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In this lecture you will learn about new concepts and notations needed to clearly describe 

causal concepts. 

In particular, the lecture presents and discusses the following:

 Potential Outcomes and Individual Treatment Effects

 The Fundamental Problem of Causal Inference

• Average Treatment Effects and Missing Data Interpretation

• Ignorability – Exchangeability

• Conditional Exchangeability – Unconfoundedness

• Positivity – Overlap – Common Support and Extrapolation

• No interference, Consistency, and SUTVA

POTENTIAL OUTCOMES
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PART I

POTENTIAL OUTCOMES AND

INDIVIDUAL TREATMENT EFFECTS

POTENTIAL OUTCOMES
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We will use the following notation:

 𝑋 denotes the random variable for TREATMENT,

 𝑌 denotes the random variable for the OUTCOME of interest,

 𝐙 denotes a set of random variables (COVARIATES),

In general, we will use uppercase letters 𝑍 to denote random variables and lowercase letters 𝑧 to 

denote values that random variables take on. 

Much of what we consider will be settings where 𝑋 and 𝑌 are binary. 

In general, we can extend things to work in settings where 𝑋 and 𝑌 can take on more than two values 

or where 𝑋 and 𝑌 are continuous.

PART I: POTENTIAL OUTCOMES AND INDIVIDUAL TREATMENT EFFECTS
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We have the following narration, you are unhappy (😟), 
and consider whether or not to get a dog (🐶) to help 

make you happy (😀). 😟
You get the dog and become happy!!!

😀
The dog (🐶) CAUSED you to be happy (😀)?

+ 

 What if I told you “I’m certain you would have 

become happy also without getting the dog”? The dog was not necessary to make you 
happy, so its claim to a causal effect on your 
happiness is weak.

To answer the question to the right we need to know more.

🐶😟 😀+

 What if instead I told you “I’m certain you 

would have remained unhappy without 

getting the dog”?

🐶😟 😟+
The dog has a pretty strong claim to a causal 
effect on your happiness.

🐶

PART I: POTENTIAL OUTCOMES AND INDIVIDUAL TREATMENT EFFECTS
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We have just used the causal concept known 

as POTENTIAL OUTCOMES. 

Happiness = OUTCOME

😟
unhappy

😀
happy

OUTCOME

Dog = TREATMENT 🐶
do not get

TREATMENT

We let 𝑌 1 be the POTENTIAL OUTCOME OF HAPPINESS you would observe if you were to get a dog 𝑋 = 1 .

We let 𝑌 0 be the POTENTIAL OUTCOME OF HAPPINESS you would observe if you were to not get a dog 𝑋 = 0 .

get

🐶

PART I: POTENTIAL OUTCOMES AND INDIVIDUAL TREATMENT EFFECTS
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🐶😟 😀+

🐶😟 😟+

😟 😀+ 🐶

😟 😀+ 🐶

scenario 1

scenario 2

𝑋 = 1

𝑋 = 0

𝑋 = 1

𝑋 = 0

PART I: POTENTIAL OUTCOMES AND INDIVIDUAL TREATMENT EFFECTS

We let 𝑌 1 be the POTENTIAL OUTCOME OF HAPPINESS you would observe if you were to get a dog 𝑋 = 1 .

We let 𝑌 0 be the POTENTIAL OUTCOME OF HAPPINESS you would observe if you were to not get a dog 𝑋 = 0 .
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POTENTIAL OUTCOME

𝑌 𝑥 denotes what your outcome would be, if you were to take treatment 𝑋 = 𝑥.

 A POTENTIAL OUTCOME 𝒀 𝒙  is distinct from the OBSERVED OUTCOME 𝒀 in that not all 
potential outcomes are observed. 

 All potential outcomes can potentially be observed.

 The actually observed potential outcome depends on the given value 𝑥 of treatment 𝑋.

😀
😟 +🐶

𝑌 1 = 1 = 𝑌

𝑋 = 1 😟𝑌 1 = 0 = 𝑌

😀
😟 +🐶

𝑌 1 = 1 = 𝑌

𝑋 = 1
𝑌 0 = ?

OBSERVED

NOT

OBSERVED

😀😟 +🐶 𝑌 1 = 1 = 𝑌

𝑋 = 1

😟😟 +🐶 𝑌 0 = 0 = 𝑌

𝑋 = 0

PART I: POTENTIAL OUTCOMES AND INDIVIDUAL TREATMENT EFFECTS



CAUSAL NETWORKS – POTENTIAL OUTCOMES FALL 2021 FABIO STELLA

8

Up to now there is only a single individual in the whole population: you.

However, the POPULATION consists of many INDIVIDUALS or UNITS.

Each individual (unit) is tipically associated with one or more 

variables, referred to as COVARIATES 𝐙.

We denote TREATMENT 𝑿, COVARIATES 𝐙 and OUTCOME 𝒀 of the 𝑖

individual (unit) as 𝑋 , 𝐙 and 𝑌 .
𝑋 𝐙 𝑌

𝑖
individual

(unit)

age
gender
weight

individual
(unit)

you

population
individuals

units

The individual treatment effect (ITE) for the 𝑖 individual (unit) 
is defined as follows:

𝜏 ≜ 𝑌 1 − 𝑌 0

INDIVIDUAL TREATMENT EFFECT – (ITE)

😀😟 +🐶 𝑌 1 = 1

😟😟 +🐶 𝑌 0 = 0

𝜏 = 1 − 0 = 1

PART I: POTENTIAL OUTCOMES AND INDIVIDUAL TREATMENT EFFECTS

𝑋 = 1

𝑋 = 0
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𝑌 𝑥 is a random variable (different individuals 
have different potential outcomes).

population
individuals

units

𝑌 𝑥 𝑌 𝑥𝑌 𝑥 … … … … … 𝑌 𝑥 is treated as a non-random variable 
we are conditioning on so much 
individualized (and context-specific) 
information, that we restrict our focus to a 
single individual (in a specific context) 
whose potential outcomes are deterministic.

Individual treatment effects (ITEs) are some of the main 
quantities that we care about in causal inference. 

😀😟 +🐶 𝑌 1 = 1

😟😟 +🐶 𝑌 0 = 0

𝜏 = 1 − 0 = 1

You would choose to get a dog because the 
CAUSAL EFFECT (ITE) 𝜏 ≜ 𝑌 1 − 𝑌 0  of getting 
a dog on your happiness is positive 𝜏 = 1.

You

PART I: POTENTIAL OUTCOMES AND INDIVIDUAL TREATMENT EFFECTS

The individual treatment effect (ITE) for the 𝑖 individual (unit) 
is defined as follows:

𝜏 ≜ 𝑌 1 − 𝑌 0

INDIVIDUAL TREATMENT EFFECT – (ITE) 𝑋 = 1

𝑋 = 0
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𝑌 𝑥 is a random variable (different individuals 
have different potential outcomes).

population
individuals

units

𝑌 𝑥

𝑌 𝑥

𝑌 𝑥 … … … … …

Individual treatment effects (ITEs) are some of the main 
quantities that we care about in causal inference. 

😀😟 +🐶 𝑌 1 = 1

😀😟 +🐶 𝑌 0 = 1

𝜏 = 1 − 1 = 0

You would decide to not get a dog because 
there is NO CAUSAL EFFECT of getting a dog 
𝜏 ≜ 𝑌 1 − 𝑌 0 = 1 − 1 = 0.

PART I: POTENTIAL OUTCOMES AND INDIVIDUAL TREATMENT EFFECTS

The individual treatment effect (ITE) for the 𝑖 individual (unit) 
is defined as follows:

𝜏 ≜ 𝑌 1 − 𝑌 0

INDIVIDUAL TREATMENT EFFECT – (ITE) 𝑋 = 1

𝑋 = 0

𝑌 𝑥 is treated as a non-random variable 
we are conditioning on so much 
individualized (and context-specific) 
information, that we restrict our focus to a 
single individual (in a specific context) 
whose potential outcomes are deterministic.

You
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PART II

THE FUNDAMENTAL PROBLEM

OF CAUSAL INFERENCE

POTENTIAL OUTCOMES
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It is impossible to observe all potential outcomes for a given 
individual (unit).

😟
🐶 𝑌 1

PART II: THE FUNDAMENTAL PROBLEM OF CAUSAL INFERENCE

🐶 𝑌 0

In particular:

 You cannot observe both 𝑌 1 and 𝑌 0 , unless you 
have a TIME MACHINE that would allow you to go back in 
time and choose the version of treatment 𝑋 that you 
didn’t take the first time.

TIME

MACHINE
  You cannot simply get a dog, observe 𝑌 1 , give the dog 

away, and then observe 𝑌 0 because the second 
observation will be influenced by all the actions you took 
between the two observations and anything else that 
changed since the first observation.

😟🐶 𝑌 1 🐶 𝑌 0

😟
🐶 𝑌 1

🐶 𝑌 0
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Indeed, we care about making causal 

claims, which are defined in terms of 

potential outcomes. 

We cannot observe both 𝑌 1 and 𝑌 0 , therefore we cannot 
observe the causal effect

𝜏 ≜ 𝑌 1 − 𝑌 0

THE FUNDAMENTAL PROBLEM OF CAUSAL INFERENCE

In machine learning, we often only care about predicting the observed outcome 𝑌, so there is no need for 
potential outcomes, which means machine learning does not have to deal with this fundamental problem that 
we must deal with in causal inference.

 The potential outcomes that you do not (and 
cannot) observe are known as COUNTERFACTUALS

because they are counter to fact (reality). 

 A potential outcome 𝑌 𝑥 does not become 
counter to fact (COUNTERFACTUAL) until another 
potential outcome 𝑌 𝑥′ is observed. 

😟🐶 𝑌 1

😟🐶 𝑌 0 = 1 FACTUAL

COUNTERFACTUAL

 Note that there are no counterfactuals or factuals
until the outcome is observed. Before that, there 
are only potential outcomes.

PART II: THE FUNDAMENTAL PROBLEM OF CAUSAL INFERENCE

𝑋 = 0
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We know that we can’t access individual 

treatment effects (ITE), due to the 

fundamental problem of causal inference.

However, what about AVERAGE TREATMENT EFFECTS?

The average treatment effect (ATE) is obtained by taking an 
average over the ITEs:

where we recall that the average is over the individuals “𝑖” if 
𝑌 𝑥 is deterministic.

𝜏 ≜ 𝔼 𝑌 1 − 𝑌 0 = 𝔼 𝑌 1 − 𝑌 0

AVERAGE TREATMENT EFFECT - ATE

How would we actually compute the ATE?

We cannot observe both 𝑌 1 and 𝑌 0 , therefore we cannot 
observe the causal effect

𝜏 ≜ 𝑌 1 − 𝑌 0

THE FUNDAMENTAL PROBLEM OF CAUSAL INFERENCE
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Let us assume that data in the right table (Table 2.1) 
represent the whole population of interest. 

The FUNDAMENTAL PROBLEM OF CAUSAL INFERENCE can be 
seen as a MISSING DATA PROBLEM, i.e., all question marks (?) 
in Table 2.1 mean that we do not observe the value for the 
corresponding cell. 

Therefore, we can not compute directly the average 
treatment effect (ATE) or average causal effect (ACE):

and linearity of expectation 𝔼  gives:

𝜏 ≜ 𝔼 𝑌 1 − 𝑌 0 = ?

We could be tempted to use the associational 
difference

𝔼 𝑌|𝑋 = 1 − 𝔼 𝑌|𝑋 = 0

ASSOCIATIONAL DIFFERENCE

𝜏 ≜ 𝔼 𝑌 1 − 𝑌 0 = 𝔼 𝑌 1 − 𝑌 0

𝜏 ≜ 𝔼 𝑌 1 − 𝑌 0 = 𝔼 𝑌 1 − 𝔼 𝑌 0

However, we know the following:

Unfortunately, this is not true in general. If it were, that would mean that causation is simply association.

= 𝔼 𝑌|𝑋 = 1 − 𝔼 𝑌|𝑋 = 0
?

𝑖 𝑋 𝑌 𝑌 1 𝑌 0 𝑌 1 − 𝑌 0

1 0 0 ? 0 ?

2 1 1 1 ? ?

3 1 0 0 ? ?

4 0 0 ? 0 ?

5 0 1 ? 1 ?

6 1 1 1 ? ?

Table 2.1
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is an associational quantity, while

𝔼 𝑌|𝑋 = 1 − 𝔼 𝑌|𝑋 = 0

𝔼 𝑌 1 − 𝔼 𝑌 0

is a causal quantity.

In general, they are not equal due to CONFOUNDING.

The graphical representation of such a difference is depicted 
in Figure 2.1.

In particular, we say that the covariate 𝑍 confounds the effect 
of 𝑋 on 𝑌, because the of the following path

Figure 2.1 𝑌𝑋

𝑍

← →

𝑖 𝑋 𝑌 𝑌 1 𝑌 0 𝑌 1 − 𝑌 0

1 0 0 ? 0 ?

2 1 1 1 ? ?

3 1 0 0 ? ?

4 0 0 ? 0 ?

5 0 1 ? 1 ?

6 1 1 1 ? ?

Table 2.1
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𝑖 𝑋 𝑌 𝑌 1 𝑌 0 𝑌 1 − 𝑌 0

1 0 0 ? 0 ?

2 1 1 1 ? ?

3 1 0 0 ? ?

4 0 0 ? 0 ?

5 0 1 ? 1 ?

6 1 1 1 ? ?

But … under which assumptions the following equality holds 
true?

Table 2.1

In other terms, when ATE is equal to the associational 
difference?

𝜏 ≜ 𝔼 𝑌 1 − 𝔼 𝑌 0 = 𝔼 𝑌|𝑋 = 1 − 𝔼 𝑌|𝑋 = 0

What legitimates us to calculate the ATE by taking the 
average of the 𝑌 0 column, ignoring the question marks, and 
subtracting that from the average of the 𝑌 1 column, ignoring 
the question marks?

Ignoring question marks (missing data) 
is known as: 

Assuming                  
IGNORABILITY − EXCHANGEABILITY

means we can ignore how a 
patient ended up selecting the 
treatment 𝑋 she selected and  
just assuming she was randomly 
assigned her treatment 𝑋. Figure 2.2 𝑌𝑋

𝑍

𝑌 1 − 𝑌 0       𝑋

IGNORABILITY − EXCHANGEABILITY

⊥⊥
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Table 2.1

PART II: THE FUNDAMENTAL PROBLEM OF CAUSAL INFERENCE

𝑖 𝑋 𝑌 𝑌 1 𝑌 0 𝑌 1 − 𝑌 0

1 0 0 ? 0 ?

2 1 1 1 ? ?

3 1 0 0 ? ?

4 0 0 ? 0 ?

5 0 1 ? 1 ?

6 1 1 1 ? ?

IGNORABILITY − EXCHANGEABILITY is fundamental because it 
allows us to reduce the ATE to the associational difference:

𝜏 ≜ 𝔼 𝑌 1 − 𝔼 𝑌 0

= 𝔼 𝑌 1 |𝑋 = 1 − 𝔼 𝑌 0 |𝑋 = 0

= 𝔼 𝑌|𝑋 = 1 − 𝔼 𝑌|𝑋 = 0

IGNORABILITY − EXCHANGEABILITY means that the groups 
(treatment/control) are exchangeable in the sense that if 
they were swapped, the new treatment group would 
observe the same outcomes as the old treatment group, 
and the new control group would observe the same 
outcomes as the old control group.

𝔼 𝑌 1 |𝑋 = 1 = 𝔼 𝑌 1 |𝑋 = 0

𝔼 𝑌 0 |𝑋 = 0 = 𝔼 𝑌 0 |𝑋 = 1

which brings to

𝔼 𝑌 1 |𝑋 = 𝑥 = 𝔼 𝑌 1

𝔼 𝑌 0 |𝑋 = 𝑥 = 𝔼 𝑌 0
 𝑥

MEAN IGNORABILITY − EXCHANGEABILITY

𝑌 1 − 𝑌 0       𝑋

IGNORABILITY − EXCHANGEABILITY

⊥⊥
nearly equivalent to
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Table 2.1

PART II: THE FUNDAMENTAL PROBLEM OF CAUSAL INFERENCE

𝑖 𝑋 𝑌 𝑌 1 𝑌 0 𝑌 1 − 𝑌 0

1 0 0 ? 0 ?

2 1 1 1 ? ?

3 1 0 0 ? ?

4 0 0 ? 0 ?

5 0 1 ? 1 ?

6 1 1 1 ? ?

𝜏 ≜ 𝔼 𝑌 1 − 𝔼 𝑌 0

= 𝔼 𝑌 1 |𝑋 = 1 − 𝔼 𝑌 0 |𝑋 = 0

= 𝔼 𝑌|𝑋 = 1 − 𝔼 𝑌|𝑋 = 0

MEAN (IGNORABILITY − EXCHANGEABILITY) is a weaker assumption 
than FULL (IGNORABILITY − EXCHANGEABILITY) (box below), 
because it only constrains the first moment of the distribution.

In general, MEAN (IGNORABILITY − EXCHANGEABILITY) is sufficient 
for ATE, but it is common to assume complete independence, as 
formally represented in the box below.

𝑌 1 − 𝑌 0       𝑋

IGNORABILITY − EXCHANGEABILITY

⊥⊥

IGNORABILITY − EXCHANGEABILITY is fundamental because it 
allows us to reduce the ATE to the associational difference:

𝔼 𝑌 1 |𝑋 = 1 = 𝔼 𝑌 1 |𝑋 = 0

𝔼 𝑌 0 |𝑋 = 0 = 𝔼 𝑌 0 |𝑋 = 1

which brings to

𝔼 𝑌 1 |𝑋 = 𝑥 = 𝔼 𝑌 1

𝔼 𝑌 0 |𝑋 = 𝑥 = 𝔼 𝑌 0
 𝑥

MEAN IGNORABILITY − EXCHANGEABILITY

nearly equivalent to
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Table 2.1

PART II: THE FUNDAMENTAL PROBLEM OF CAUSAL INFERENCE

𝑖 𝑋 𝑌 𝑌 1 𝑌 0 𝑌 1 − 𝑌 0

1 0 0 ? 0 ?

2 1 1 1 ? ?

3 1 0 0 ? ?

4 0 0 ? 0 ?

5 0 1 ? 1 ?

6 1 1 1 ? ?

𝜏 ≜ 𝔼 𝑌 1 − 𝔼 𝑌 0

= 𝔼 𝑌 1 |𝑋 = 1 − 𝔼 𝑌 0 |𝑋 = 0

= 𝔼 𝑌|𝑋 = 1 − 𝔼 𝑌|𝑋 = 0

An important intuition to have about  
IGNORABILITY − EXCHANGEABILITY is that it guarantees 
that the groups are comparable. 

In other words, the TREATMENT GROUP 𝑋 = 1 and the  
CONTROL GROUP 𝑋 = 0  are the same in all relevant 
aspects other than the treatment 𝑋.

𝑌 1 − 𝑌 0       𝑋

IGNORABILITY − EXCHANGEABILITY

⊥⊥

IGNORABILITY − EXCHANGEABILITY is fundamental because it 
allows us to reduce the ATE to the associational difference:

𝔼 𝑌 1 |𝑋 = 1 = 𝔼 𝑌 1 |𝑋 = 0

𝔼 𝑌 0 |𝑋 = 0 = 𝔼 𝑌 0 |𝑋 = 1

which brings to

𝔼 𝑌 1 |𝑋 = 𝑥 = 𝔼 𝑌 1

𝔼 𝑌 0 |𝑋 = 𝑥 = 𝔼 𝑌 0
 𝑥

MEAN IGNORABILITY − EXCHANGEABILITY

nearly equivalent to
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The assumption of IGNORABILITY − EXCHANGEABILITY allows us to IDENTIFY CAUSAL EFFECTS.

 To IDENTIFY A CAUSAL EFFECT is to reduce a causal expression to a purely statistical expression. 

– To reduce an expression from one that uses potential outcome notation to one that uses only 
statistical notation such as 𝑋, 𝑍, 𝑌, expectations, and conditioning. 

– We can calculate the CAUSAL EFFECT from just the OBSERVATIONAL DISTRIBUTION 𝑃 𝑋, 𝑍, 𝑌

A causal quantity (e.g. 𝔼 𝑌 𝑥 ) is identifiable 
if we can compute it from a purely statistical 
quantity (e.g. 𝔼 𝑌|𝑋 = 𝑥 ).

IDENTIFIABILITY

IGNORABILITY − EXCHANGEABILITY

is extremely important, but how 
realistic of an assumption is it?

COMPLETELY UNREALISTIC, 
confounding is likely to happen 
in most data we observe.

Figure 2.1 𝑌𝑋

𝑍

𝑌 1 − 𝑌 0       𝑋

IGNORABILITY − EXCHANGEABILITY

⊥⊥
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We can make the IGNORABILITY − EXCHANGEABILITY assumption realistic by 

performing RANDOMIZED EXPERIMENTS, which force the treatment 𝑋 to not be 

caused by anything but a coin toss, so then we have the causal structure 

shown in Figure 2.2.

Figure 2.1 𝑌𝑋

𝑍

Figure 2.2 𝑌𝑋

𝑍

COMPLETELY UNREALISTIC, 
confounding is likely to happen 
in most data we observe.

𝑌 1 − 𝑌 0       𝑋

IGNORABILITY − EXCHANGEABILITY

⊥⊥

A causal quantity (e.g. 𝔼 𝑌 𝑥 ) is identifiable 
if we can compute it from a purely statistical 
quantity (e.g. 𝔼 𝑌|𝑋 = 𝑥 ).

IDENTIFIABILITY

IGNORABILITY − EXCHANGEABILITY

is extremely important, but how 
realistic of an assumption is it?
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In OBSERVATIONAL DATA, it is unrealistic to assume that the groups 
(treatment and control) are exchangeable. In other words, there is 
no reason to expect that the groups (treatment and control) are the 
same in all relevant variables 𝑍 ∈ 𝐙 other than the treatment 𝑋.

However, if we control for relevant variables by conditioning, then 
maybe the groups will be exchangeable. 

 What do we mean by “relevant variables”? 

 For now, let’s just say they are all of the covariate variables 𝐙.

Although the treatment 𝑋 and potential outcomes 𝑌 1  and 𝑌 0  may 
be unconditionally associated (due to confounding), within levels of 𝑍, 
they are not associated. 

No confounding within levels of 𝑍 because CONTROLLING FOR 𝑍 makes 
the treatment group 𝑋 = 1  and the control group 𝑋 = 0  comparable.

Figure 2.3 𝑌𝑋

𝑍

We do not have                 
IGNORABILITY − EXCHANGEABILITY in 
the data because 𝑍 is a common 
cause of 𝑋 and 𝑌.

NON-CAUSAL ASSOCIATION between 𝑋
and 𝑌, flows along the following path:

← →

CONDITIONAL EXCHANGEABILITY − UNCONFOUNDEDNESS

𝑌 1 − 𝑌 0      𝑋 | 𝐙 where 𝐙 are the covariate variables.⊥⊥
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However, CONDITIONAL EXCHANGEABILITY − UNCONFOUNDEDNESS

holds in the data. 

Indeed, when conditioning on 𝑍, non-causal association between 
𝑋 and 𝑌 no longer exists.

Non-causal association is “BLOCKED” at 𝑍 by conditioning on 𝑍. 

CONDITIONAL EXCHANGEABILITY − UNCONFOUNDEDNESS is the main 
assumption necessary for causal inference.

Figure 2.4 𝑌𝑋

𝑍

We can now identify the causal effect within levels of 𝐙, just like we 
did with (unconditional) ignorability − exchangeability:

𝔼 𝑌 1 − 𝑌 0  | 𝐙 = 𝔼 𝑌 1 |𝐙 − 𝔼 𝑌 0 |𝐙

= 𝔼 𝑌 1 |𝑋 = 1, 𝐙 − 𝔼 𝑌 0 |𝑋 = 0, 𝐙

= 𝔼 𝑌|𝑋 = 1, 𝐙 − 𝔼 𝑌|𝑋 = 0, 𝐙

Figure 2.3 𝑌𝑋

𝑍

CONDITIONAL EXCHANGEABILITY − UNCONFOUNDEDNESS

𝑌 1 − 𝑌 0      𝑋 | 𝐙 where 𝐙 are the covariate variables.⊥⊥
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However, CONDITIONAL EXCHANGEABILITY − UNCONFOUNDEDNESS

holds in the data. 

Indeed, when conditioning on 𝑍, non-causal association between 
𝑋 and 𝑌 no longer exists.

Non-causal association is “BLOCKED” at 𝑍 by conditioning on 𝑍. 

CONDITIONAL EXCHANGEABILITY − UNCONFOUNDEDNESS is the main 
assumption necessary for causal inference.

We can now identify the causal effect within levels of 𝐙, just like we 
did with (unconditional) ignorability − exchangeability:

𝔼 𝑌 1 − 𝑌 0  | 𝐙 = 𝔼 𝑌 1 |𝐙 − 𝔼 𝑌 0 |𝐙

= 𝔼 𝑌 1 |𝑋 = 1, 𝐙 − 𝔼 𝑌 0 |𝑋 = 0, 𝐙

= 𝔼 𝑌|𝑋 = 1, 𝐙 − 𝔼 𝑌|𝑋 = 0, 𝐙

CONDITIONAL EXCHANGEABILITY − UNCONFOUNDEDNESS

𝑌 1 − 𝑌 0      𝑋 | 𝐙 where 𝐙 are the covariate variables.⊥⊥

Conditional exchangeability is a core 
assumption for causal inference and 
goes by many names:

– unconfoundedness,

– conditional ignorability,

– no unobserved confounding,

– selection on observables, 

– no omitted variable bias

– etc…

I will use the term

UNCONFOUNDEDNESS
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If we want the marginal effect that we had before when assuming 
(unconditional) ignorability − exchangeability, we can get that by 
simply marginalizing out 𝐙 as follows

We can now introduce an important result for causal inference, that 
we will formally prove in next lectures.

𝔼 𝑌 1 − 𝑌 0 = 𝔼𝐙𝔼 𝑌 1 − 𝑌 0 |𝐙

= 𝔼𝐙 𝔼 𝑌|𝑋 = 1, 𝐙 − 𝔼 𝑌|𝑋 = 0, 𝐙

ADJUSTMENT FORMULA

Given the assumptions of unconfoundedness, positivity, consistency, 
and no interference, we can identify the ATE:

𝔼 𝑌 1 − 𝑌 0 = 𝔼𝐙 𝔼 𝑌|𝑋 = 1, 𝐙 − 𝔼 𝑌|𝑋 = 0, 𝐙

Conditional exchangeability is a core 
assumption for causal inference and 
goes by many names:

– unconfoundedness,

– conditional ignorability,

– no unobserved confounding,

– selection on observables, 

– no omitted variable bias

– etc…

We moved from the assumption of ignorability − exchangeability to that 
of unconfoundedness because it seems more realistic. 

However, we often cannot know for certain if unconfoundedness holds!!!

I will use the term

UNCONFOUNDEDNESS
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There may be some UNOBSERVED CONFOUNDERS (𝑊 in Figure 2.3B) 
that are not part of 𝐙 = 𝑴 , meaning UNCONFOUNDEDNESS IS VIOLATED.

Fortunately, that is not a problem in RANDOMIZED EXPERIMENTS.

Unfortunately, it is something that we must always be conscious of in 
OBSERVATIONAL DATA. 

Intuitively, the best thing we can do is to observe and fit (adjust for) as 
many covariates into 𝐙 as possible to try to ensure unconfoundedness.

Figure 2.3B 𝑌𝑋

𝑀
𝑊

However, we will see in next lectures, that it is not necessarily true that 
conditioning on more covariates 𝐙 always helps our causal estimates to 
be less biased.

Indeed, it can be the case we obtain more biased estimates when 
adjusting for the “wrong covariates” in 𝐙 = 𝑴, 𝑵 .

In Figure 2.3C, adjusting for 𝑀 provides unbiased estimates, while 
adjusting for 𝑁 results in biased estimates. Figure 2.3C 𝑌𝑋

𝑀

𝑁
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Conditioning on many covariates is attractive for 
achieving unconfoundedness, but it can be detrimental 
for another reason that has to do with POSITIVITY.

POSITIVITY − OVERLAP − COMMON SUPPORT

For all values 𝒛 of covariates 𝐙 present in the 
population of interest (i.e., 𝒛 such that 𝑷 𝐙 = 𝒛 > 0)

0 < 𝑃 𝑋 = 1|𝐙 = 𝒛 < 1
Positivity is the condition that all subgroups of the data 
with different value 𝒛 for covariates 𝐙 have some 
probability of receiving any value of treatment 𝑋. 

If we have a POSITIVITY VIOLATION, then we will be conditioning on a zero probability event.

𝔼 𝑌 1 − 𝑌 0 = 𝔼𝐙 𝔼 𝑌|𝑋 = 1, 𝐙 − 𝔼 𝑌|𝑋 = 0, 𝐙

To clearly see how a positivity violation translates to division by zero, let’s rewrite the right-hand side of

in the case of discrete covariate variables 𝐙, to obtain

= 𝑃 𝐙 = 𝒛

𝒛

𝑦 𝑃 𝑌 = 𝑦|𝑋 = 1, 𝐙 = 𝒛 − 𝑦 𝑃 𝑌 = 𝑦|𝑋 = 0, 𝐙 = 𝒛

= 𝑃 𝐙 = 𝒛

𝒛

𝑦
𝑃 𝑌 = 𝑦, 𝑋 = 1, 𝐙 = 𝒛

𝑃 𝑋 = 1|𝐙 = 𝒛 𝑃 𝐙 = 𝒛
− 𝑦

𝑃 𝑌 = 𝑦, 𝑋 = 0, 𝐙 = 𝒛

𝑃 𝑋 = 0|𝐙 = 𝒛 𝑃 𝐙 = 𝒛

POSITIVITY IS ESSENTIAL TO

DEFINE CAUSAL EFFECT!!!
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POSITIVITY − OVERLAP − COMMON SUPPORT

For all values 𝒛 of covariates 𝐙 present in the 
population of interest (i.e., 𝒛 such that 𝑷 𝐙 = 𝒛 > 0)

0 < 𝑃 𝑋 = 1|𝐙 = 𝒛 < 1

 𝑖𝑓 ∃ 𝒛 ∶ 𝑃 𝑋 = 1|𝐙 = 𝒛 = 0  𝑖𝑓 ∃ 𝒛 ∶ 𝑃 𝑋 = 1|𝐙 = 𝒛 = 1

All units belonging to subgroup 𝒁 = 𝒛 do not 
receive the treatment 𝑋 = 0 .

All units belonging to subgroup 𝐙 = 𝒛 do 
receive the treatment 𝑋 = 1 .

subgroup
𝐙 = 𝒛

𝑋 = 0 𝑋 = 1

subgroup
𝐙 = 𝒛

𝑋 = 0 𝑋 = 1

It wouldn’t make any sense to be able to estimate the 
causal effect of treatment 𝑋 = 1  vs. control 𝑋 = 0
in subgroup 𝐙 = 𝒛, since we see only treatment 
𝑋 = 1  or only control 𝑋 = 0 , i.e., we never see the 

alternative in subgroup 𝐙 = 𝒛.
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POSITIVITY − OVERLAP − COMMON SUPPORT

For all values 𝒛 of covariates 𝐙 present in the 
population of interest (i.e., 𝒛 such that 𝑷 𝐙 = 𝒛 > 0)

0 < 𝑃 𝑋 = 1|𝐙 = 𝒛 < 1

Positivity is also referred to as OVERLAP, in the 
sense we want the covariate distribution of the 
treatment group 𝑋 = 1

𝑃 𝐙|𝑋 = 1

to overlap with the covariate distribution of the 
control group 𝑋 = 0

𝑃 𝐙|𝑋 = 0

This is why another common alias for positivity 
is COMMON SUPPORT.

In the case where the covariates 𝐙 consist of a single 
variable 𝑍 (i.e., Age) we have the following graphical 
representation of positivity, overlap, and common 
support:

10-15  16-20  21-25  26-30 31-35  36-40  41-45  46-50  51-55  56-60 61-65  66-70  71-75  

AGE

POSITIVITY − OVERLAP − COMMON SUPPORT

𝑃 𝑍|𝑋 = 1 𝑃 𝑍|𝑋 = 0

10-15  16-20  21-25  26-30 31-35 36-40  41-45  46-50  51-55  56-60 61-65  66-70  71-75  

AGE

NO POSITIVITY − NO OVERLAP − NO COMMON SUPPORT

𝑃 𝑍|𝑋 = 1
𝑃 𝑍|𝑋 = 0
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adjusting (conditioning) 
on more covariates 𝐙

increase the 
“dimension” of the 
covariates 𝐙

As each subgroup 𝐙 = 𝒛 gets smaller, there is a higher and higher chance that either the whole subgroup 
𝐙 = 𝒛 will have treatment 𝑋 = 1 or the whole subgroup 𝐙 = 𝒛 will have control 𝑋 = 0 .

POSITIVITY − OVERLAP − COMMON SUPPORT

For all values 𝒛 of covariates 𝐙 present in the 
population of interest (i.e., 𝒛 such that 𝑷 𝐙 = 𝒛 > 0)

0 < 𝑃 𝑋 = 1|𝐙 = 𝒛 < 1
higher chance of 
satisfying 
unconfoundedness

could 
lead to

higher chance of  
violating positivity

could 
lead to

makes the subgroups for any 
level 𝒛 of the covariates 𝐙 smaller CURSE OF DIMENSIONALITY

size of any subgroup 𝐙 = 𝒛 equal to 1 positivity is guaranteed to not hold
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POSITIVITY − OVERLAP − COMMON SUPPORT

For all values 𝒛 of covariates 𝐙 present in the 
population of interest (i.e., 𝒛 such that 𝑷 𝐙 = 𝒛 > 0)

0 < 𝑃 𝑋 = 1|𝐙 = 𝒛 < 1

demanding too much from 
models and getting very 
bad behavior in return

fit a model to 𝔼 𝑌|𝑋, 𝐙
using the available 
data 𝑥, 𝑦, 𝒛

inputs to the model 𝔼 𝑌|𝑋, 𝐙  are 𝑥, 𝒛 pairs, while 
the output is the outcome 𝑦.

adjusting (conditioning) 
on more covariates 𝐙

higher chance of 
satisfying 
unconfoundedness

could 
lead to

higher chance of  
violating positivity

could 
lead to

𝔼 𝑌|𝑋 = 0, 𝐙𝔼 𝑌|𝑋 = 1, 𝐙

𝑃 𝑋 = 0|𝐀𝐆𝐄 = 𝟐𝟔 − 𝟑0 = 0

extrapolation

extrapolation

10-15  16-20  21-25  26-30 31-35  36-40  41-45  46-50  51-55  56-60 61-65  66-70  71-75  

AGE

𝑃 𝑍|𝑋 = 0𝑃 𝑍|𝑋 = 1
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Another assumption is that of NO INTERFERENCE.

NO INTERFERENCE

The outcome 𝑌  of each unit "𝑖" is unaffected by anyone 
else’s treatment 𝑋 , 𝑗 ≠ 𝑖.

𝑌 𝑥 , 𝑥 , … , 𝑥 , 𝑥 , 𝑥 , … , 𝑥 , 𝑥 = 𝑌 𝑥

Rather, the outcome 𝑌  of each unit "𝑖" is 
only a function of treatment 𝑋 .

We have implicitly made this assumption 
till now.

This assumption could be violated.

OUTCOME 𝑌 = “MY HAPPYNESS” 😀😟 me my friend

😟 🐶+
🐶😀

😟

I hang out more

Violations of the no interference assumption are almost 
sure in network data.

TREATMENT 𝑋 = “GET A DOG” 🐶🐶
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It might seem like consistency is obviously true, but 
that is not always the case.

The last assumption is CONSISTENCY.

CONSISTENCY

If the treatment is 𝑋, then the observed outcome 𝑌 is 
the potential outcome under treatment 𝑋. Formally,

𝑋 = 𝑥 ⟹ 𝑌 = 𝑌 𝑥

We could write this also as follows:

𝑌 = 𝑌 𝑋

𝑋 =
1             “get a dog”
0 “do not get a dog” 

because I needed 
an energetic friend😀

😟 because I got an old 
and low energy dog

𝑌 = 1

𝑌 = 0

𝑋 = 1

𝑌 1 is not well defined, 
since it will be 1 or 0, 
depending on something 
that is not captured by the 
treatment 𝑋 specification.

“no multiple versions of treatment.”

SUTVA

The Stable Unit-Treatment Value Assumption 
(SUTVA) is satisfied if unit (individual) 𝑖’s 
outcome 𝑌 is simply a function of unit 𝑖’s 
treatment 𝑋 . 

SUTVA is a combination of consistency and no 
interference (and also deterministic potential 
outcomes).
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TYING IT ALL TOGETHER

POTENTIAL OUTCOMES
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The following assumptions are all needed for solving the problem of causal inference:

POSITIVITY − OVERLAP − COMMON SUPPORT

For all values 𝒛 of covariates 𝐙 present in 
the population of interest (i.e., 𝒛 such that 
𝑷 𝐙 = 𝒛 > 0)

0 < 𝑃 𝑋 = 1|𝐙 = 𝒛 < 1

NO INTERFERENCE

The outcome 𝑌  of each unit "𝑖" is unaffected by anyone 
else’s treatment 𝑋 , 𝑗 ≠ 𝑖.

𝑌 𝑥 , 𝑥 , … , 𝑥 , 𝑥 , 𝑥 , … , 𝑥 , 𝑥 = 𝑌 𝑥

CONSISTENCY

If the treatment is 𝑋, then the observed 
outcome 𝑌 is the potential outcome under 
treatment 𝑋. Formally,

𝑋 = 𝑥 ⟹ 𝑌 = 𝑌 𝑥

We could write this also as follows:

𝑌 = 𝑌 𝑋

SUTVA

CONDITIONAL EXCHANGEABILITY − UNCONFOUNDEDNESS

𝑌 1 − 𝑌 0 ⊥ 𝑋 | 𝐙 where 𝐙 are the covariate variables.⊥⊥
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ADJUSTMENT FORMULA

Given the assumptions of unconfoundedness, positivity, 
consistency, and no interference, we can identify the ATE:

𝔼 𝑌 1 − 𝑌 0 = 𝔼𝐙 𝔼 𝑌|𝑋 = 1, 𝐙 − 𝔼 𝑌|𝑋 = 0, 𝐙

= 𝔼𝐙 𝔼 𝑌|𝑋 = 1, 𝐙 − 𝔼 𝑌|𝑋 = 0, 𝐙

= 𝔼 𝑌 1 − 𝔼 𝑌 0 (linearity of expectations)

= 𝔼𝐙 𝔼 𝑌 1 |𝐙 − 𝔼 𝑌 0 |𝐙 (law of iterated expectations)

= 𝔼𝐙 𝔼 𝑌 1 |𝑋 = 1, 𝐙 − 𝔼 𝑌 0 |𝑋 = 0, 𝐙 (unconfoundedness and positivity)

(consistency)

NO INTERFERENCE justifies 
that the quantity we 
should be looking at for 
causal inference is

𝔼 𝑌 1 − 𝑌 0

The average treatment effect (ATE) is 
obtained by taking an average over the 
ITEs:

where we recall that the average is over 
the individuals “𝑖” if 𝑌 𝑥 is deterministic.

𝜏 ≜ 𝔼 𝑌 1 − 𝑌 0 = 𝔼 𝑌 1 − 𝑌 0

AVERAGE TREATMENT EFFECT - ATE

All of these assumptions tie together 
give us identifiability of the ATE. 

We now come back to give a formal 
proof of the ADJUSTMENT FORMULA.
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We need to introduce some terminology that will help clarify the discussion.

estimand we care about for estimating the ATE

ESTIMAND

An estimand is a quantity that we want to estimate. 𝔼𝐙 𝔼 𝑌|𝑋 = 1, 𝐙 − 𝔼 𝑌|𝑋 = 0, 𝐙

Given an estimand 𝛼, we let 𝛼 be its estimate.

ESTIMATE

An approximation of some estimand, which we get 
using data.

ESTIMATOR

A function that maps a dataset to an estimate of 
the estimand.

ESTIMATION

The process that we use to go from data + estimand
to a concrete number is known as estimation.

 CAUSAL ESTIMAND refers to any estimand that contains a potential outcome in it.

 STATISTICAL ESTIMAND refers to any estimand that does not contain a potential outcome in it.
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is the CAUSAL ESTIMAND that we are interested in

𝔼 𝑌 1 − 𝑌 0 = 𝔼𝐙 𝔼 𝑌|𝑋 = 1, 𝐙 − 𝔼 𝑌|𝑋 = 0, 𝐙

In the following formula

𝔼 𝑌 1 − 𝑌 0

To actually estimate this causal estimand, we 
must translate it into a STATISTICAL ESTIMAND

𝔼𝐙 𝔼 𝑌|𝑋 = 1, 𝐙 − 𝔼 𝑌|𝑋 = 0, 𝐙

IDENTIFICATION

The process of moving from a causal estimand
to an equivalent statistical estimand.

ESTIMATION

The process of moving from a statistical estimand
to an estimate.

CAUSAL

ESTIMAND

IDENTIFICATION
STATISTICAL

ESTIMAND

ESTIMATION
ESTIMATE
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How do we do when we go to actually estimate quantities such as

𝔼𝐙 𝔼 𝑌|𝑋 = 1, 𝐙 − 𝔼 𝑌|𝑋 = 0, 𝐙

We will often use a model (e.g., linear regression or some more flexible predictor from machine learning) in 
place of the conditional expectations

We will refer to estimators that use models 
like this as MODEL-ASSISTED ESTIMATORS.𝔼 𝑌|𝑋 = 𝑥, 𝐙 = 𝒛

We now need to discuss estimation.
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* Miguel Angel Luque-Fernandez, Michael Schomaker, Daniel Redondo-Sanchez, Maria Jose Sanchez Perez, Anand Vaidya, and Mireille E Schnitzer. 
‘Educational Note: Paradoxical collider effect in the analysis of non-communicable disease epidemiological data: a reproducible illustration and web 
application’. In: International Journal of Epidemiology 48.2 (Dec. 2018), pp. 640–653. doi: 10.1093/ije/dyy275 (cited on pages 16, 45).

We now give an example complete with estimation(*).

𝑋
“daily sodium intake”

𝑌
“systolic blood pressure”

Sodium intake is a continuous variable, so to easily apply

𝔼 𝑌 1 − 𝑌 0 = 𝔼𝐙 𝔼 𝑌|𝑋 = 1, 𝐙 − 𝔼 𝑌|𝑋 = 0, 𝐙

which is specified for binary treatment, we binarize 𝑌

𝑌 = 1 𝑖𝑓 𝑑𝑎𝑖𝑙𝑦 𝑠𝑜𝑑𝑖𝑢𝑚 𝑖𝑛𝑡𝑎𝑘𝑒 ≥ 3.5 𝑔𝑟.

𝑌 = 0 𝑖𝑓 𝑑𝑎𝑖𝑙𝑦 𝑠𝑜𝑑𝑖𝑢𝑚 𝑖𝑛𝑡𝑎𝑘𝑒 < 3.5 𝑔𝑟.

We estimate the causal effect of sodium intake on blood pressure. 

The data also include the following 
covariates 𝐙 for each individual:

 Age

 Amount of protein in the urine

Because we are using data from a 
simulation, we know that the true ATE 
of sodium on blood pressure is 1.05.

𝔼 𝑌 1 − 𝑌 0 = 1.05
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How do we actually estimate the ATE?

1) We assume consistency, positivity, 
and unconfoundedness given 𝐙.  
This means that ATE is identified by

2)    We then take that outer expectation 
over 𝐙 = Age, Amount of proteine
and replace it with an empirical mean 
over the data, giving us the following:

= 𝔼𝐙 𝔼 𝑌|𝑋 = 1, 𝐙 − 𝔼 𝑌|𝑋 = 0, 𝐙

1

𝑛
𝔼 𝑌|𝑋 = 1, 𝐙 = 𝒛𝒊 − 𝔼 𝑌|𝑋 = 0, 𝐙 = 𝒛𝒊

3)    To complete our estimator, we then fit a machine learning model to the conditional expectation 𝔼 𝑌|𝑥, 𝒛 .

We can plug in any machine learning model for 𝔼 𝑌|𝑥, 𝒛 , which gives us a MODEL-ASSISTED ESTIMATOR.

We use linear regression, which works out nicely 
since blood pressure is generated as a linear 
combination of other variables (daily sodium 
intake, age and amount of protein in the urine).

𝔼 𝑌 1 − 𝑌 0 = 0.856

%𝑒𝑟𝑟𝑜𝑟 =
0.856 − 1.05

1.05
× 100% = 18%

𝔼 𝑌 1 − 𝑌 0
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So, if we use linear regression, which works out nicely since blood pressure is generated as a linear 
combination of other variables (daily sodium intake, age and amount of protein in the urine).

All of the above is obtained using the 
ADJUSTMENT FORMULA with MODEL-ASSISTED

ESTIMATION, where:

1) we fit a model 𝐌 for the conditional 
expectation 𝔼 𝑌|𝑥, 𝒛

2) we take an empirical mean over 𝐙
using model 𝐌

𝔼 𝑌 1 − 𝑌 0 = 5.37 %𝑒𝑟𝑟𝑜𝑟 =
5.37 − 1.05

1.05
× 100% = 411%

However, if we were to naively regress 
𝑌 on only 𝑋 (daily sodium intake) we 
would get    

𝔼 𝑌 1 − 𝑌 0 = 0.856 %𝑒𝑟𝑟𝑜𝑟 =
0.856 − 1.05

1.05
× 100% = 18%

ADJUSTMENT FORMULA

Given the assumptions of unconfoundedness, positivity, 
consistency, and no interference, we can identify the ATE:

𝔼 𝑌 1 − 𝑌 0 = 𝔼𝐙 𝔼 𝑌|𝑋 = 1, 𝐙 − 𝔼 𝑌|𝑋 = 0, 𝐙
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The associated notebook is available here

https://colab.research.google.com/github/AlessioZanga/CaMo/blob/
develop/examples/potential_outcomes.ipynb

COLAB EXECUTABLE


