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1.3 PROBABILITY AND STATISTICS

Statistics generally concerns itself not with absolutes but with 

likelihoods, thus the language of probability is extremely 

important to it.

Probability is similarly important to the study of causation 

because most causal statements are uncertain

which is true, but does not mean that a careless driver is 

certain to get into an accident.

Probability is the way we express uncertainty, even if many other approaches are available to manage it.

In this course, we will use the language and laws of probability to express our belief and uncertainty about 

the world.

We provide a glossary of the most important terms and concepts they will need to know in order to understand 

the rest of the course.

“careless driving causes accidents”
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1.3.1 PROBABILITY AND STATISTICS: VARIABLES

A variable is any property or descriptor that can take multiple values.

• Age

• Gender

• Family history of cancer?

• How many years smoking?

A Variable can be thought of as a Question, to which the Value is the Answer.

Question: How old is the participant?

Answer: 38 years old

Variable: Age

Value: 38
𝑃 𝑋 = 𝑥

𝑋

𝑥
𝑃 𝑥

𝑃 𝐴𝑔𝑒 = 38

An individual randomly 

selected from the 

population is aged 38.

𝑃 𝐴𝑔𝑒 = 38, 𝐺𝑒𝑛𝑑𝑒𝑟 = 𝑚𝑎𝑙𝑒

Probability of multiple values at once.

A study to compare health of smokers and nonsmokers
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A variable can be

• discrete or categorical; can take one of finite or countably 

infinite set of values in any range.

• continuous; can take any one of an infinite set of values on a 

continuous scale.

Light switch

Person’s 

weight

1.3.1 PROBABILITY AND STATISTICS: VARIABLES
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1.3.2 PROBABILITY AND STATISTICS: EVENTS

An event is any assignment of a value or set of values to a variable or set of variables.

Examples of event

• X = 1

• X = 1 OR X = 2

• X = 1 AND Y = 3

• X = 1 OR Y = 3

coin flips lands 

on heads
The patient recovers

Variable: coin flips

Value: head

Variable: the patient’s status

Value: recovered

Another way of thinking of an event in probability is this: 

Any declarative statement (a statement that can be true or false) is an event.
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1.3.3 PROBABILITY AND STATISTICS: CONDITIONAL PROBABILITY

The probability that some event A occurs, given that we know some other event B has occurred, is the 

conditional probability of A given B.

𝑃 𝑋 = 𝑥|𝑌 = 𝑦 𝑃 𝑥|𝑦

The probability we assign to the event “X = x” 

changes drastically, depending on the 

knowledge “Y = y” we condition on.

𝑃 𝑦𝑒𝑠 = 0.01

𝑋

𝐹𝑙𝑢 = {yes, no}

𝑃 𝑦𝑒𝑠|39 = 0.65

𝑌

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝐶° = 39
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1.3.3 PROBABILITY AND STATISTICS: CONDITIONAL PROBABILITY

When dealing with probabilities represented by frequencies in a data set, one way to think of conditioning is 

filtering a data set based on the value of one or more variables.

Age of U.S. voters in the 2012 presidential election.

Age Group # of voters

18-29 20,539

30-44 30,756

45-64 52,013

65+ 29,641

132,949

TABLE 1.3   Age breakdown of voters in 2012 election 

(all numbers in thousands)

In Table 1.3, there were 132,949,000 votes cast in total, so we would estimate that the probability that a given 

voter was younger than the age of 45 is 

𝑃 𝑉𝑜𝑡𝑒𝑟′𝑠 𝐴𝑔𝑒 < 45 =
20,539,000 + 30,756,000

132,949,000
= 0.3858
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1.3.3 PROBABILITY AND STATISTICS: CONDITIONAL PROBABILITY
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filtering a data set based on the value of one or more variables.
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18-29 20,539
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45-64 52,013

65+ 29,641

132,949

TABLE 1.3   Age breakdown of voters in 2012 election 
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In Table 1.3, there were 132,949,000 votes cast in total, so we would estimate that the probability that a given 

voter was younger than the age of 45 is 
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1.3.3 PROBABILITY AND STATISTICS: CONDITIONAL PROBABILITY

Suppose, however, we want to estimate the probability that a voter was younger than the age of 45, given that 

we know he was elder than the age of 29.

To find this out, we simply filter the data to form a new set (Table 1.4), using only the cases where the voters 

were older than 29.

Age Group # of voters

18-29 20,539

30-44 30,756

45-64 52,013

65+ 29,641

132,949

TABLE 1.3   Age breakdown of voters in 2012 election 

(all numbers in thousands)

Age Group # of voters

30-44 30,756

45-64 52,013

65+ 29,641

112,410

TABLE 1.4   Age breakdown of voters over the Age of 

29 in 2012 election (all numbers in thousands)

In this new data set, there are 112,410,000 total votes, so we would estimate that

𝑃 𝑉𝑜𝑡𝑒𝑟′𝑠 𝐴𝑔𝑒 < 45|𝑉𝑜𝑡𝑒𝑟′𝑠 𝐴𝑔𝑒 > 29 =
30,756,000

112,410,000
= 0.2736
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1.3.3 PROBABILITY AND STATISTICS: CONDITIONAL PROBABILITY

Conditional probabilities such as these play an important role in investigating causal questions, as we often 

want to compare how the probability (or equivalently, risk) of an outcome changes under different filtering, or 

exposure, conditions.

How does the probability of developing lung cancer for smokers compare to 

the analogous probability for nonsmokers?
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1.3.4 PROBABILITY AND STATISTICS: INDEPENDENCE

It might happen that the probability of one event remains unaltered with the observation of another.

𝑃 𝑦𝑒𝑠 = 0.01

𝑋

𝐹𝑙𝑢 = {yes, no}

𝑃 𝑦𝑒𝑠|39 = 0.65

𝑌

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝐶° = 39

𝑍

𝐴𝑔𝑒 = 27

𝑃 𝑦𝑒𝑠|27 = 0.01

Two events A and B are said to be independent if

𝑃 𝐴|𝐵 = 𝑃 𝐴

The knowledge that B has occurred gives us no additional information about the probability of A occurring.
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1.3.4 PROBABILITY AND STATISTICS: INDEPENDENCE

If the following equality

𝑃 𝐴|𝐵 = 𝑃 𝐴

does not hold, then A and B are said to be 

dependent.

Dependence and independence are symmetric relations

• If A is dependent on B, then B is dependent on A.

𝑃 𝐴|𝐵 = 𝑃 𝐴 ⟺ 𝑃 𝐵|𝐴 = 𝑃 𝐵Two events A and B are conditionally independent 

given a third event C if

𝑃 𝐴|𝐵, 𝐶 = 𝑃 𝐴|𝐶 𝑃 𝐵|𝐴, 𝐶 = 𝑃 𝐵|𝐶

𝐴 𝐶 𝐵

𝑃 𝐴|𝐵 ≠ 𝑃 𝐴 ⟺ 𝑃 𝐵|𝐴 ≠ 𝑃 𝐵

• If A is independent on B, then B is independent on A. 
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1.3.4 PROBABILITY AND STATISTICS: INDEPENDENCE

Variables, like events, can be dependent or independent of each other. 

𝑃 𝑋 = 𝑥|𝑌 = 𝑦 = 𝑃 𝑋 = 𝑥

Two variables X and Y are considered independent if for every value x and y that X and Y can take, we have

Independence of variables 

is a symmetrical relation
𝑃 𝑌 = 𝑦|𝑋 = 𝑥 = 𝑃 𝑌 = 𝑦

If for any pair of values of X and Y, one of the above equalities does not hold, then 

X and Y are said to be dependent.

Independence of variables can be understood as a set of independencies of events.

𝑃 𝑋 = 𝑥, 𝑌 = 𝑦 = 𝑃 𝑋 = 𝑥 𝑃 𝑌 = 𝑦

𝑋 ⊥ 𝑌

𝑌 ⊥ 𝑋

𝑋 ⊥ 𝑌 𝑌 ⊥ 𝑋
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1.3.4 PROBABILITY AND STATISTICS: INDEPENDENCE

Variables, like events, can be conditionally dependent or conditionally independent of each other given 

some other variables. 

𝑃 𝑋 = 𝑥|𝑌 = 𝑦, 𝑍 = 𝑧 = 𝑃 𝑋 = 𝑥|𝑍 = 𝑧

Two variables X and Y are considered conditionally independent, given a third variable Z, if for every 

value x and y that X and Y can take, for each value z that Z can take

𝑋 ⊥ 𝑌|𝑍

𝑌 ⊥ 𝑋|𝑍𝑃 𝑌 = 𝑦|𝑋 = 𝑥, 𝑍 = 𝑧 = 𝑃 𝑌 = 𝑦|𝑍 = 𝑧

𝑃 𝑋 = 𝑥, 𝑌 = 𝑦|𝑍 = 𝑧 = 𝑃 𝑋 = 𝑥|𝑍 = 𝑧 𝑃 𝑌 = 𝑦|𝑍 = 𝑧
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1.3.5 PROBABILITY AND STATISTICS: PROBABILITY DISTRIBUTIONS

A probability distribution for a variable X is the set of probabilities assigned to each possible value of X.

𝑋 ∈ 1, 2, 3 𝑃 𝑋 = 1 = 0.50, 𝑃 𝑋 = 2 = 0.25, 𝑃 𝑋 = 3 = 0.25

𝑃 𝑋 = 2 = 1 ⇒ 𝑋 = 2 is the certain event

Continuous variables also have probability 

distributions, typically represented by a function  

𝒇 called density function and such that

𝑓 𝑥

𝑎 𝑏

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = න
𝑎

𝑏

𝑓 𝑥 𝑑𝑥

𝑃 𝑋 = 1 = 0 ⇒ 𝑋 = 1 is an impossible event

X and Y Independent

𝑓 𝑥|𝑦 = 𝑓 𝑥 𝑓 𝑦|𝑥 = 𝑓 𝑦 𝑓 𝑥, 𝑦 = 𝑓 𝑥 𝑓 𝑦

න
−∞

+∞

𝑓 𝑥 𝑑𝑥 = 1
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1.3.5 PROBABILITY AND STATISTICS: PROBABILITY DISTRIBUTIONS

A probability distribution for a variable X is the set of probabilities assigned to each possible value of X.

𝑋 ∈ 1, 2, 3 𝑃 𝑋 = 1 = 0.50, 𝑃 𝑋 = 2 = 0.25, 𝑃 𝑋 = 3 = 0.25

𝑃 𝑋 = 2 = 1 ⇒ 𝑋 = 2 is the certain event

Continuous variables also have probability 

distributions, typically represented by a function  

𝒇 called density function and such that

𝑓 𝑥

𝑎 𝑏

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = න
𝑎

𝑏

𝑓 𝑥 𝑑𝑥

𝑃 𝑋 = 1 = 0 ⇒ 𝑋 = 1 is an impossible event

Joint Probability Distribution 𝑋 ∈ 1,2 𝑌 ∈ 1,2

𝑃 𝑋 = 1, 𝑌 = 1 = 0.2 𝑃 𝑋 = 1, 𝑌 = 2 = 0.3

𝑃 𝑋 = 2, 𝑌 = 1 = 0.4 𝑃 𝑋 = 2, 𝑌 = 2 = 0.1

න
−∞

+∞

𝑓 𝑥 𝑑𝑥 = 1
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1.3.6 PROBABILITY AND STATISTICS: THE LAW OF TOTAL PROBABILITY

There are several universal probability truths that are useful to know.

Given any pair A and B of mutually exclusive events

(i.e., A and B can not co-occur), we have
𝑃 𝐴 𝑜𝑟 𝐵 = 𝑃 𝐴 + 𝑃 𝐵

For any pair A and B of events, we have 𝑃 𝐴 = 𝑃 𝐴 𝑎𝑛𝑑 𝐵 + 𝑃 𝐴 𝑎𝑛𝑑 𝐵

In general, for any set of events

𝐵1, 𝐵2, … , 𝐵𝑛

such that exactly one of them must be true (it forms 

a partition), we have the law of total probability

𝑃 𝐴 = 𝑃 𝐴, 𝐵1 + 𝑃 𝐴, 𝐵2 +⋯+𝑃 𝐴, 𝐵𝑛

𝑃 𝐴, 𝐵 = 𝑃 𝐴| 𝐵 𝑃 𝐵

Furthermore, we know the following

𝑃 𝐴| 𝐵 =
𝑃 𝐴, 𝐵

𝑃 𝐵

𝑃 𝐴|𝐵 = 𝑃 𝐴

𝑃 𝐴, 𝐵 = 𝑃 𝐴 𝑃 𝐵
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1.3.6 PROBABILITY AND STATISTICS: THE LAW OF TOTAL PROBABILITY

A relevant formula is the Bayes’ rule or formula, which can be derived as 

follows

𝑃 𝐴, 𝐵 = 𝑃 𝐴| 𝐵 𝑃 𝐵

𝑃 𝐴| 𝐵 =
𝑃 𝐵| 𝐴 𝑃 𝐴

𝑃 𝐵

𝑃 𝐵, 𝐴 = 𝑃 𝐵| 𝐴 𝑃 𝐴

𝑃 𝐴, 𝐵 = 𝑃 𝐵, 𝐴 = 𝑃 𝐴| 𝐵 𝑃 𝐵 = 𝑃 𝐵| 𝐴 𝑃 𝐴

𝑃 𝐴 = 𝑃 𝐴, 𝐵1 + 𝑃 𝐴, 𝐵2 +⋯+𝑃 𝐴, 𝐵𝑛

𝑃 𝐴 = 𝑃 𝐴|𝐵1 𝑃 𝐵1 + 𝑃 𝐴|𝐵2 𝑃 𝐵2 +⋯+ 𝑃 𝐴|𝐵𝑛 𝑃 𝐵𝑛

We can write a different form for 

the law of total probability
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1.3.6 PROBABILITY AND STATISTICS: THE LAW OF TOTAL PROBABILITY

Useful because, often we will find ourselves in a situation where we cannot assess 𝑃 𝐴 directly, but we can 

through this decomposition.

Indeed, it is generally easier to assess conditional probabilities such that 𝑃 𝐴|𝐵𝑘 , which are tied to specific 

contexts, rather than 𝑃 𝐴 , which is not attached to a context.

factory A

factory B

30% of disks

one out of 10,000 

are defective (D)

one out of 5,000 

are defective (D)

70% of disks

Which is the probability that 

a randomly selected disk will 

be defective (D)? 

𝑃 𝐷 = ?

𝑃 𝐷 = 𝑃 𝐷|𝐴 𝑃 𝐴 + 𝑃 𝐷|𝐵 𝑃 𝐵

=
1

5,000
0.3 +

1

10,000
0.7

= 0.00013
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1.3.6 PROBABILITY AND STATISTICS: THE LAW OF TOTAL PROBABILITY

We roll two dice, and we want to know the probability that the second roll is higher 

than the first

𝑃 𝐴 = 𝑃 𝑅𝑜𝑙𝑙 2 > 𝑅𝑜𝑙𝑙 1

No obvious way to calculate this probability all at once. But if we break it down into contexts

𝐵1, 𝐵2, … , 𝐵6

by conditioning on the value of the first die (𝐵𝑘 means the roll of the first die is k), it becomes easy to solve:

𝑃 𝑅𝑜𝑙𝑙 2 > 𝑅𝑜𝑙𝑙 1 = 𝑃 𝑅𝑜𝑙𝑙 2 > 𝑅𝑜𝑙𝑙 1|𝑅𝑜𝑙𝑙 1 = 1 𝑃 𝑅𝑜𝑙𝑙 1 = 1 +

+ 𝑃 𝑅𝑜𝑙𝑙 2 > 𝑅𝑜𝑙𝑙 1|𝑅𝑜𝑙𝑙 1 = 2 𝑃 𝑅𝑜𝑙𝑙 1 = 2 +

=
5

6
×

1

6
+

4

6
×

1

6
+

3

6
×

1

6
+

2

6
×

1

6
+

1

6
×

1

6
+

0

6
×

1

6
= 

5

12

+ …

+ 𝑃 𝑅𝑜𝑙𝑙 2 > 𝑅𝑜𝑙𝑙 1|𝑅𝑜𝑙𝑙 1 = 6 𝑃 𝑅𝑜𝑙𝑙 1 = 6
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1.3.7 PROBABILITY AND STATISTICS: USING BAYES’ RULE

When using Bayes’ rule, we sometimes loosely 

refer to event A as the hypothesis and to 

event B as the evidence.

𝑃 𝐴| 𝐵 =
𝑃 𝐵| 𝐴 𝑃 𝐴

𝑃 𝐵

𝑃 𝐵| 𝐴
In many cases, we know or 

can easily determine

(probability that a piece of evidence will 

occur given that our hypothesis is correct)

but it’s much harder to 

figure out
𝑃 𝐴|𝐵

(the probability of the hypothesis being correct, 

given that we obtain a piece of evidence)

which is the question we 

most often want to answer 

in the real world.

𝑃 𝐴| 𝐵 =
𝑃 𝐵| 𝐴 𝑃 𝐴

𝑃 𝐵

belief in hypothesis A

(prior probability)

probability of evidence B given 

that hypothesis A is correct

(likelihood)

probability of B 

(evidence)

updated belief in hypothesis A

(posterior probability)
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1.3.7 PROBABILITY AND STATISTICS: USING BAYES’ RULE

You are in a casino, and you hear a dealer shout “11!”.

You know that the only two games that happen to have such an outcome are:

You know that there are as many craps games as roulette games going on 

at any moment, thus

𝑃 𝑐𝑟𝑎𝑝𝑠 = 𝑃 𝑟𝑜𝑢𝑙𝑒𝑡𝑡𝑒 = 0.5

What is the probability that the dealer is working at a 

game of craps, given that he shouted “11!”? 

Craps Roulette

craps is the hypothesis

“11!” is the evidence
𝑃 𝑐𝑟𝑎𝑝𝑠|"11! " =?
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1.3.7 PROBABILITY AND STATISTICS: USING BAYES’ RULE

Craps

𝑃 "11!"|𝑐𝑟𝑎𝑝𝑠 =?

Betting on the sum of the roll 

of two dice.

2

36
𝑃 "11!"|𝑟𝑜𝑢𝑙𝑒𝑡𝑡𝑒 =?

1

38

craps and roulette are hypothesis

𝑃 "11! " = 𝑃 "11!"|𝑐𝑟𝑎𝑝𝑠 𝑃 𝑐𝑟𝑎𝑝𝑠 + 𝑃 "11!"|𝑟𝑜𝑢𝑙𝑒𝑡𝑡𝑒 𝑃 𝑟𝑜𝑢𝑙𝑒𝑡𝑡𝑒 =

=
2

36
×
1

2
+

1

38
×
1

2
=

7

171

Roulette



2019 September 23rd - 27th                                                                   Causal Networks: Learning and Inference Fabio Stella and Luca Bernardinello

1.3.7 PROBABILITY AND STATISTICS: USING BAYES’ RULE

Craps

𝑃 𝑐𝑟𝑎𝑝𝑠|"11! " =
𝑃 11!|𝑐𝑟𝑎𝑝𝑠 𝑃 𝑐𝑟𝑎𝑝𝑠

𝑃 "11! "
=

1
18

×
1
2

7
171

= 0.679

𝑃 "11! " = 𝑃 "11!"|𝑐𝑟𝑎𝑝𝑠 𝑃 𝑐𝑟𝑎𝑝𝑠 + 𝑃 "11!"|𝑟𝑜𝑢𝑙𝑒𝑡𝑡𝑒 𝑃 𝑟𝑜𝑢𝑙𝑒𝑡𝑡𝑒 =

=
2

36
×
1

2
+

1

38
×
1

2
=

7

171
𝑃 𝐴| 𝐵 =

𝑃 𝐵| 𝐴 𝑃 𝐴

𝑃 𝐵

𝑃 𝑐𝑟𝑎𝑝𝑠|"11! " =
𝑃 11!|𝑐𝑟𝑎𝑝𝑠 𝑃 𝑐𝑟𝑎𝑝𝑠

𝑃 "11! "
=

1
18

×
1
2

7
171

= 0.679

Betting on the sum of the roll 

of two dice.

Roulette
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1.3.7 PROBABILITY AND STATISTICS: USING BAYES’ RULE

Monty Hall Game

Behind two doors

Behind a door
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1.3.7 PROBABILITY AND STATISTICS: USING BAYES’ RULE

Monty Hall Game

Behind two doors

Behind a door

Your Choice

You are offered the 

following alternatives

You are asked to 

chose a door

Monty 

opens 

the 

door

▪ keep your choice

▪ change your choice
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1.3.7 PROBABILITY AND STATISTICS: USING BAYES’ RULE

Monty Hall Game

Your Choice

Monty 

opens 

the 

door

You puzzled?

What your choice?

Why?

You are offered the 

following alternatives

▪ keep your choice

▪ change your choice
You are asked to 

chose a door
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1.3.8 PROBABILITY AND STATISTICS: EXPECTED VALUES

In statistics we often deal with data sets and probability distributions that are too large to effectively examine 

each possible combination of values.

Instead, we use statistical measures to represent, with some loss of information, meaningful features of the 

distribution.

Expected Value or Mean

Can be used when the variable 

takes on numerical values

𝐸 𝑋 =෍

𝑥

𝑥 𝑃 𝑋 = 𝑥

𝑋 ∈ 1,2,3,4,5,6

𝐸 𝑋 = 1× 𝑃 1 + 2 × 𝑃 2

𝐸 𝑋 + 3× 𝑃 3 + 4 × 𝑃 4

𝐸 𝑋 + 5× 𝑃 5 + 6 × 𝑃 6 = 3.5

Expected Value of any function 

of X, i.e. g(X)

𝐸 𝑔 𝑋 =෍

𝑥

𝑔 𝑥 𝑃 𝑥

𝐸 𝑔 𝑋 = 12 × 𝑃 1 + 22 × 𝑃 2

𝐸 𝑋 + 32 × 𝑃 3 + 42 × 𝑃 4

𝐸 𝑋 + 52 × 𝑃 5 + 62 × 𝑃 6 = 15.17

𝑔 𝑋 = 𝑋2
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1.3.8 PROBABILITY AND STATISTICS: EXPECTED VALUES

We can also calculate the expected value of Y conditioned on X 𝐸 𝑌|𝑋 = 𝑥 =෍

𝑦

𝑦 𝑃 𝑌 = 𝑦|𝑋 = 𝑥

𝐸 𝑋 is one way to make a “best guess” of X ’s value.

Out of all the guesses “g” that we can make, 𝑔 𝑋 = 𝐸 𝑋

minimizes the expected squared error
𝐸 𝑔(𝑋) − 𝑋 2 =෍

𝑥

𝑔(𝑋) − 𝑋 2 𝑃 𝑥

Similarly, 

𝐸 𝑌|𝑋 = 𝑥

represents a best guess of Y, given that we observe X = x.

If 𝑔 𝑌 = 𝐸 𝑌|𝑋 = 𝑥 , then the following is minimized

𝐸 𝑔(𝑌) − 𝑌 2|𝑋 = 𝑥 =෍

𝑦

𝑔(𝑌) − 𝑌 2 𝑃 𝑦|𝑥
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1.3.8 PROBABILITY AND STATISTICS: EXPECTED VALUES

Age Group # of voters

18-29 20,539

30-44 30,756

45-64 52,013

65+ 29,641

132,949

TABLE 1.3   Age breakdown of voters in 2012 election 

(all numbers in thousands)

Age of U.S. voters in the 2012 presidential election.

𝟐𝟑. 𝟓

𝟑𝟕. 𝟎
54. 𝟓
70. 𝟎

0. 𝟏𝟔

0. 𝟐𝟑

0. 𝟑𝟗
0. 𝟐𝟐

𝐸 𝑉𝑜𝑡𝑒𝑟′𝑠 𝐴𝑔𝑒 = 23.5 × 0.16 + 37.0 × 0.23+ 54.5 × 0.39+ 70.0× 0.22 = 48.9𝐸 𝑉𝑜𝑡𝑒𝑟′𝑠 𝐴𝑔𝑒 = 23.5 × 0.16 + 37.0 × 0.23+ 54.5 × 0.39+ 70.0× 0.22 = 48.9

Assumptions

• every age within each category is equally likely

• the oldest age of any voter is 75

What if we were asked to guess the age of a 

randomly selected voter, with the understanding that 

if we were off “e” years, we would lose e2 euros?

We would lose the least money “e2”, on average, 

if we guessed the age to be 48.9.
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1.3.8 PROBABILITY AND STATISTICS: EXPECTED VALUES

Age Group # of voters

18-29 20,539

30-44 30,756

45-64 52,013

65+ 29,641

132,949

TABLE 1.3   Age breakdown of voters in 2012 election 

(all numbers in thousands)

𝟐𝟑. 𝟓

𝟑𝟕. 𝟎
0. 𝟒
0. 𝟔

What if we were asked to guess the age of a 

randomly selected voter younger than the age of 45, 

with the understanding that if we were off “e” years, 

we would lose e2 euros?

𝐸 𝑉𝑜𝑡𝑒𝑟′𝑠 𝐴𝑔𝑒|𝑉𝑜𝑡𝑒𝑟′𝑠 𝐴𝑔𝑒 < 45 = 23.5 × 0.4 + 37.0 × 0.6𝐸 𝑉𝑜𝑡𝑒𝑟′𝑠 𝐴𝑔𝑒|𝑉𝑜𝑡𝑒𝑟′𝑠 𝐴𝑔𝑒 < 45 = 23.5 × 0.4 + 37.0 × 0.6 = 31.6

The use of expectations as a basis for predictions 

or “best guesses” hinges to a great extent on an 

implicit assumption regarding the distribution of X

or Y|X=x, namely that such distributions are 

approximately symmetric.

If, however, the distribution of interest is highly 

skewed, other methods of prediction may be better.

In such cases, for example, we might use the 

median of the distribution of X as our “best guess”, 

this estimate minimizes the expected absolute error.

𝐸 𝑔 𝑋 − 𝑋

𝟓𝟏, 𝟐𝟗𝟓



𝑉𝑎𝑟 𝑋 = 43.74

𝐸 𝑋
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1.3.9 PROBABILITY AND STATISTICS: VARIANCE AND COVARIANCE

The variance of a variable X, denoted

𝑉𝑎𝑟 𝑋 𝑜𝑟 𝜎𝑋
2

is a measure of roughly how “spread out” the values 

of X in a data set or population are from their mean.

𝐸 𝑋

𝐸 𝑋

𝑉𝑎𝑟 𝑋 = 𝐸 𝑋 − 𝐸(𝑋) 2

𝑉𝑎𝑟 𝑋 = 𝐸 𝑋 − 𝜇 2

Standard Deviation

𝜎𝑋 = 𝜎𝑋
2 = 𝑉𝑎𝑟 𝑋

Expressed the same units as X.

Age Group # of voters

18-29 20,539

30-44 30,756

45-64 52,013

65+ 29,641

132,949

TABLE 1.3   Age breakdown of voters in 2012 election 

(all numbers in thousands)

𝑉𝑎𝑟 𝑋 = 23.5 − 31.6 2 × 0.4

𝟐𝟑. 𝟓
𝟑𝟕. 𝟎

0. 𝟒
0. 𝟔

variance of under 45 voters’ age distribution

𝑉𝑎𝑟 𝑋 + 37.0 − 31.6 2 × 0.6

𝜎𝑋 = 43.74 = 6.61 𝑦𝑒𝑎𝑟𝑠
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1.3.9 PROBABILITY AND STATISTICS: VARIANCE AND COVARIANCE

𝐸 𝑋 = 31.6

31.6 − 6.61 31.6 + 6.61

24.99 38.21

𝜎𝑋 = 6.61 𝑦𝑒𝑎𝑟𝑠

𝑃 𝑋 ≤ 𝑎 = න
−∞

𝑎

𝑓 𝑥 𝑑𝑥

𝑓 𝑥

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = න
𝑎

𝑏

𝑓 𝑥 𝑑𝑥

𝑃 𝑋 ≤ 𝑏 = න
𝑏

+∞

𝑓 𝑥 𝑑𝑥

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = 𝑃 𝑋 ≤ 𝑏 − 𝑃 𝑋 ≤ 𝑎

𝑃 𝑋 ≤ 24.99 = න
−∞

24.99

𝑓 𝑥 𝑑𝑥

Choosing a voter at random, chances are high that his/her age will fall 

less than 6.61 years away from the average 31.6.

𝑃 𝑋 ≤ 38.21 = න
38.21

+∞

𝑓 𝑥 𝑑𝑥

𝑃 24.99 ≤ 𝑋 ≤ 38.21 = න
24.99

38.21

𝑓 𝑥 𝑑𝑥
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1.3.9 PROBABILITY AND STATISTICS: VARIANCE AND COVARIANCE

Of special importance is the expectation of the product

𝑋 − 𝐸(𝑋) 𝑌 − 𝐸(𝑌)

which is known as the covariance of X and Y, defined 

as 𝜎𝑋𝑌 ≜ 𝐸 𝑋 − 𝐸(𝑋) 𝑌 − 𝐸(𝑌)

It measures the degree to which X and Y covary, that is, 

the degree to which the two variables vary together, or 

are associated.

A specific way in which X and Y covary; it measures the 

extent to which X and Y linearly covary.

Correlation between X and Y

𝜌𝑋𝑌 =
𝜎𝑋𝑌
𝜎𝑋𝜎𝑌

𝜌𝑋𝑌 ∈ −1,+1 𝑋 𝑎𝑛𝑑 𝑌 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 ⟹ 𝜎𝑋𝑌 = 𝜌𝑋𝑌 = 0
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1.4 PROBABILITY AND STATISTICS: GRAPHS

We learned from Simpson’s 

Paradox that certain decisions 

cannot be made on the basis 

of data alone, but they depend 

on the story behind the data.

patients recovered % recovered patients recovered % recovered

Men 87 81 93% 270 234 87%

Women 263 192 73% 80 55 69%

Combined data 350 273 78% 350 289 83%

Table 1.1 Results of a study into a new drug, with gender being taken into account

Drug No Drug

We now introduce the mathematical language of Graph Theory where the story 

behind the data can be told.

Adjacent nodes; if there is an edge between them.

X and Y are adjacent nodes, 

as well as Y and Z, while X

and Z are not adjacent nodes.

Complete graph; if there is an edge between every 

pair of nodes.

𝑋 𝑌

𝑍

The graph in Figure 1.5 is not complete while it is 

complete the graph to the left.

Graph; consists of a collection of nodes (vertices) and edges. 𝑋 𝑌 𝑍

𝐴 𝐵

Figure 1.5
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1.4 PROBABILITY AND STATISTICS: GRAPHS

Path between two nodes X and Y; sequence of nodes beginning with X and ending with Y, in which each node 

is connected to the next by an edge. 

𝑋 𝑌 𝑍

𝐴 𝐵

Figure 1.5

In Figure 1.5, there is a path between node X and node Z, because node X is connected to node Y which in turn 

is connected to node Z.

Edges can be directed or un-directed.

𝑋 𝑌 𝑍

𝐴 𝐵

Figure 1.6

A graph with directed edge is a directed graph.

X is a parent node of Y pa(Y) = X

Y is a child node of X ch(X) = Y

A path between two nodes is a directed path if 

can be traced along the arrows, that is, if no 

node on the path has two edges on the path 

directed into it, or two edges directed out of it.

𝑋

𝑌

𝑍
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1.4 PROBABILITY AND STATISTICS: GRAPHS

𝑋1

𝑋2
𝑋3

𝑋4𝑋5

𝑋6

If two nodes are connected by a directed path, then the first node is 

the ancestor of every node in the path, and every node in the path is a 

descendant of the first node.
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1.4 PROBABILITY AND STATISTICS: GRAPHS

If two nodes are connected by a directed path, then the first node is 

the ancestor of every node in the path, and every node in the path is a 

descendant of the first node.

• an(X1) = {}; an(X2) = {X1}; an(X3) = {X1}; 

• an(X4) = {X1, X2, X3}; an(X5) = {X1, X3}; an(X6) = {X1, X3, X5};    

• de(X1) = {X2, X3, X4, X5, X6}; de(X2) = {X4}; de(X3) = {X4, X5, X6};

• de(X4) = {}; de(X5) = {X6}; de(X6) = {}

When a directed path exists from a node 

to itself, the path is called cyclic.

A directed graph without cycles is an 

acyclic graph.
𝑌 𝑍

𝑋

𝑌 𝑍

𝑋

acyclic graph cyclic graph

Figure 1.7

𝑋1

𝑋2
𝑋3

𝑋4𝑋5

𝑋6
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1.5 STRUCTURAL CAUSAL MODELS: MODELING CAUSAL ASSUMPTIONS

In order to deal rigorously with questions of causality, we must have a way to formally setting down our 

assumptions about the causal story behind a data set.

We introduce the Structural Causal Model (SCM), which is used to describe the relevant features of the world 

and how they interact with each other.

A Structural Causal Model describes how nature assigns values to variables of interest.

𝑈

set of

exogenous 

variables

𝑉

set of

endogenous 

variables

𝐹

set of

functions on  

endogenous variables

Each function 𝑓 ∈ 𝐹 assigns each variable in 𝑽 a value 

based on the values of the other variables in the model.

A variable X is a direct cause of a variable Y, if X

appears in the function that assigns Y’s value.

A variable X is a cause of a variable Y if X is a 

direct cause of Y, or a cause of any cause of Y.

A variable Y is a potential cause of X, if X is a 

descendant of Y.
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1.5 STRUCTURAL CAUSAL MODELS: MODELING CAUSAL ASSUMPTIONS

𝑋1

𝑋2
𝑋3

𝑋4𝑋5

𝑋6

X1 is a direct cause of X2, X3

X2 is a direct cause of X4

X3 is a direct cause of X4, X5

X5 is a direct cause of X6

X1 is a cause (potential cause) of X2, X3, X4, X5 , X6

X2 is a cause (potential cause) of X4

X3 is a cause (potential cause) of X4, X5, X6

X5 is a cause (potential cause) of X6
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1.5 STRUCTURAL CAUSAL MODELS: MODELING CAUSAL ASSUMPTIONS

They are external to the model; we chose, for whatever reason, 

not to explain how they are caused

𝑈

set of

exogenous 

variables

Exogenous variables can not be descendant of any other variables, 

and in particular, can not be descendant of an endogenous 

variable; they have no ancestors and are represented as root 

nodes in graphs.
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1.5 STRUCTURAL CAUSAL MODELS: MODELING CAUSAL ASSUMPTIONS

Every endogenous variable in a model is descendant 

of at least one exogeneous variable.

𝑉

set of

endogenous 

variables

If we know the value of every exogenous variable, then 

using functions in 𝐹, we can determine with perfect 

certainty the value of every endogenous variable.
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1.5 STRUCTURAL CAUSAL MODELS: MODELING CAUSAL ASSUMPTIONS

Suppose we are interested in studying the causal relationships between a 

▪ treatment X and,

▪ lung function Y

for individuals who suffer from asthma.

▪ X and Y are endogenous 

▪ Z is exogenous

this is because we assume that air pollution is an external factor, that is, it can not be caused by an individual’s 

selected treatment or their lung function.

We might assume that Y also depends on, or is caused by, 

air pollution levels as captured by a variable Z.
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1.5 STRUCTURAL CAUSAL MODELS: MODELING CAUSAL ASSUMPTIONS

Every SCM is associated with a Graphical Causal Model, referred to informally as a “Graphical Model” or 

simply a “Graph”.

𝑋 𝑌

𝑍

Figure 1.9

SCM 1.5.1 (Salary Based on Education and Experience)

𝑈 = 𝑋, 𝑌 𝑉 = 𝑍 𝐹 = 𝑓𝑍

𝑋 years of schooling

𝑌 years of employment

𝑍 salary

𝑓𝑍: 𝑍 = 2 𝑋 + 3 𝑌

𝑀 = 𝑈, 𝑉, 𝐹 𝐺 = 𝑈, 𝑉 , 𝐸
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1.5 STRUCTURAL CAUSAL MODELS: MODELING CAUSAL ASSUMPTIONS

Every SCM is associated with a Graphical Causal Model, referred to informally as a “Graphical Model” or 

simply a “Graph”.

𝑋 𝑌

𝑍

Figure 1.9

SCM 1.5.1 (Salary Based on Education and Experience)

𝐺 = 𝑈, 𝑉 , 𝐸𝑀 = 𝑈, 𝑉, 𝐹

𝑈 = 𝑋, 𝑌

𝑉 = 𝑍𝐹 = 𝑓𝑍

? ? ?

𝑓𝑍: 𝑍 = 𝑓𝑍 𝑋, 𝑌

How X and Y cause Z? 𝑀 = 𝑈,𝑉, ? ? ?
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1.5 STRUCTURAL CAUSAL MODELS: MODELING CAUSAL ASSUMPTIONS

Every SCM is associated with a Graphical Causal Model, referred to informally as a “Graphical Model” or 

simply a “Graph”.

𝑋 𝑌

𝑍

Figure 1.9

𝐺 = 𝑈, 𝑉 , 𝐸

If graphical models contain less information than SCMs, why do we 

use them at all?

▪ The knowledge that we have about causal relationships 

is not quantitative, as demanded by SCM, but qualitative, 

as represented in a graphical model.

𝑀 = 𝑈,𝑉, ? ? ?
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1.5 STRUCTURAL CAUSAL MODELS: MODELING CAUSAL ASSUMPTIONS

We know off-hand that sex is a cause of height and that height and sex are causes of performance in 

basketball, but we would hesitate to give numerical values to these relationships.

SCM 1.5.2 (Basketball Performance based on Height and Sex)

We could, instead of drawing a graph, simply create a 

partially specified version of the SCM.

𝑀 = 𝑈,𝑉, ? ? ?

𝑈 = 𝑈1, 𝑈2, 𝑈3

𝑉 = 𝐻𝑒𝑖𝑔ℎ𝑡, 𝑆𝑒𝑥, 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒

𝐹 = 𝑓1, 𝑓2

𝐻𝑒𝑖𝑔ℎ𝑡 = 𝑓1 𝑆𝑒𝑥, 𝑈2 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 𝑓2 𝐻𝑒𝑖𝑔ℎ𝑡, 𝑆𝑒𝑥, 𝑈3

Error Terms (or omitted factors)

Unmeasured factors that we do not 

care to mention but that affect the 

variables in 𝑉 that we can measure.

Additional unknown and/or random 

exogenous causes of what we 

observe.

𝑆𝑒𝑥 = 𝑈1
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1.5 STRUCTURAL CAUSAL MODELS: MODELING CAUSAL ASSUMPTIONS

We could, instead of drawing a graph, simply create a 

partially specified version of the SCM.

𝑈 = 𝑈1, 𝑈2, 𝑈3

𝑉 = 𝐻𝑒𝑖𝑔ℎ𝑡, 𝑆𝑒𝑥, 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒

𝐹 = 𝑓1, 𝑓2

𝐻𝑒𝑖𝑔ℎ𝑡 = 𝑓1 𝑆𝑒𝑥, 𝑈2 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 𝑓2 𝐻𝑒𝑖𝑔ℎ𝑡, 𝑆𝑒𝑥, 𝑈3𝑆𝑒𝑥 = 𝑈1

SCM 1.5.2 (Basketball Performance based on Height and Sex)

𝑀 = 𝑈,𝑉, ? ? ?

𝑆𝑒𝑥

𝑈2

𝐻𝑒𝑖𝑔ℎ𝑡

𝑈1

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒

𝑈3

We know off-hand that sex is a cause of height and that height and sex are causes of performance in 

basketball, but we would hesitate to give numerical values to these relationships.
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1.5 STRUCTURAL CAUSAL MODELS: MODELING CAUSAL ASSUMPTIONS

We could, instead of drawing a graph, simply create a 

partially specified version of the SCM.

𝑈 = 𝑈1, 𝑈2, 𝑈3

SCM 1.5.2 (Basketball Performance based on Height and Sex)

𝑀 = 𝑈,𝑉, ? ? ?

𝑆𝑒𝑥

𝑈2

𝐻𝑒𝑖𝑔ℎ𝑡

𝑈1

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒

𝑈3

Exogenous Variables

We know off-hand that sex is a cause of height and that height and sex are causes of performance in 

basketball, but we would hesitate to give numerical values to these relationships.



2019 September 23rd - 27th                                                                   Causal Networks: Learning and Inference Fabio Stella and Luca Bernardinello

1.5 STRUCTURAL CAUSAL MODELS: MODELING CAUSAL ASSUMPTIONS

𝑉 = 𝐻𝑒𝑖𝑔ℎ𝑡, 𝑆𝑒𝑥, 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒

SCM 1.5.2 (Basketball Performance based on Height and Sex)

𝑀 = 𝑈,𝑉, ? ? ?

𝑆𝑒𝑥

𝑈2

𝐻𝑒𝑖𝑔ℎ𝑡

𝑈1

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒

𝑈3

Endogenous 

Variables

We could, instead of drawing a graph, simply create a 

partially specified version of the SCM.

We know off-hand that sex is a cause of height and that height and sex are causes of performance in 

basketball, but we would hesitate to give numerical values to these relationships.
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1.5.2 STRUCTURAL CAUSAL MODELS: PRODUCT DECOMPOSITION

Another advantage of Graphical Models is that they allow to express joint distributions very efficiently.

So far, we have presented joint distributions in two ways

Drug No Drug

recovered 0.4 0.1

not recovered 0.2 0.3

Joint Probability Table

Treatment = {Drug, No Drug}

Patient’s Status = {recovered, not recovered}

22 = 4

210 = 1,024

10 binary variables require to specify

Fully specified SCM

Great efficiency: we need to specify the “n” functions that 

govern the relationships between the variables, and then from 

the probabilities of the error terms, we can discover all the 

probabilities that govern the joint probability distribution.

We are not always in a position to fully specify a SCM model M:

▪ We know a variable is a cause of another but we do not 

know the equation relating them

▪ We do not know the distribution of the error terms

Even if we know these objects, writing them down may be easier 

said than done, especially, when the variables are discrete and 

the functions do not have familiar algebraic expressions.probability values.
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1.5.2 STRUCTURAL CAUSAL MODELS: PRODUCT DECOMPOSITION

Graphical models help to overcome both previous barriers through 

the Rule of Product Decomposition.

For any model whose graph is acyclic, the joint distribution of the 

variables of the model is given by the product of the conditional 

distributions over all families in the graph.

𝑋1

𝑋2
𝑋3

𝑋4𝑋5

𝑋6

𝑃 𝑋1,𝑋2, 𝑋3,𝑋4,𝑋5,𝑋6 = 𝑃 𝑋1 𝑃 𝑋2|𝑋1 𝑃 𝑋3|𝑋1 𝑃 𝑋4|𝑋2, 𝑋3 𝑃 𝑋5|𝑋3 𝑃 𝑋6|𝑋5

𝑃 𝑋1,𝑋2, ...,𝑋𝑛 =ෑ

𝑖=1

𝑛

𝑃 𝑋𝑖|pa 𝑋𝑖 All binary variables for simplicity.

2 22 22 23 22 22+ + + + + = 26

26 = 64
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1.5.2 STRUCTURAL CAUSAL MODELS: PRODUCT DECOMPOSITION

Graphical models help to overcome both previous barriers through 

the Rule of Product Decomposition.

For any model whose graph is acyclic, the joint distribution of the 

variables of the model is given by the product of the conditional 

distributions over all families in the graph.

𝑃 𝑋1,𝑋2, ...,𝑋𝑛 =ෑ

𝑖=1

𝑛

𝑃 𝑋𝑖|pa 𝑋𝑖

Advantages of the graph representation

▪ saves a great deal of processing time in large models

▪ increases the accuracy of frequency counting

few low dimensional probability 

distribution challenges

one high dimensional 

estimation problem

the graph 

representation
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1.5.2 STRUCTURAL CAUSAL MODELS: PRODUCT DECOMPOSITION

𝑐𝑙𝑜𝑢𝑑𝑠

𝑟𝑎𝑖𝑛/𝑛𝑜 𝑟𝑎𝑖𝑛

𝑤𝑒𝑡 𝑝𝑎𝑣𝑒𝑚𝑒𝑛𝑡/𝑑𝑟𝑦 𝑝𝑎𝑣𝑒𝑚𝑒𝑛𝑡

Based on your experience of the world, how plausible is that 

𝑃 𝑐𝑙𝑜𝑢𝑑𝑠, 𝑛𝑜 𝑟𝑎𝑖𝑛, 𝑑𝑟𝑦 𝑝𝑎𝑣𝑒𝑚𝑒𝑛𝑡, 𝑠𝑙𝑖𝑝𝑝𝑒𝑟𝑦 𝑝𝑎𝑣𝑒𝑚𝑒𝑛𝑡 = 0.23

Quite difficult to answer, but using the Product Rule, we can 

break it into pieces

𝑃 𝑐𝑙𝑜𝑢𝑑𝑠

𝑃 𝑛𝑜 𝑟𝑎𝑖𝑛|𝑐𝑙𝑜𝑢𝑑𝑠

𝑃 𝑑𝑟𝑦 𝑝𝑎𝑣𝑒𝑚𝑒𝑛𝑡|𝑛𝑜 𝑟𝑎𝑖𝑛

𝑃 𝑠𝑙𝑖𝑝𝑝𝑒𝑟𝑦 𝑝𝑎𝑣𝑒𝑚𝑒𝑛𝑡|𝑑𝑟𝑦 𝑝𝑎𝑣𝑒𝑚𝑒𝑛𝑡

0.5

0.75

0.9

0.05

0.5  0.75  0.9  0.05 = 0.0169

𝑋

𝑌

𝑍

𝑊 𝑠𝑙𝑖𝑝𝑝𝑒𝑟𝑦 𝑝𝑎𝑣𝑚𝑒𝑛𝑡/𝑛𝑜 𝑠𝑙𝑖𝑝𝑝𝑒𝑟𝑦 𝑝𝑎𝑣𝑒𝑚𝑒𝑛𝑡
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1.5.2 STRUCTURAL CAUSAL MODELS: PRODUCT DECOMPOSITION

The importance of the Rule of Product Decomposition is particularly appreciated when 

we deal with estimation.

A major problem is effective sampling designs, and estimation strategies, that allow us 

to exploit an appropriate data set to estimate the probabilities as precisely as we might 

need.

𝑃 𝑐𝑙𝑜𝑢𝑑𝑠

𝑃 𝑛𝑜 𝑟𝑎𝑖𝑛|𝑐𝑙𝑜𝑢𝑑𝑠

𝑃 𝑑𝑟𝑦 𝑝𝑎𝑣𝑒𝑚𝑒𝑛𝑡|𝑛𝑜 𝑟𝑎𝑖𝑛

𝑃 𝑠𝑙𝑖𝑝𝑝𝑒𝑟𝑦 𝑝𝑎𝑣𝑒𝑚𝑒𝑛𝑡|𝑑𝑟𝑦 𝑝𝑎𝑣𝑒𝑚𝑒𝑛𝑡

𝑐𝑙𝑜𝑢𝑑𝑠

𝑟𝑎𝑖𝑛/𝑛𝑜 𝑟𝑎𝑖𝑛

𝑤𝑒𝑡 𝑝𝑎𝑣𝑒𝑚𝑒𝑛𝑡/𝑑𝑟𝑦 𝑝𝑎𝑣𝑒𝑚𝑒𝑛𝑡

estimate from data 

and not from our 

judgement.

𝑋

𝑌

𝑍

𝑊
number of combinations of X, Y, Z, W

to be assigned probabilities is 24 − 1 = 15
𝑠𝑙𝑖𝑝𝑝𝑒𝑟𝑦 𝑝𝑎𝑣𝑚𝑒𝑛𝑡/𝑛𝑜 𝑠𝑙𝑖𝑝𝑝𝑒𝑟𝑦 𝑝𝑎𝑣𝑒𝑚𝑒𝑛𝑡
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1.5.2 STRUCTURAL CAUSAL MODELS: PRODUCT DECOMPOSITION

Assume your data set consists of 45 random observations, i.e. random assignments

(x, y, z, w)

𝑋

𝑌

𝑍

𝑊
number of combinations of X, Y, Z, W

to be assigned probabilities is 24 − 1 = 15

On the average, each random assignment would receive about 3 samples, i.e. 45/15.

However, some will receive 2, some 1 and some 0.

It is very unlikely that we would obtain a sufficient number of samples in each cell to assess the 

proportion in the population at large (i.e., when the sample size goes to infinity).

If we use our product rule, however, the 45 sample are separated into much larger categories.
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1.5.2 STRUCTURAL CAUSAL MODELS: PRODUCT DECOMPOSITION

𝑃 𝑐𝑙𝑜𝑢𝑑𝑠

𝑃 𝑛𝑜 𝑟𝑎𝑖𝑛|𝑐𝑙𝑜𝑢𝑑𝑠

𝑃 𝑑𝑟𝑦 𝑝𝑎𝑣𝑒𝑚𝑒𝑛𝑡|𝑛𝑜 𝑟𝑎𝑖𝑛

𝑃 𝑠𝑙𝑖𝑝𝑝𝑒𝑟𝑦 𝑝𝑎𝑣𝑒𝑚𝑒𝑛𝑡|𝑑𝑟𝑦 𝑝𝑎𝑣𝑒𝑚𝑒𝑛𝑡

𝑐𝑙𝑜𝑢𝑑𝑠

𝑟𝑎𝑖𝑛/𝑛𝑜 𝑟𝑎𝑖𝑛

𝑤𝑒𝑡 𝑝𝑎𝑣𝑒𝑚𝑒𝑛𝑡/𝑑𝑟𝑦 𝑝𝑎𝑣𝑒𝑚𝑒𝑛𝑡

𝑠𝑙𝑖𝑝𝑝𝑒𝑟𝑦 𝑝𝑎𝑣𝑚𝑒𝑛𝑡/𝑛𝑜 𝑠𝑙𝑖𝑝𝑝𝑒𝑟𝑦 𝑝𝑎𝑣𝑒𝑚𝑒𝑛𝑡

𝑋

𝑌

𝑍

𝑊

45

2
= 22.5

45

4
= 11.25

45

4
= 11.25

45

4
= 11.25


