Is different comparing certain groups (e.g.,
experimental vs. control, male vs. female)

® This is the realm of hypothesis testing (or statistical inferences
from data)

®NHST: HO (e.g., parameter = 0) vs. H1 (e.g., parameter # 0)
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Fun fact about the t-test!
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VoLume VI MARCH, 1908 No. 1

BIOMETRIKA.

THE PROBABLE ERROR OF A MEAN.

By STUDENT.

Willi \
Introdustion. William Sealy Gosset

ANY experiment may be regarded as forming an individual of a “ population”
w ‘ l \ \ ’ of experiments which might be performed under the same conditions. A series
of experiments is a sample drawn from this population.

Now any series of experiments is only of value in so far as it enables us to form

\ :
N N" \ a judgment as to the statistical constants of the population to which the experi-
ments belong. In a great number of cases the question finally turns on the value

- -
«

GUI\N[:SS

~DRAUGHT
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« Given an infinite sample size, two parameters (e.g., means) will always be
significantly different unless they are exactly identical, or one parameter
will always be different from zero unless it is exactly zero (cf. standard
error)

r =.01 with N=40000 is significantly different from 0 with p<.05 (p=.0456)

It is thus important to understand the effect size (even if significant, some
effects can be of a trivial quantity)

 Different effect size estimators
» Most common: Cohen’s d and Pearson’s r (correlation coefficient)

M, - M,
Cohen’s d= — = _ 21[1} - t’ F(1,-)
D r= r=.l= Fe =
pocied N t" +df F(1,=)+dfp

(SD? +5DD)
.
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» A ad product
» B: control group (irrelevant ad)
« VD: Product evaluation (from 0 to 10)

« A (n=60): M=6.50, SD=1.20 If A: M= 7.50, DS=1.20; B: M= 5.50, DS=1.30
« B (n=60) : M=5.50, SD=1.30 Dy =1.25,d = 7'5(1);'50:1.60 r=0.62
* SD,y=1.25 |
If A: M= 6.50, DS=2.20: B: M= 5.50, DS=2.30
6.50—5.50
e Cohen’sd= 6'50_5'5020.80 r=0.37 SDDOO' =2.25,d = 2.25 =0.44 r=0.22

1.25
Rough guidelines (ES should be understood within research context)

r=.1,d = 0.2 (small effect): the effect explains 1% of the total variance.
r =.3,d = 0.5 (medium effect): the effect explains 9% of the total variance.
r =.5, d = 0.8 (large effect): the effect explains 25% of the variance.
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Other effect size indexes (from Ellis, 2010)

Table 1.1 (cont.)

Measures of group differences (the d family)

Measures of association (the r family)

(a) Groups compared on dichotomous outcomes

RD  The risk difference in probabilities:
the difference between the
probability of an event or
outcome occurring in two
groups

RR  The risk or rate ratio or relative
risk: compares the probability of
an event or outcome occurring
in one group with the probability
of it occurring in another

OR  The odds ratio: compares the odds
of an event or outcome
oceurring in one group with the
odds of it occurring in another

(b) Groups compared on continuous outcomes

d Cohen'’s d: the uncorrected
standardized mean difference
between two groups based on
the pooled standard deviation

A Glass’s delta (or d): the
uncorrected standardized mean
difference between two groups
based on the standard deviation
of the control group

g Hedges’ g: the corrected
standardized mean difference
between two groups based on
the pooled, weighted standard
deviation

PS Probability of superiority: the
probability that a random value
from one group will be greater
than a random value drawn from
another

(a) Correlation indexes

r The Pearson product moment
correlation coefficient: used
when both variables are
measured on an interval or
ratio (metric) scale

p (orry)  Spearman’s rho or the rank
correlation coefficient: used
when both variables are
measured on an ordinal or
ranked (non-metric) scale

T Kendall's tau: like rho, used
when both variables are
measured on an ordinal or
ranked scale; tau-b is used for
square-shaped tables; tau-c is
used for rectangular tables

Tob The point-biserial correlation
coefficient: used when one
variable (the predictor) is
measured on a binary scale
and the other variable is
continuous

7] The phi coefficient: used when
variables and effects can be
arranged in a 2x 2 contingency
table

C Pearson’s contingency
coefficient: used when
variables and effects can be
arranged in a contingency
table of any size

Vv Cramér’s V: like C, V is an
adjusted version of phi that can
be used for tables of any size

A Goodman and Kruskal’s lambda:
used when both variables are
measured on nominal (or
categorical) scales

fannt )

Measures of group differences (the d family)

Measures of association (the r family)

(b) Proportion of variance indexes

5

I The coefficient of determination:
used in bivariate regression
analysis

R’ R squared, or the (uncorrected)

coefficient of multiple
determination: commonly
used in multiple regression
analysis

iR Adjusted R squared, or the
coefficient of multiple
determination adjusted for
sample size and the number of
predictor variables

f Cohen’s f: quantifies the

dispersion of means in three or
more groups; commonly used
in ANOVA

Cohen’s fsquared: an alternative

to R* in multiple regression
analysis and AR’ in
hierarchical regression
analysis

n- Eta squared or the (uncorrected)

correlation ratio: commonly
used in ANOVA

Epsilon squared: an unbiased

alternative to 7°

@ Omega squared: an unbiased
alternative to n’

R¢ The squared canonical
correlation coefficient: used
for canonical correlation
analysis

~
3
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General logic behind ES

o, I!'?'l'SI]E'I'ﬁ:i:l . gsr_'f{-:l:l: uJE — SEEE{EEI - I:Ir.-irl'_-I'I:'=|:|:''1"ilr‘."'-".li.-'l!:=I]::

gl — —_ I P —_ I - -

" S5 ol Jl'-'l‘lg'll'-'l't'm:: + S'sn-'c'ells 58gfrect + (N = dfprrec) MIuicens
Covariance (x,y)

r =
S.D.(x)S.D.(y
d — M1 —1‘42 (I) ()
pooled SD

- nZxy — (2x)(Zy)
V[nZx? = Zx)*][nZy* - Xy)?]

» Effect sizes go up when “signal” (numerator) increases
relative to “noise” (denominator)
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Effect size: useful tools
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Read this: https://doi.org/10.3389/fpsyq.2013.00863
(Lakens, 2013) frgntiers in meview anmcLe 22

PSYCHOLOGY e A e AP

Calculating and reporting effect sizes to facilitate

cumulative science: a practical primer for t-tests and
ANOVAs

Daniél Lakens *

Human Technology Interaction Group, Eindhoven University of Technology, Eindhoven, Netherlands

Use this: https://www.psychometrica.de/effect_size.html
(give a look also here http://www.stat-help.com/spreadsheets.html)

Check (or ask) your analysis output (SPSS, R) for effect sizes

Effect size can be calculated starting from different bits of
Information and can be transformed (e.g., from r to d)



https://doi.org/10.3389/fpsyg.2013.00863
https://www.psychometrica.de/effect_size.html
http://www.stat-help.com/spreadsheets.html
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Some bibliographic references:
»Fritz, C.O., Morris, P.E., & Richler, J.J. (2012). Effect size estimates: Current use,
calculations, and interpretation. Journal of Experimental Psychology:General, 141, 2-18.
»Ellis (2010). The essential guide to effect sizes. Cambridge University Press.
»Cohen (1992). A power primer. Psychological Bulletin, 112, 155-159.
»Cohen (1994). The ecarth is round (p < .05). American Psychologist, 49, 997-1003.
»Cohen (1988). Statistical power analysis for the behavioral sciences. LEA

Some online calculators
» https://www.psychometrica.de/effect size.html
» https://sites.gooqgle.com/site/lakens2/effect-sizes
» https://www.campbellcollaboration.org/this-is-a-web-based-effect-size-
calculator/explore/this-is-a-web-based-effect-size-calculator

» http://www.stat-help.com/spreadsheets.html



https://www.psychometrica.de/effect_size.html
https://sites.google.com/site/lakens2/effect-sizes
https://www.campbellcollaboration.org/this-is-a-web-based-effect-size-calculator/explore/this-is-a-web-based-effect-size-calculator

Errors of inference

* Frequentist approach
* There are three types of errors

« NHST*: Type I error (False positives)
Type 1l error (False negatives)

« CI: Estimate error (imprecision)

NHST= Null Hypothesis Significance Testing
(HO vs. H1)
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Errors of inference in NHST

Decision outcomes Real World (POPU LAT|ON)

from NHST (one

parameter against a Null is true (HO is correct)

value or one

parameter in two (or
more) groups)

Correct decision
(1-a)

Null 1s true

Type Il error
(B)

(SAMPLE)

Conclusion of the
significance test
Null is false

Type | error
(o)

Correct decision

(1-B)

Null is false (H1 is correct)

We analyze
results in a
sample but
make an
inference to
population.
We can
make errors
of inference
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>  Errors of inference in NHST

BICOCCA

» Type | error: Erroneously rejecting the null
hypothesis (False positive).
The result in the sample is significant (p < .05), so the
null hypothesis Is rejected, but the null hypothesis Is
actually true in the population.

* Type Il error: Erroneously accepting the null
hypothesis (False negative). The result in the sample

IS not significant (p > .05), so the null hypothesis is not
rejected, but it is actually false in the population.
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How to control Type I errors?

The Type | error rate (False positive) is controlled by the
researcher.

It is called the alpha rate and corresponds to the probability
cut-off (p) that one uses in a significance test.

Conventionally, researchers use an alpha rate (o) of .05. This
means that the null hypothesis is rejected when a value such as
the one found is likely to occur 5% of the time or less when the
null hypothesis is true.

The test can be two-tailed (more common) or one-tailed
(directional)
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One-tailed and two-tailed test
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FIGURE 2.10
Mean of group 1 was Mean of group 1 was Diag(am to show
< smaller than the mean bigger than the mean the difference
of group 2, or there is of group 2, or there is between one-
a negative relationship a positive relationship and two-tailed
tests

Probability
=0.05

Frequency

4 Probability
=0.025

Test Statistic
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How to control Type Il errors?
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« The Type Il error (Ealse negative) can also be controlled by
the experimenter.

« The Type Il error rate is called beta () as a complement to
alpha.

« How can the beta rate be controlled? The easiest way to
control Type Il errors is by increase the statistical power of a
test.

« Statistical power= probability of finding an effect, if it exists
« Power=1-

« Conventionally a power of at least .80 ($=.20) is considered
as acceptable
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DT Power analysis

BICOCCA

» Power analysis Is a basic tool for planning
studies

* You already know it

« We will quickly refresh the basic concepts and
then articulate three specific issues linked to
power analysis:

a) uncertainty of the estimates
b) sensitivity
b) within vs. between design
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What is power?

critical t = 2.03452

0 ]
POPULATION

Null is true (HO is correct) Null is false (H1 is correct)
L
— QJ - =
o S 2 Correct decision Type Il error
N Z (1-a0) (B)
=
< %
7 =8 Correct decisi
el Type | error orrect decision
prad (G,) (1-[3)
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> The key determinants of power

= o
BICOCCA

» Power Is determined by four elements

1) Decision criterion (o)
2) Sample size (n)

3) Effect size (9)

4) Desired power (1- B)

 Fixing one of the elements one can derive the
others




> A simple example

e Fix o=.05and (1- p)=.80
» Plot sample size and effect size for a two sample t-test

ol 8P rod W9 HEOPHNE (#UB B+ /pYbb) £:0.8

"3
3
2
2
1
1
0
- . . - B

[eleolelo) o




e What affects power?

« Power goes up with larger effect sizes and sample
sizes, given a certain decision criterion (e.g., =.05)

* When effect sizes become larger? When the portion
of variability (difference) ascribed to the effect of
Interest grows more than the general (non specific)

variability
. 85 cov(v, X)
. M1 _]w2 a2 _ ]:‘rI-EL'IL r(V, X)=
d = pooled SD i S5t sd(v)*sd(x)
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Power as a function of ES and N
BICOCCA
t tests - Means: Difference between two independent means (two groups)
Tail(s) = One, « err prob = 0.05, Allocation ratio N2/N1 =1
Effect size d
o)
o —— =0.7
Q
= = 0.6
u
o
- —o— =0.5
, —0— =0.4
3
o —0— = 0.3
r—r+ 1+ 1 Tt T Tt T Tt T Tt T T T Tt T T 1
20 40 60 80 100 120 140 160 180 200
Total sample size




How to Increase power?

Power Is affected by

« Sample size I

« Construct-related (i.e., SIGNAL) variance I

« Construct-unrelated (i.e., NOISE) variance l



N What is affected by power?

Higher power means
» |ess False Negatives
 Lower overall errors of inference (crucial error
rates)
Lower power means

« with multiple outcomes and HARKIng: body of
conflicting evidence in the literature

 with publication bias: presence of many false-
positives In the literature




> wWhy power analysis to plan studies?

BICOCCA

«  Without logistical constraints (infinite resources and no
costs), only accuracy In estimating parameters should
matter (e.g., AIPE, Maxwell et al, 2008)

* Inan accuracy (precision) approach, one thing matters a
lot: sample size, the bigger, the better (ceteris paribus)

« The point is not whether some effect exists (or not) but
how precise Is our estimate of It

« All effects exist given an infinite sample size (Cohen)

* Increased accuracy means less inference errors (both Type
| and Type II)

If you want to get it right, increase sample size
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Precision vs. Power

They have different aims

( ) Study 1
( ) Study 2
( ) Study 3
() Study 4
-1 -0I.5 0 0:5 1

Value of Population Beta Weight of Interest

Figure I. Tllustration of possible scenarios in which planned sample size was considered a
“success” or “failure” according to the accuracy in parameter estimation and the power
analysis frameworks. Parentheses are used to indicate the width of the confidence interval.

Precision 1s valuable no matter everythin
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ke a MINOR practical problem...

» Big sample sizes are needed for precise estimates
no matter the effect size

AIPE FOR THE STANDARDIZED MEAN DIFFERENCE

2
S
™ —— Power=.50 —— Power=.80 —— Power=.95
—=—  Width=.35 —a— Width=.25 —- Width=.15
o S |
N S
an [N
o
o
£
(1]
wl (=]
2 3
5 . = » = - - - - ==
]
o
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5 8
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How to calculate power

- Different software and routines (e.g., in R)
- A free comprehensive package is G*Power
http://www.gpower.hhu.de/

G*Power: Statistical Power Analyses for Windows and Mac R o

G*Power is a tool to compute statistical power analyses for many different ¢ tests, F tests, x2 tests, z
tests and some exact tests. G*Power can also be used to compute effect sizes and to display
graphically the results of power analyses.

Screenshots (click to enlarge) %

|Suchbegriff | é\

Main Window Main Window (Table) Power Plot Power Plot (Table)




Problems in power analysis

BICOCCA
One main error: post-hoc power (calculated after the
results) is trivial and misleading. Sensitivity analysis IS
better e T sV A Vg g

° Th ree ISSUES RESEARCH ARTICLE

A Practical Primer To Power Analysis for Simple

a) uncertai nty Experimental Designs
b) Sensitivity Marco Perugini, Marcello Gallucci and Giulio Costantini
¢) within vs. between design

; P Bryshael tMZOiQHwMyPtptDWH tIId Ppiy
louma|0fc°gmtmn Powered Experiments? A Tutorial of Power Analysis with Refert Tbi
Journal of Cognition, 2(1): 16 pp. 1-38. DOI: https:/doi g/105334/1

REVIEW ARTICLE

How Many Participants Do We Have to Include
in Properly Powered Experiments? A Tutorial of
Power Analysis with Reference Tables

Department of Experimental Psychology, Ghent University, BE
marc.brysbaert@ugent.be



N a) Uncertainty

BICOCCA

-One key element of power analysis for planning
studies Is the Effect Size (ES)

-We can use only an estimate of ES (sample) but need
the unknown expected ES (population). If we knew it,
we wouldn’t need to run the study...

- At best we guess it from a meta-analysis (or previous
studies), at worst based on a hunch or even arbitrarily
set. Uncertainty of the estimate

-What happens if the ES estimate Is incorrect?
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Uncertainty of ES

Craph Tahle
t tests - Means: Difference between two independent means (two groups)
Tail(s) = Two, Allocation ratio N2/N1 =1,
o err prob = 0.05, Power (1-f err prob) = 0.8
350 —

300 —

258.224
250 —

156.983

Total sample size
%]
=
=
|

i
[=]
|

100 —

50

I I I I ] I I I I I ] I ] I ] I ]
0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
Effect size d

Plot Parameters

Plot {(on y axis) Total sample size ~ | [] with markers and displaying the values in the plot Show E v digits
15 a function of |Effect size d ~ | from in steps of through to
Plot |1 ~ | graph(s) |interpolating points ~

with | Power (1-p err prob) v at

and o err prob W at 0.05 Draw plot
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Graph Table
t tests — Means: Difference between two independent means (two groups)
Tail(s) = Two, Allocation ratio N2/N1 = 1, o err prob = 0.05
200 - .
3 * Effect size d
o 250 - —0— =0.4
M
X |
= —0— =0.45
a 200 —
g | OO —o— =05
W A 0 O
gwo— ety —a =0.55
- 0 o il v
4 o0 oo | po-0 —— =06
50 —i
T T T T T T T T T T T T T T T
0.6 0.65 0.7 0.75 | 0.8 0.85 0.9 0.95
Power (1-p err prob)
Plot Parameters
Plot (on y axis) Total sample size w with markers [_] and displaying the values in the plot
1s a function of |Power (1-B err prob) ~ | from in steps of through to 0.95

Plot |5 | graph(s) |interpolating points A
with | Effect size d ~ | from in steps of 0.05

and o err prob w at 0.05 Draw plot
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Uncertainty of ES

Graph Tahle
t tests — Means: Difference between two independent means (two groups)
Tail(s) = Two, Allocation ratio N2/N1 =1, & err prob = 0.05
Effect size d Effect size d Effect size d Effect size d Effect size d ~
=04 =045 =05 =055 =06
# | Power (1-perr prob) | Total sample size | Total sample size | Total sample size | Total sample size | Total sample size
16 0.750000 175.449 139.039 112.997 93.7315 79.0806
17 0.760000 179.664 142.369 115.695 95.9607 80.953%
18 0.770000 184.029 145818 118.488 98.2689 82.8927
19 0.780000 188.556 149.395 121.385 100.663 84.9042
20 0.790000 193.261 153.112 124.396 103.151 86.9946
" 21 0.800000 198.161 156.983 127.531 105.742 89.1716
22 0.810000 203.275 161.024 130.804 108.446 91.4438
23 0.820000 208.626 165.252 134,228 111.276 93.8216
24 0.830000 214.241 169.689 137.822 114.246 96.3167
25 0.340000 220,153 174.359 141.605 117.372 98.9433
IR N RoAMDN IR QT 174G 702 145 En1 17PN K7 1Nl 718 N
Plot Parameters
Plot (on y axis) Total sample size W with markers [_| and displaying the values in the plot
1s a function of | Power (1-P err prob) ~ | from in steps of through to 0.95
Plot |5 ~ | graph(s} |interpolating points ™
with |Effect size d ~ | from in steps of 0.05

and |« err prob ! at 0.05 Draw plot
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Asymmetry of ES errors

t tests — Means: Difference between two independent means (two groups)

Tail(s) = One, Allocation ratio M2 /N1 = 1,
oz err prob = 0.05, Power (1-B err prob) = 0_8

I Offset -0.10
£ ] Best guess
S Offset +0.10
; _Dr3 | 0 |35 | 014 1 0 ]45 1 DIE l ] I55 I DIE I 0 {55 f D[?
- . - . Eﬂ'ect.size d - . . .

ot Parameters

Plot (on y axis) [Total sample size 'r] with markers |:| and displaying the values in the plot
s a function of [Eﬁ'e-ct size d v] from 0.3 in steps of 0.0% through to 0.7
lot graph(s) |interpolating points v]

with ’F’-muer (1-G err prob) v] at 0.80

and ’4:-: arr prob v] at 005
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t tests - Means: Difference between two independent means (two groups)
Tail(s) = One, o err prob = 0.05, Allocation ratio N2/N1 =1

1 —
0.9 — .
. —“Best guess '
0.8 - - ;
B - L i *
o 0.7 — : ¢ Effect size d
o i = v D Y
T 0.6 . : O . - 0>
o [
T 9 : 0 < —o— =04
‘:’ 0.5 — v 0
g - : : e —o— =03
5 0.4 4 : 0 S
0.3 4l C
0.2 40
| . | U | ' | . | . | - | U | U | : |
20 40 60 80 100 120 140 160 180 200

Total sample size
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* Power depends on estimated ES (we don’t know the “true” ES)

« ES over-estimation is more common (optimistic bias) and more
Influential than under-estimation (asymmetric effect)

 Should consider different scenarios rather than a single value
« Could consider minimum effect of interest (SESOI, Lakens, 2014)
« Could consider sensitivity analysis

e Could consider safeguarding yourself against “optimistic” ES
estimates

Equivalence Testing for Psychological
Research: A Tutorial

Safeguard Power as a Protection Against
Imprecise Power Estimates

] www peychologicalscience.org |
[l Damel Lakens Anne M Scheel and Peder M. Isager ®SAGE Marcn Peruguu Marce].lo Gallucci, and Giulio Costantini
Hum

llllllllllllllllllllllllllllll
«chnology 'tu wp, Eindhe mu-r.\n_ -chnolog)
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File Edit View Tests Calculator Help
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Central and noncentral distributions  pProtocol of power analyses

“Sometimes”

resources are fixed
You know that you can
collect a certain N R
t tests ~ Means: Difference between two independent means (two groups) w

Type of power analysis

- Sensitivity: Compute required effect size - given o, power, and sample size w
The question becomes
Input Parameters Output Parameters

Tail(s) Two ~ Noncentrality parameter & 2.8152618

Wha't ES Ca'n be fo u n d o err prob 0.05 Critical t 1.9720175

A = /F Power (1-p err prob) 0.80 Df 198
Wlth SUffI C I ent power Sample size group 1 100 Effect size d ;

S

Sample size group 2 100

Sensitivity analysis

Calculate

X-Y plot for a range of values
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% GPower - Plot = X
File Edit View

Craph Table

t tests - Means: Difference between two independent means (two groups)

Tail(s) = Two, & err prob = 0.05,
Allocation ratio N2/N1 = 1, Power (1 -8 err prob) = 0.8

Effect size d
e o o
Nl B -
| 1 1 1

bt
o
1

4
w
1

1 v | v 1 L | ! I ' 1 v 1 T
20 40 60 80 100 120 140
Total sample size

Plot Parameters
Plot (on y axis) Effectsized v @with markers and displaying the values in the plot Show liz : digits
as a function of Total sample size v from 20 | in steps of 10| through to |—'5°J

Plot ~ | graph(s) interpolating points
with Power (1-§ err prob) ~ at

and o err prob v at Draw plot

!!<I

e Figure 2: Sensitivity Plot of G*Power calculating the power of a two independent samples t-test: Lowest detectable
effect size as a function of required N.
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Sensitivity plot: N by Power

% GPower - Plot - X
File Edit View

Graph Table

t tests - Means: Difference between two independent means (two groups)
Tail(s) = Two, o err prob = 0.05, Allocation ratio N2 /N1 = 1, Effect size d = 0.495156

0.8 4

0.7 -

0.6

0.5

0.4

Power (1-p err prob)

0.3

0.2 o

0.1 —

T T T T T T T T T T
60 80

Total sample size

| |
100 120

Plot Parameters
show | 3 13 digits

Plot (on y axis) Power (1-f err proh) v with markers and displaying the values in the plar

as a function of Total sample size v | from ,—IO\ in steps of ,—IO‘ through to 150
Plot | v graph(s) | interpolating points o

with Effectsized v at 0.4951555

and o err prob v at l 0.05 Draw plot

Figure 3: Sensitivity Plot of G*Power calculating the power of a two independent samples t-test: Power as a function of
required N for fixed effect size.
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Inspecting scenarios around ES

SR UNIVERSITA
—

(]

=

e

]

= ONVTIIN |

t tests - Means: Difference between two independent means (two groups)
Tail(s) = One, Allocation ratio N2/N1 = 1, o« err prob = 0.05

250 —
Effect size d
200 —
—0— =04
—0— = 0.45
150 -
—0— = 0.5
1 = 0.55
100 -

50 —

Total sample size

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Power (1-B err prob)
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Inspecting scenarios around N

Craph Table

Effect size d

0.5

'
=
Ln

o
s

0.35

0.3

t tests - Means: Difference between two independent means (two groups)
Tail(s) = Two, « err prob = 0.05, Allocation ratio N2/N1 =1

B Total sample size

i —0— =180

] —o— =190

| —o— =200
=210

| —p— =220

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Power (1-p err proh)

Plot Parameters

Plot (on y axis) |Effect size d o with markers | ] and displaying the values in the plot
15 a function of |Power (1-p err prob) | from | 0.6 ‘ in steps of | 0.01 | through to 0.95
Flot |5 ~ | graph(s) |interpolating points w

with |Total sample size ~ | from | 180 ‘ in steps of | 10 |

and o err prob o at | 0.05 ‘ Draw plot
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>4  ¢) Within vs. Between designs

BICOCCA

» Everything else being equal, within studies
are more powerful than between studies

« Example with a simple two groups/two
measures design

« Example with 2 x 2 design
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Power Between Ss

Power for two independent groups, each size N
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« Power for within Ss studies Is greater (ceteris paribus) but
depends also on r (e.g., r = .50) between DVs

Power for paired data, one set of Npairs

N number of pairs
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ANOVA Within and Mixed

Web app: GLIMMPSE (https://glimmpse.samplesizeshop.org)
but check also https://samplesizeshop.org/

2 X 2 Mixed ANOVA

General Linear Mixed Model Power and Sample Size
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Design a Study

Welcome to GLIMMPSE. The GLIMMPSE software calculates power and sample size for study designs with normally distributed outcomes. Select one of
the options below to begin a power or sample size calculation.

New Study Start a new design.

Upload You have previously used GLIMMPSE and wish to work on a saved design.


https://glimmpse.samplesizeshop.org/
https://samplesizeshop.org/
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Solve for sample size

GLIMMPSE
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General Linear Mixed Model Power and Sample Size

2 x 2 Mixed ANOVA: Study title

Please pick a concise title for the study:

2 x 2 Mixed ANOVA

Solve for
Please indicate whether you would like to solve for power or total sample size.
If you have a rough idea of the number of research participants you will be able to recruit, then solve for power.
If you have few restrictions on recruitment then you may wish to solve for sample size.
Power Sample Size
i : Target power Progress ) Help @ sa

Please choose one or more power values, for which you wish to calculate minimum sample size.

All target power values must be between 0 and 1, exclusive.

Target Power remove
0.8 [x]
I
—
0.9 []
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es : Statistical tests Progresso Help ® Ssa

Please choose one or more statistical tests. If you are unsure which to pick, we recommend the Hotelling Lawley Trace test due to
its equivalence to a mixed model test.

Hotelling Lawley Trace

(] Pillai-Bartlett Trace

[] wilks Likelihood Ratio

[] Box Corrected

[] Geisser-Greenhouse Corrected

(] Huynh-Feldt Corrected

[J Uncorrected

- Type | error rates Progress O Help @ S

A Type | error occurs when a scientist declares a difference when none is present in the population. The Type | error rate is the probability
of that kind of error, a false positive, and is often referred to as a (alpha). A Type | error rate can range from 0 to 1. Although the most
commonly used value is 0.05, we recommend 0.01.

Type | Error Rate remove
—
0.05 [x]
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: Outcomes Progress O Help @ Sa

Enter the name of each outcome variable one at a time in the underlined space below. For example, in a study investigating
cholesterol-lowering medication, the outcome variables could be HDL, LDL, and total cholesterol.

Note that repeated measurement information will be addressed on the next screen.

Please name the one or more outcomes.

Outcome remove
Performance
: Repeated measures Progress O Help @ Sa

GLIMMPSE allows you to define within-participant factors, specified as repeated measures. An independent sampling unit provides
one or more observations such that observations from one unit are statistically independent from any other distinct unit while
observations from the same unit may be correlated. Repeated measures are present when a response variable is measured on each
independent sampling unit on two or more occasions or under two or more conditions. The values of the repeated measures (that is,
the levels of the within-participant factors) distinguish the occasions or conditions.

If the study includes repeated measures, click "Add Repeated Measure" and follow the prompts.

You may specify up to 5 repeated measures. Each repeated measure you add will apply to each outcome you specified on the previous
page.

—
Define Repeated Measure
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What is the name of the dimension you will be measuring?

The text entered in the "Dimension” text box indicates the dimension over which measures were taken (e.g. time, days, locations, etc.).
The choice of "Type" indicates whether the repeated measures are numeric (e.g. time) ar ratennrical fe n_arm len hand)

Dimension: Repeated measures Number of measurements of time?

timd What type of data is time? 2

Categorical You must have between 2 and 10 repeats (inclusive)
Cancel EEEX (R
Cancel Back RN e EEEIENEGE Cancel Back Ei[4G Spacmg

If the repeated measures are numeric, the spacing values must be unique nonnegative integers, in ascending order.

EEREINCHNEEIE Select values by series

Spacing

Measurement #1 at 1

Measurement #2 at 2

Cancel Back QUeLEICHGEEEG YRR

Repeated Measure Dimension Type Measurements Edit Remove
||
* time Numeric ["1","2"] ya
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Clustering Progress () Help @ sawe

An independent sampling unit provides one or more observations such that observations from one unit are statistically
independent from any other distinct unit while observations from the same unit may be correlated.

In a clustered design, the independent sampling unit is a cluster, such as a community, school, or classroom. Observations within a
cluster are correlated. The labels for observations within a cluster must be exchangeable. For example, child "ID" within classroom
can be reassigned arbitrarily. In contrast, observations across time cannot be reassigned and should not be considered clustered
observations. The common correlation between any pair of cluster members is termed the intraclass correlation or intracluster
correlation.

To include clustering in the study, click "Add Clustering” and follow the prompts.

You may specify up to 10 levels of clustering. S K l P
Add Clustering

: Fixed predictors Progress O Help @) Save

Each independent sampling unit has one or more observations which are statistically independent from observations from any
other unit.

GLIMMPSE allows you to define fixed predictors which divide the independent sampling unit into groups. One common example of
a fixed predictor is treatment, with values placebo and drug, for which the independent sampling unit is randomized to a placebo
group or a drug group. Another is gender, with values male or female.

If the design has no fixed predictors, do not define any here.

Define Fixed Predictor
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Fixed predictors \ Fixed predictors Fixed predictors

Pl t least
What type of data is Condition? case name atfeas

. two groups:
Please name the predictor: .
P Condition
\bIgliEIM  Continuous Groups:
[x] Control

By Next: Data Type Cancel Back: Data Type JDA@ElGIl g Experimental

Each independent sampling unit has one or more observations which are statistically independent from observations from any
other unit.

GLIMMPSE allows you to define fixed predictors which divide the independent sampling unit into groups. One common example of
a fixed predictor is treatment, with values placebo and drug, for which the independent sampling unit is randomized to a placebo
group or a drug group. Another is gender, with values male or female.

If the design has no fixed predictors, do not define any here.

Define Fixed Predictor

Fixed Predictors

Name Type Units Groups Remove Edit

mm Condition NOMINAL [ "Control", "Experimental" | [x] yd
==
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Select key hypothesis for power analysis
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Hypothesis choice Progress @ Help ) Sav

Each power or sample size calculation is based on selecting a specific study hypothesis. The options below show the hypotheses
which are available for the current study design. Specify the hypothesis that represents your scientific question.

GLIMMPSE chooses sensihle contrast matrices based on cell means coding. Should you wish to define your own contrast
matrices, pick the highest order interaction and choose from the advanced options in the hypothesis components.

Select a hypothesis from the list.

Effects Available for Consideration Nature of Variation
® Condition x time: Interaction Between x Within
O time: Main Effect Within
O Condition: Main Effect Between
O Grand Mean Between
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: Hypothesis Progress (3

What type of contrast do you wish among the means defined by your groups and repeated measures?

All mean differences zero

A parameter is a characteristic of a population.The parameters of interest are differences between groups at individual repeated measures.

The null hypothesis is that all pairwise differences between groups are the same among all pairs of repeated measures.

Show Advanced Options

Theta 0 Progress () Help ® sa

A hypothesis compares parameters to a constant, the contrast comparison constant, ©q. This is almost always zero. If you choose a value
other than zero, be sure that you understand that the hypothesis you define is scientifically meaningful. Also note that the description and
interpretation of your hypothesis given when choosing your contrasts will be affected.

Group size ratios Progress G

For equal group sizes, input a "1" in the block next to each group. This is the default study design.

For unequal group sizes, specify the ratio of the group sizes. For example, consider a design with an active drug group and a placebo
group. If twice as many study participants receive the placebo, a value of "2" would be selected for the placebo group, and a value of

"1" would be selected for the active drug group.

Group size ratios

Control 1

Condition

Experimental 1
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Expected means under key hypothesis
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Marginal means Progress

The table below shows the mean values for outcome Performance within each group in the study. Each group is represented by a
row in the table, and each repeated measure dimension is represented by a column.

Enter the mean values you expect to observe for outcome Performance within each group. The table should contain at least one
value that is non-zero. Also, at least two groups should have means which differ by a scientifically meaningful amount.

Expected mean values, per group, for Performance

time
1 2
=
2
E Control 5 5
(&)
Experimental 5 6

Set blank values to value
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BICOCECA
Scale factor for the marginal means Progress @
In power analysis, it is not possible to know the exact values of means before the experiment is observed. Scale factors allow you to
consider alternative values for the means by scaling the values entered on the previous screen.
For example, entering the scale factors 0.5, 1, and 2 would compute power for the mean values divided by 2, the mean values as entered,
and the mean values multiplied by 2.
Enter a scale factor:
number > 0
Scale Factor remove
1 -
Variability across outcomes
Enter the standard deviation you expect to observe for each outcome.
Outcome | Standard Deviation
Performance | 1
- Repeated measure standard deviation ratios Progress @
Define the ratios of standard deviations for time. One of your values should be 1 and the others should represent the ratio of that value to
that value:
For example, if you believe that the standard deviation doubles at each time, enter the values 1, 2, 4, 8... etc.
time | Standard Deviation Ratio
1 1

2 1
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Expected Means (EM) vs. Effect Size (ES)
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« How to relate EM and ES?

« Unless you have a sense of the strength of the effect in
raw metrics, you can find useful to standardize values

time as if
1 2 d=1.00
c
2 here
S Control 5
o
Q
Experimental 5 See also
http://shiny.ieis.tue.nl/anova_power/

Enter the standard deviation you expect to observe for each outcome. and
Outcome | Standard Deviation https://psyarXiV.Com/baXSf/

Performance | 1



http://shiny.ieis.tue.nl/anova_power/
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Repeated measure correlation Progress |
For a given research participant, responses vary across outcomes and across repeated measurements. The amount of variability can
dramatically impact power and sample size.
Define the time correlation matrix, by entering correlations you expect to observe among the chosen spacing values of time:
Unstructured LEAR
time
1 2
1 0,5
0,5 1
(each off-diagonal correlation must be between -1 and 1, exclusive)
. Scale factor variance Progress
Changes in variability can dramatically affect power and sample size results. It is not possible to know the variability until the
experiment is observed. Scale factors allow you to consider alternative values for variability by scaling the calculated covariance
matrix. For example, entering the scale factors 0.5, 1, and 2 would compute power for the covariance matrix divided by 2, the
covariance matrix as entered, and the covariance matrix multiplied by 2.
You may add up to 10 scale factors.
Choose a number greater than zero
I
—— Scale Factor remove

1 ]
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Calculate
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Finally, the calculation...

Progress @ Help @

Calculate

Results

Design

Matrices

Hypothesis

Design

Design Dimensions

Parameters

Optional Specifications

© ©® ® ® ®
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Calculate

Download result

Results

Power

Matrices

Total Sample
Size

0.807 e

0.912

46

Design

Target
Power

0.8

0.9

...and the results!

Means Scale
Factor

Variability Scale
Factor

Test

Hotelling Lawley

Trace

Hotelling Lawley
Trace

Power
Method

conditional

conditional

Progress @ Help @ save

Type | Error
Rate

0.05




DEGLI STUDI
jw)

-IL’I][:

Suppose expected correlation Is lower
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time
1 2
1 0,25
0,25 1

(each off-diagonal correlation must

Download result

Results Matrices Design

Power Total Sample Target Means Scale Variability Scale Test Power Type | Error
Size Power Factor Factor Method Rate
0.807 0.8 1 1 Hotelling Lawley conditional  0.05
Trace
0.904 66 0.9 1 1 Hotelling Lawley conditional  0.05
Trace
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Suppose no correlation
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time
1 2
1 0
0 1

Calculate

Download result

Results Matrices Design

Power Total Sample Target Means Scale Variability Scale Test Power Type | Error
Size Power Factor Factor Method Rate
0.808 0.8 1 1 Hotelling Lawley conditional  0.05
Trace
g 0.906 88 0.9 1 1 Hotelling Lawley conditional  0.05
L]

Trace



E Recap Examples Mixed ANOVA

BICOCCA

1) The design was a 2 x 2 Mixed ANOVA
2) We varied the expected correlations

Required N for power at .80
- r=.00, N= 66
- r=.25, N=50
- r=.50, N= 34

Required N goes down as the correlation between DVs of
the Within factor goes up
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The design you've desc
combination of fixed

bed, means that every level of Group occurs at every level of Condition. This concept applies to every Expected mean values, per group, for Performance

Control, No previous experience 5
Fixed Predictors
Name Type Units Groups Remove Edit o
3 Control, Previ i 5
Condition NOMINAL [ "Control", "Experimental” | 8 Va 8 ontro 1 revious experlence
Group NOMINAL [ "No previous experience”, "Previous experience" | 8 ya E‘
= . . .
5 Experimental, No previous experience 5
Effects Available for Consideration Nature of Variation g
o
® Condition x Group: Interaction Between x Between Experimental, Previous experience 6

Calculate

Download result

Results Matrices Design
Power Total Sample Target Means Scale Variability Scale Test Power Type | Error
Size Power Factor Factor Method Rate
0.801 @ 0.8 1 1 Hotelling Lawley conditional 0.05
Trace
[
™= 0.903 172 0.9 1 1 Hotelling Lawley conditional  0.05

Trace
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Suppose instead a 2 x 2 Within Ss (r=.25)

Expected mean values, per group, for Performance

Define Repeated Measure Variable A, Variable B

BB UNIVERSITA
ca
=

[ -]

(-] .

= OV

‘ 1,1 1,2 21 22
Repeated Measure Dimension Type Measurements Edit Remove
5 5 5 b
Variable A Categorical ["1"2"] V4 B .
Variable A Variable B
Variable B Categorical ["1","2"] V4 B 1 2 1 2
Effects Available for Consideration Nature of Variation
1 0,25 1 0,25
® Variable A x Variable B: Interaction Within x Within
0,25 1 0,25 1

Calculate

Download result

Results Matrices Design
Power Total Sample Target Means Scale Variability Scale Test Power Type | Error
Size Power Factor Factor Method Rate
0.807 0.8 1 1 Hotelling Lawley conditional 0.05
Trace
|
= 0.904 26 0.9 1 1 Hotelling Lawley conditional 0.05

Trace
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2 X 2 Within Ss with r=.50 and r=.0
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Variable A - Variable B
1 2 1 2
1 0,5 g 0.5
05 1 0,5 1

Calculate

Download result

Results Matrices Design

Power Total Sample Target Means Scale Variability Scale Test Power Type | Error
Size Power Factor Factor Method Rate
0.803 0.8 1 1 Hotelling Lawley conditional  0.05
Trace
0.911 i3 0.9 1 1 Hotelling Lawley conditional  0.05
Trace
Variable A Variable B
1 2 1 2
1 0 1 0
0 1 0 1

Results Matrices Design

Power Total Sample  Target Means Scale Variability Scale Test Power Type | Error
Size Power Factor Factor Method Rate
0.808 e 0.8 1 1 Hotelling Lawley conditional  0.05
I Trace
S ——
0900 44 0.9 1 1 Hotelling Lawley conditional  0.05

Trace
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Power Comparison
Three 2 x 2 ANOVA designs (Mixed, Between, Within)

S 0ONYTIIN

(==
—
[ ]
o=
]
L]

* Ineach design the same pattern Al A2
of expected means B1 5 5
«  Always SD=1 B2 > 6

«  Always powered for interaction effect

Required N for power at .80
-Between =128
-Mixed (r=.00) =64
-Mixed (r=.25) =50
-Mixed (r=.50) =34
-Within (r=.00) = 34
-Within (r=.25) = 20
-Within (r=.50) = 10

You can draw your own conclusion...
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How to Increase power?
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Increase sample size (also multi-lab collaborations)

Use blocking or repeated measures (within) design BUT
sometimes can be inappropriate

« Administer stronger treatments (e.g., experimental
manipulation) BUT be wary of possible reduced ecological
validity

« Avoid restrictions of range for dependent variables

 Standardize experimental procedures

 Increase reliability of measures

« Use more homogenous subject samples BUT increased risks
to generalizability of results

« Meta-analytic mindset
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Increasing power without increasing sample size
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Increasing Statistical Power
’_ Without Increasing Increasing the Power of Your Study by
2 Sample Size Increasing the Effect Size
S Gary H. McClelland g%hJANMnﬁ_YJ\.”\?AN OSSELAER
E — ———— University of Colorado at Boulder Journal of Consumer Research. Feb2018, Vol. 44 Issue 5, p1157-1173.
— \ August 2000 * American Psychologist 963

«  Standard errors depend on N and SD (smaller SD means
smaller SE)

« SE can be reduced with more reliable measures (more
trials, more items), more precise experimental designs, less
Ss variability (e.g., also within Ss designs)

« Plan your design as simple and as clean as possible
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Distinguish conceptually between unnecessary (“added
noise”’) and necessary (“natural”) variance

Improve your design. Optimize it. Think carefully about
It. Few extra hours spent on this can be worth hundreds
of extra participants (and avoid frustrations...)

Reduce the noise! Increase the signal!
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Summing up Power Analysis
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«  Power analysis is one important way to efficiently plan a study
« Try to power your study adequately
« A main problem is to best guess a predicted ES

«  Beware of the uncertainty of ES estimates and the asymmetric
Impact of ES estimate errors

«  Wise to consider uncertainty in the ES estimate (e.g., by
running different scenarios)

« Think in terms of range of values rather than a specific value
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What does it really mean to have enough power?
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The Crest-tailed Mulgara is a species of marsupial that was recently rediscovered living in an
area where it had been presumed extinct for about 100 years
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Power as fuel in the tank
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» Have enough fuel to find what you are looking for
(hoping that 1t Is there) in a place at a distance that
you hope have guessed reasonably well
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Some readings for some advanced issues

Contrast, regression, moderation, and mediation effects

Perugini, M., Gallucci, M., & Costantini, G. (2018). A Practical Primer To Power Analysis for Simple
Experimental Designs. International Review of Social Psychology, 31(1).

Within and Mixed ANOVA

Guo, Y., Logan, H. L., Glueck, D. H., & Muller, K. E. (2013). Selecting a sample size for studies with repeated
measures. BMC medical research methodology, 13(1), 100

Web app: GLIMMPSE (https://glimmpse.samplesizeshop.org)
Mixed/Multilevel Models

Judd, C. M., Westfall, J., & Kenny, D. A. (2016). Experiments with more than one random factor: Designs, analytic
models, and statistical power. Annual Review of Psychology. Web app:
https://jakewestfall.shinyapps.io/two_factor_power/

See also Brysbaert, M., & Stevens, M. (2018). Power analysis and effect size in mixed effects models: a

tutorial. Journal of Cognition, 1(1).

Kelcey, B., Xie, Y., Spybrook, J., & Dong, N. (2020). Power and sample size determination for multilevel
mediation in three-level cluster-randomized trials. Multivariate Behavioral Research
https://www.causalevaluation.org/power-analysis.html

Simulation based power analysis

Gelman, A., Hill, J. (2006) Data analysis using regression and multilevel/hierarchical models. Cambridge:
Cambridge University Press.

Advanced models and exemplary R code

Liu, X. S. (2014). Statistical Power Analysis for the Social and Behavioral Sciences: Basic and Advanced
Techniques. New York: Routledge.
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First tip for getting It right

(many more will come

to those who wait)




Back to the problem

As scientists, we all want to get something right

If we get It right, it Is replicable and will be
replicated

But what does 1t mean “to get 1t right”?
So, what can we do to increase our chances?

Some pointers (today only the first episode)




M 15t pointer: Power

« Design your study with adequate power (probability of
finding an effect if it does exist)

« Underpowered studies produce conflicting evidence and
false negatives but also false positives (Maxwell, 2004,

loannidis, 2005)

« Direct effect on False Negatives but also indirect effect on

False Positives
(False Discovery Rate /True False Positives)
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B Why many effects are not replicated?

BICOCCA

« A mix of different factors and possible
explanations

« Two main factors

a) Low power and b) Publication bias

« Under these conditions, It Is predictable that the
literature will contain many false positives (results
that seems significant but are not) and artificially
boosted effect sizes

« Hence effects will be difficult to replicate
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1.a Low power
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Is a real problem for y?  isssmaeny o

oo
o Marjan Bakker’', Chris H. J. Hartgerink', Jelte M. Wicherts’,
@PLOS | BIOLOGY and Han L. J. van der Maas®
' 'Department of Methodology and Statistics, Tilburg School of Social and Behavioral Sciences, Tilburg University,
and “Department of Psychology, Psychological Methods, University of Amsterdam
META RESEARCH ARTICLE 1990; Maxwell, 2004). Specifically, given the typical
Empirical assessment of published effect sizes effect sizes (ESs) and sample sizes reported in the psy-
and power in the recent cognitive chological literature, the statistical power of a typical
neuroscience and psychology literature two-group between-subjects design has beep.gstimated
Denes S2ucs'™. John .. loanidi? to be less than .50 (Cohen, 1990) or cveQ’ukker
1 Department of Psychology, University of Cambridge, Cambridge, United Kingdom, 2 Meta-Research et al., 2012). 'th‘SC l()\\' p(')\vcr estimates llp[ al [O con-

Innovation Center at Stanford (METRICS) and Depariment of Medicine, Department of Health Research and
Policy, and Depariment of Statistics, Stanford University, Stanford, California, United States of America

We have empirically assessed the distribution of published effect sizes and estimated
power by analyzing 26,841 statistical records from 3,801 cognitive neuroscience and psy-
chology papers published recently. The reported median effect size was D = 0.93 (interquar-
tile range: 0.64—1.46) for nominally statistically significant results and D = 0.24 (0.11-0.42) YeS !
for nonsignificant results. Median power to detect small, medium, and large effects was

0.1 End 0.73, reflecting no improvement through the past half-century. This is so

| because sample sizes have remained small. Assuming similar true effect sizes in both disci-




1.b Publication bias

Tendency to publish mainly significant results
(and to submit for publication mainly studies with
significant results)

There are sometimes understandable reasons (unclear

evidence, contradictory support, pilot studies, tentative
paradigms, etc.)

But often is a by-product of confirmation/positivity
biases and insufficient culture of cumulative knowledge
In a scientific field
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Publication bias
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The ES will be overestimated. How much depends on the extent of
PB and on the prevalence of small samples.
A reader will think that Cohen’s d=0.60 but in fact is d=0.30




E Publication bias, Effect Sizes, underpowered studies
BICOCCA
-_  ee——=——==S—=S—IR—I—L—— .,

ES: Cohen’s d=0.60 (vs. d=0.30)
N for power:

80% 90%
72 Ss (vs. 278) 98 Ss (vs. 382)

Suppose we run a study with 98 Ss.
Expected power is 0.90 but real power will be 0.43

Vicious cycle: PB leads to overestimated ES leading to
underpowered studies leading to non replicated effects,
even assuming that the effects are true and the

researchers do not “cheat”
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>4 1s there publication bias in science?
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A literature analysis across disciplines reveals a tendency to publish
only ‘positive’ studies — those that support the tested hypothesis.
Psychiatry and psychology are the worst offenders.

@ PHYSCAL @ BIOLOGICAL @ SOCIAL

Space sciences

Geosciences
Environment/Ecology

Plant and animal sciences
Computer science

Physics

Neuroscience and behaviour
Microbiology

Chemistry

Social sciences

Immunology

Molecular biology and genetics
Economics and business
Biology and biochemistry
Clinical medicine
Pharmacology and toxicology
Materials science
Psychiatry/psychology

YES

|

10%
Proportion of papers supporting
tested hypothesis

&

90%

(Fanelli, 2010)
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Publication bias, Effect Sizes, sample sizes

Without publication bias, there should be no relation (r=0)

September 2014 | Volume 9 | Issue 9 | 105825
OPEN aACCESS Freely available online @PLOS | ONE

B UNIVERSITA
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Publication Bias in Psychology: A Diagnosis Based on the
Correlation between Effect Size and Sample Size YES

Anton Kiihberger''?*, Astrid Fritz?>, Thomas Schernd]!’

1 Department of Psychology, University of Salzburg, Salzburg, Austria, 2 Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria, 3 Osterreichisches
Methods: We investigate whether effect size is independent from sample size in psychological research. We randomly
sampled 1,000 psychological articles from all areas of psychological research. We extracted p values, effect sizes, and sample
sizes of all empirical papers, and calculated the correlation between effect size and sample size, and investigated the

r=.541
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Publication bias, Effect Sizes, sample sizes
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Without publication bias, there should be no relation

Neuroinform (2012) 10:67-80
DOI 10.1007/512021-011-9125-y

ORIGINAL ARTICLE

Publication Bias in Neuroimaging Research: Implications YE S
for Meta-Analyses

Robin G. Jennings - John D. Van Horn

Fig. 3 Funnel plot of Cohen’s d 120
by sample size for studies with-
out extreme values (n=70).
While a ‘large’ Cohen’s d value
is usually d=0.8, most of our
values are between 1 and 25, 80 |

Sample Siee ()
2 .3

with funnel plot asymmetry due i 4
to the heavy right-tail evident i £
here. Inset: Funnel plot of l‘i 60 *E
Cohen’s d by sample size for £
each study (n=74), showing the 5 o w0 mu"l =0 o 0
four extreme outlier values 401 . . -
"e
20 |
l 'h - ﬁ. ¢ .
"‘ Wegt . R " .
(IR
I
——— 0 5 10 15 20 25

Effect Size (d)




Conclusions

Increase sample size (trials/items) If you want to
get It right

Decrease unnecessary variation

Decrease noise and increase signal in the study

To get 1t right means to reduce False positives
(Type | error), False negatives (Type Il error)
and to have reasonably precise estimates
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