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In this lecture you will learn about fundamental concepts and notations needed to clearly 

describe causal models. 

In particular, the lecture presents and discusses the following:

 do-operator

 Observational and interventional study/data

 Pre-intervention and post-intervention distribution

 Modularity

 Backdoor criterion and adjustment

CAUSAL MODELS
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PART I

THE DO-OPERATOR AND

INTERVENTIONAL DISTRIBUTIONS

CAUSAL MODELS
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Causal models are essential for identification of causal 
quantities. 

From the IDENTIFICATION-ESTIMATION FLOWCHART

CAUSAL

ESTIMAND

CAUSAL

MODEL

DATA

the process of moving 
from a causal estimand
to a statistical estimand

To do this step we must 
have a causal model. 

We update to the following version of the 
IDENTIFICATION-ESTIMATION FLOWCHART

CAUSAL

ESTIMAND

STATISTICAL

ESTIMAND

ESTIMATE

IDENTIFICATION

ESTIMATION

STATISTICAL

ESTIMAND

ESTIMATE Figure 4.1

In this lecture we explain how to 
identify causal quantities and formalize 
causal models.



CAUSAL NETWORKS – CAUSAL MODELS FALL 2021 FABIO STELLA

4PART I: THE DO-OPERATOR AND INTERVENTIONAL DISTRIBUTIONS

When we collect data on factors 

associated with wildfires, we are 

actually searching for something 

we can INTERVENE upon in order 

to decrease wildfire frequency.

When we perform a study on a 

new cancer drug, we are trying to 

identify how a patient’s illness 

responds when we INTERVENE

upon it by medicating the patient.

When we research the 

correlation between violent 

television and acts of 

aggression in children, we are 

trying to determine whether 

INTERVENING to reduce 

children’s access to violent 

television will reduce their 

aggressiveness.

THE ULTIMATE AIM OF MANY STATISTICAL STUDIES

IS TO PREDICT THE EFFECTS OF INTERVENTIONS.
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As you have undoubtedly heard many times in statistics classes, 

“CORRELATION IS NOT CAUSATION”

A mere association between two variables does not necessarily 

mean that one of those variables causes the other.

The famous example of this property 

is that an increase in ice cream sales 

is correlated with an increase in 

violent crime—not because ice cream 

causes crime, but because both ice 

cream sales and violent crime are 

more common in hot weather. 
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For this reason, the RANDOMIZED CONTROLLED EXPERIMENT is 
considered the golden standard of statistics. 

In a properly randomized controlled experiment, all FACTORS

that influence the OUTCOME variable are either static, or vary 
at random, except for one—so any change in the outcome 
variable must be due to that one input variable (factor).

We cannot control the 
weather, so we can’t 
randomize the variables 
that affect wildfires.

Even randomized drug 
trials can run into 
problems when 
participants drop out, fail 
to take their medication, 
or misreport their usage.

We could conceivably randomize the participants in 
a study about violent television, but it would be 
difficult to effectively control how much television 
each child watches, and nearly impossible to know 
whether we were controlling them effectively or not.

Unfortunately, many questions do not lend themselves to 
randomized controlled experiments.

EXPERIMENTS outcome
factor 1

factor n
…
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In cases where randomized controlled experiments are not 
practical, researchers instead perform OBSERVATIONAL STUDIES, 
in which they merely record data, rather than controlling it 
(INTERVENTIONAL STUDIES).

The problem of such studies is that it is difficult to untangle the 
causal from the merely correlative. 

The difference between INTERVENING on a variable and 
CONDITIONING on that variable should, hopefully, be obvious.

INTERVENING

on variable 𝑋
of model 𝑀

fix the 
value of 𝑋

we change the system, 
and the values of other 
variables often change 
as a result

CONDITIONING

on variable 𝑋
of model 𝑀

we change nothing; we 
merely narrow our focus 
to the subset of cases in 
which the variable takes 
the value we are 
interested in

what changes, then, is 
our perception about 
the world, not the world 
itself

ice cream 
sales

crime 
rates

temperature

Figure 4.2

Consider, for instance, Figure 4.2 
that shows a graphical model of 
our ice cream sales example, 
with 

 𝑋 as ice cream sales 

 𝑌 as crime rates

 𝑍 as temperature
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In cases where randomized controlled experiments are not 
practical, researchers instead perform OBSERVATIONAL STUDIES, 
in which they merely record data, rather than controlling it 
(INTERVENTIONAL STUDIES).

The problem of such studies is that it is difficult to untangle the 
causal from the merely correlative. 

When we intervene to fix the value of a 
variable, we curtail the natural tendency of 
that variable to vary in response to other 
variables in nature.

ice cream 
sales

crime 
rates

temperature

Figure 4.2

ice cream 
sales

crime 
rates

temperature

Figure 4.3

This amounts to performing a kind of 
SURGERY ON THE GRAPHICAL MODEL, removing 
all edges directed into that variable.

If we were to intervene to make ice cream 
sales 𝑋 low (say, by shutting down all ice 
cream shops), we would have the graphical 
model shown in Figure 4.3.

When we examine correlations in this new 
graph (Figure 4.3), we find that crime rates 𝑌
are, totally independent of (i.e., uncorrelated 
with) ice cream sales 𝑋 since the latter is no 
longer associated with temperature 𝑍.

In other words, even if we vary the level at 
which we hold 𝑋 (ice cream sales) constant, 
that variation will not be transmitted to 
variable 𝑌 (crime rates).

The difference between INTERVENING on a variable and 
CONDITIONING on that variable should, hopefully, be obvious.
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𝑋
=

0

CONDITIONING

PART I: THE DO-OPERATOR AND INTERVENTIONAL DISTRIBUTIONS

We introduce the operator to represent INTERVENTION.

In the regular notation for probability, we have conditioning, 
but that isn’t the same as intervening. 

CONDITIONING on 𝑋 = 𝑥 just means that we are restricting our 
focus to the subset of the population to those who received 
treatment 𝑋 = 𝑥.

In contrast, an INTERVENTION would be to take the whole 
population and give everyone treatment 𝑋 = 𝑥.

POPULATION SUB-POPULATIONS

𝑋
=

0

INTERVENING

We denote INTERVENTION with the DO-OPERATOR 𝑑𝑜 𝑋 = 𝑥 .

This is the notation commonly used in graphical causal models, 
and it has equivalents in potential outcomes notation, as 
follows: 

The ATE (average treatment effect), when the treatment is 
binary, can be written as follows:
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𝑋
=

0

CONDITIONING INTERVENING

INTERVENTIONAL DISTRIBUTIONOBSERVATIONAL DISTRIBUTION

All the units of 
the population 
are treated 𝑋 = 1

POPULATION

All the units of the 
population are not 
treated 𝑋 = 0

All the units of this  
subpopulation are 
not treated 𝑋 = 0

All the units of this  
subpopulation are 
treated 𝑋 = 1

OBSERVATIONAL DATA INTERVENTIONAL DATA
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An interventional expression which can be reduced to an observational expression is said to be IDENTIFIABLE.

An expression 𝑄 without a 𝑑𝑜 in it is said to be an OBSERVATIONAL EXPRESSION.

An expression 𝑄 with 𝑑𝑜 in it is said to be an INTERVENTIONAL EXPRESSION.

An ESTIMAND is said to be

 CAUSAL, whether it does contain the do-operator

 STATISTICAL, whether it does not contain the do-operator

Whenever, 𝑑𝑜 𝑥 appears in expression 𝑄 after the conditioning bar, it means that everything in that 
expression 𝑄 is in the POST-INTERVENTION WORLD where intervention 𝑑𝑜 𝑥 occurs.

Refers to the expected outcome 𝑌 in the 
(POST-INTERVENTION) sub-population where 
𝐙 = 𝒛 after the whole sub-population has 
taken treatment 𝑋 = 𝑥.

Refers to the expected outcome 𝑌 in 
the (PRE-INTERVENTION) population 
where individuals take whatever 
treatment 𝑋 they would normally take).

POST-INTERVENTION DISTRIBUTION PRE-INTERVENTION DISTRIBUTION
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PART II

MODULARITY AND

ADJUSTMENT FORMULA

CAUSAL MODELS
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Before we can describe a very important assumption, we must specify 
WHAT A CAUSAL MECHANISM IS. 

There are a few different ways to think about causal mechanisms. In the 
following we let a CAUSAL MECHANISM to be a mechanism that generates 
𝑋௜ as the conditional distribution of 𝑋௜ given its parents (causes) 𝑝𝑎 𝑋௜ , 
i.e., the following conditional distribution 𝑃 𝑋௜|𝑝𝑎 𝑋௜ .

௜

Figure 4.4(a)

CAUSAL MECHANISM

The main assumption we need to progress toward CAUSAL NETWORKS is 
that INTERVENTIONS ARE LOCAL. 

In particular, we assume that intervening on a variable 𝑋௜ only changes 
the causal mechanism for 𝑋௜; it does not change the causal mechanisms 
that generate any other variables 𝑋௝.

If we intervene on a set of nodes/variables 𝐒, setting them to constants, 
then for all 𝑋௜ ∈ 𝑋ଵ, 𝑋ଶ, … , 𝑋௡ , we have the following:

1. If 𝑋௜ ∉ 𝐒, then 𝑃 𝑋௜ = 𝑥|𝑝𝑎 𝑋௜ remains unchanged,

2. If 𝑋௜ ∈ 𝐒, then 𝑃 𝑋௜ = 𝑥|𝑝𝑎 𝑋௜ = 1, if 𝑥 is the value that 𝑋௜ was set 
to by the intervention 𝑑𝑜 𝑋௜ = 𝑥 ; otherwise 𝑃 𝑋௜ = 𝑥|𝑝𝑎 𝑋௜ = 0.

MODULARITY – INDEPENDENCE MECHANISM – INVARIANCE

௜ ௜
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We could write condition 2) below as follows:

 𝑃 𝑋௜ = 𝑥|𝑝𝑎 𝑋௜ = 1 if 𝑥 is consistent with the intervention

 𝑃 𝑋௜ = 𝑥|𝑝𝑎 𝑋௜ = 0 otherwise.

The causal graph for interventional distributions is simply the same 
graph that was used for the observational joint distribution, but with 
all of the edges to the intervened node(s) removed. ௜

Figure 4.4(a)

CAUSAL MECHANISM
In the future we say that, if 𝑋௜ ∈ 𝐒, a value 𝑥 of 𝑋௜ is consistent with 
the intervention on 𝑋௜, if 𝑥 equals the value that 𝑋௜ was set to in the 
intervention, i.e., 𝑑𝑜 𝑋௜ = 𝑥 .

If we intervene on a set of nodes/variables 𝐒, setting them to constants, 
then for all 𝑋௜ ∈ 𝑋ଵ, 𝑋ଶ, … , 𝑋௡ , we have the following:

1. If 𝑋௜ ∉ 𝐒, then 𝑃 𝑋௜ = 𝑥|𝑝𝑎 𝑋௜ remains unchanged,

2. If 𝑋௜ ∈ 𝐒, then 𝑃 𝑋௜ = 𝑥|𝑝𝑎 𝑋௜ = 1, if 𝑥 is the value that 𝑋௜ was set 
to by the intervention 𝑑𝑜 𝑋௜ = 𝑥 ; otherwise 𝑃 𝑋௜ = 𝑥|𝑝𝑎 𝑋௜ = 0.

MODULARITY – INDEPENDENCE MECHANISM – INVARIANCE

௜ ௜
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௜

Figure 4.4(b)

𝑑𝑜 𝑋௜ = 𝑥

CAUSAL MECHANISM

We could write condition 2) below as follows:

 𝑃 𝑋௜ = 𝑥|𝑝𝑎 𝑋௜ = 1 if 𝑥 is consistent with the intervention

 𝑃 𝑋௜ = 𝑥|𝑝𝑎 𝑋௜ = 0 otherwise.

The causal graph for interventional distributions is simply the same 
graph that was used for the observational joint distribution, but with 
all of the edges to the intervened node(s) removed.

In the future we say that, if 𝑋௜ ∈ 𝐒, a value 𝑥 of 𝑋௜ is consistent with 
the intervention on 𝑋௜, if 𝑥 equals the value that 𝑋௜ was set to in the 
intervention, i.e., 𝑑𝑜 𝑋௜ = 𝑥 .

If we intervene on a set of nodes/variables 𝐒, setting them to constants, 
then for all 𝑋௜ ∈ 𝑋ଵ, 𝑋ଶ, … , 𝑋௡ , we have the following:

1. If 𝑋௜ ∉ 𝐒, then 𝑃 𝑋௜ = 𝑥|𝑝𝑎 𝑋௜ remains unchanged,

2. If 𝑋௜ ∈ 𝐒, then 𝑃 𝑋௜ = 𝑥|𝑝𝑎 𝑋௜ = 1, if 𝑥 is the value that 𝑋௜ was set 
to by the intervention 𝑑𝑜 𝑋௜ = 𝑥 ; otherwise 𝑃 𝑋௜ = 𝑥|𝑝𝑎 𝑋௜ = 0.

MODULARITY – INDEPENDENCE MECHANISM – INVARIANCE

௜ ௜
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௜

Figure 4.5

CAUSAL MECHANISM

𝑑𝑜 𝑋௜ = 𝑥

MANIPULATED GRAPH

We could write condition 2) below as follows:

 𝑃 𝑋௜ = 𝑥|𝑝𝑎 𝑋௜ = 1 if 𝑥 is consistent with the intervention

 𝑃 𝑋௜ = 𝑥|𝑝𝑎 𝑋௜ = 0 otherwise.

The causal graph for interventional distributions is simply the same 
graph that was used for the observational joint distribution, but with 
all of the edges to the intervened node(s) removed.

In the future we say that, if 𝑋௜ ∈ 𝐒, a value 𝑥 of 𝑋௜ is consistent with 
the intervention on 𝑋௜, if 𝑥 equals the value that 𝑋௜ was set to in the 
intervention, i.e., 𝑑𝑜 𝑋௜ = 𝑥 .

If we intervene on a set of nodes/variables 𝐒, setting them to constants, 
then for all 𝑋௜ ∈ 𝑋ଵ, 𝑋ଶ, … , 𝑋௡ , we have the following:

1. If 𝑋௜ ∉ 𝐒, then 𝑃 𝑋௜ = 𝑥|𝑝𝑎 𝑋௜ remains unchanged,

2. If 𝑋௜ ∈ 𝐒, then 𝑃 𝑋௜ = 𝑥|𝑝𝑎 𝑋௜ = 1, if 𝑥 is the value that 𝑋௜ was set 
to by the intervention 𝑑𝑜 𝑋௜ = 𝑥 ; otherwise 𝑃 𝑋௜ = 𝑥|𝑝𝑎 𝑋௜ = 0.

MODULARITY – INDEPENDENCE MECHANISM – INVARIANCE
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ହ

OBSERVATIONAL

DISTRIBUTION

Figure 4.6(a)

ଵ

ଶ

ଷ

𝑑𝑜 𝑋 = 𝑥

ସ

ହ

INTERVENTIONAL

DISTRIBUTION

Figure 4.6(b)

ଵ

ଶ

ଷ

ସ

ହ

INTERVENTIONAL

DISTRIBUTION

Figure 4.6(c)

ଵ

ଶ

ଷ

ସ
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𝑑𝑜 𝑋 = 𝑥 𝑑𝑜 𝑋 = 𝑥

causal 
mechanism      
not modular

causal 
mechanism 

modular

What would it mean for the 
MODULARITY ASSUMPTION to 
be violated?

ହ

ଵ

ଶ

ଷ

ସ

ହ

INTERVENTIONAL

DISTRIBUTION

Figure 4.6(b)

ଵ

ଶ

ଷ

ସ

ହ

ଵ

ଶ

ଷ

𝑐ℎ𝑎𝑛𝑔𝑒𝑠
𝑃 𝑋ସ = 𝑥|𝑋ଷ

INTERVENTIONAL

DISTRIBUTION

Figure 4.7
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Using do-expressions and graph surgery, we can begin to untangle the causal relationships from the purely 
associative.

We now learn methods that can, astoundingly, tease out causal information from purely observational data, 
assuming of course that the graph constitutes a valid representation of reality.

It is worth noting here that we are making a tacit assumption that

The INTERVENTION has “NO SIDE EFFECTS,” that is, that assigning the value 𝑥 for the 
variable 𝑋 for an individual does not alter subsequent variables in a direct way.

For example, 

 being “assigned” a drug might have a different effect on recovery than 

 being forced to take the drug against one’s religious objections. 

When side effects are present, they need to be specified explicitly in the model.

ice cream 
sales

crime 
rates

temperature

Figure 4.2

The ice cream example represents an extreme case in which the association 
between 𝑋 and 𝑌 was totally spurious from a causal perspective, because there 
was no causal path from 𝑋 to 𝑌.
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Let us come back to the 
SIMPSON’S PARADOX, where 𝑋
stands for drug usage, 𝑌 stands 
for recovery, and 𝑍 stands for 
gender.

To find out how effective the drug is in the population, we imagine a 
hypothetical intervention by which we administer the drug uniformly to the 
entire population 𝑑𝑜 𝑋 = 1 and compare the recovery rate to what would 
obtain under the complementary intervention, where we prevent everyone from 
using the drug 𝑑𝑜 𝑋 = 0 .

drug recovery

gender

𝑃 𝑌 = 1|𝑑𝑜 𝑋 = 0

drug recovery

gender

𝑃 𝑌 = 1|𝑑𝑜 𝑋 = 1

AVERAGE TREATMENT EFFECT (ATE)
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Let us come back to the 
SIMPSON’S PARADOX, where 𝑋
stands for drug usage, 𝑌 stands 
for recovery, and 𝑍 stands for 
gender.

The data itself was not sufficient even for determining whether the effect of the 
drug was positive or negative. 

But with the aid of the graph in Figure 4.8, we can compute the magnitude of 
the causal effect from the data (we generalize to more than two drugs and 
more than two outcomes).

Figure 4.8
drug recovery

gender

To do so, we simulate the intervention in the form of a graph surgery on the 
ORIGINAL MODEL (Figure 4.8) just as we did in the ice cream example.

Figure 4.9
drug recovery

gender

௠

The intervention 𝑑𝑜 𝑋 = 𝑥 brings to the MANIPULATED MODEL in Figure 4.9, 
which in turns allows us to write the following equality:

However, to draw the above conclusion we need to assume 
MODULARITY – INDEPENDENCE MECHANISM – INVARIANCE.
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Let us come back to the 
SIMPSON’S PARADOX, where 𝑋
stands for drug usage, 𝑌 stands 
for recovery, and 𝑍 stands for 
gender.

In other terms to computing the causal effect we assume that the manipulated 
probability (manipulated model or post-intervention model in Figure 4.9), 
shares two essential properties with the original probability, that prevails in the 
original model or pre-intervention model of Figure 4.8, i.e.,:

𝑃 𝑍|𝑑𝑜 𝑋 = 𝑥 = 𝑃௠ 𝑍|𝑥 = 𝑃 𝑍

The marginal probability 𝑃 𝑍 is invariant 
under the intervention, because the process 
determining 𝑍 is not affected by removing 
the arrow from 𝑍 to 𝑋. (proportions of males 
and females remain the same, before and 
after the intervention).

𝑃 𝑌|𝑑𝑜 𝑋 = 𝑥 , 𝑍 = 𝑃௠ 𝑌|𝑥, 𝑍 = 𝑃 𝑌|𝑥, 𝑍

The conditional probability 𝑃 𝑌|𝑥, 𝑍
is invariant, because the process by 
which 𝑌 responds to 𝑋 and 𝑍 remains 
the same, regardless of whether 𝑋
changes spontaneously or by 
deliberate manipulation.

Figure 4.8
drug recovery

gender

Figure 4.9
drug recovery

gender
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We know that the following equalities hold:

𝑃௠ 𝑍 = 𝑧|𝑋 = 𝑥 = 𝑃௠ 𝑍 = 𝑧 = 𝑃 𝑍 = 𝑧

𝑃௠ 𝑌 = 𝑦|𝑋 = 𝑥, 𝑍 = 𝑧 = 𝑃 𝑌 = 𝑦|𝑋 = 𝑥, 𝑍 = 𝑧

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥 (by definition)= 𝑃௠ 𝑌 = 𝑦|𝑋 = 𝑥

= ෍ 𝑃௠ 𝑌 = 𝑦|𝑋 = 𝑥, 𝑍 = 𝑧  𝑃௠ 𝑍 = 𝑧|𝑋 = 𝑥

௭

= ෍ 𝑃௠ 𝑌 = 𝑦|𝑋 = 𝑥, 𝑍 = 𝑧  𝑃௠ 𝑍 = 𝑧

௭

= ෍ 𝑃 𝑌 = 𝑦|𝑋 = 𝑥, 𝑍 = 𝑧  𝑃 𝑍 = 𝑧

௭

(modularity)

pre-intervention 
distribution 𝑃

Figure 4.8
drug recovery

gender

Figure 4.9
drug recovery

gender
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𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥 = ෍ 𝑃 𝑌 = 𝑦|𝑋 = 𝑥, 𝑍 = 𝑧  𝑃 𝑍 = 𝑧

௭Figure 4.8
drug recovery

gender

Figure 4.9
drug recovery

gender

Computes the association 
between 𝑋 and 𝑌 for each 
value 𝑧 of 𝑍, then averages 
over those values. 

ADJUSTMENT FORMULA

ADJUSTING FOR 𝒁
or

CONTROLLING FOR 𝒁

It can be estimated directly from the data, since it consists only of conditional 
probabilities, i.e., by the PRE-INTERVENTION OR OBSERVATIONAL DISTRIBUTION 𝑷.

IDENTIFICATIONCAUSAL ESTIMAND

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥

STATISTICAL ESTIMAND

෍ 𝑃 𝑌 = 𝑦|𝑋 = 𝑥, 𝑍 = 𝑧  𝑃 𝑍 = 𝑧

௭

THIS CAUSAL EXPRESSION

IS IDENTIFIABLE

pre-intervention 
distribution 𝑃

We know that the following equalities hold:

𝑃௠ 𝑍 = 𝑧|𝑋 = 𝑥 = 𝑃௠ 𝑍 = 𝑧 = 𝑃 𝑍 = 𝑧

𝑃௠ 𝑌 = 𝑦|𝑋 = 𝑥, 𝑍 = 𝑧 = 𝑃 𝑌 = 𝑦|𝑋 = 𝑥, 𝑍 = 𝑧
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𝑃 𝑌 = 1|𝑑𝑜 𝑋 = 1 = 𝑃 𝑌 = 1|𝑋 = 1, 𝑍 = 1  𝑃 𝑍 = 1 + 𝑃 𝑌 = 1|𝑋 = 1, 𝑍 = 0  𝑃 𝑍 = 0

Figure 4.8
drug recovery

gender

We now show that the 
Adjustment Formula 
works, while using the 
Simpson’s paradox.

To demonstrate the working of the adjustment formula, let us apply it numerically to 
Simpson’s story, with

 𝑋 = 1 standing for the patient taking the drug
 𝑍 = 1 standing for the patient being male
 𝑌 = 1 standing for the patient recovering

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥

ADJUSTMENT FORMULA

= ෍ 𝑃 𝑌 = 𝑦|𝑋 = 𝑥, 𝑍 = 𝑧  𝑃 𝑍 = 𝑧

௭
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𝑃 𝑌 = 1|𝑑𝑜 𝑋 = 1 = 𝑃 𝑌 = 1|𝑋 = 1, 𝑍 = 1  𝑃 𝑍 = 1 + 𝑃 𝑌 = 1|𝑋 = 1, 𝑍 = 0  𝑃 𝑍 = 0

Figure 4.8
drug recovery

gender

We now show that the 
Adjustment Formula 
works, while using the 
Simpson’s paradox.

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥

ADJUSTMENT FORMULA

= ෍ 𝑃 𝑌 = 𝑦|𝑋 = 𝑥, 𝑍 = 𝑧  𝑃 𝑍 = 𝑧

௭

𝑃 𝑌 = 1|𝑑𝑜 𝑋 = 1 = 0.93 ×
87 + 270

700
 +  0.73 ×

263 + 80

700
= 0.832

𝑃 𝑌 = 1|𝑑𝑜 𝑋 = 0 = 0.87 ×
87 + 270

700
 +  0.69 ×

263 + 80

700
= 0.7818

ATE = 𝑃 𝑌 = 1|𝑑𝑜 𝑋 = 1 − 𝑃 𝑌 = 1|𝑑𝑜 𝑋 = 0 = 0.832 − 0.7818 = 0.0502

A clear positive 
advantage to 
drug-taking
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Figure 4.8
drug recovery

gender

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥

ADJUSTMENT FORMULA

= ෍ 𝑃 𝑌 = 𝑦|𝑋 = 𝑥, 𝑍 = 𝑧  𝑃 𝑍 = 𝑧

௭

We see that the adjustment formula instructs us to

 condition on gender 𝑍, 
 find the benefit of the drug separately for males and females, 
 average the result using the percentage of males and females 

in the population. 

𝑃 𝑌 = 1|𝑑𝑜 𝑋 = 1 = 𝑃 𝑌 = 1|𝑋 = 1, 𝑍 = 1  𝑃 𝑍 = 1 + 𝑃 𝑌 = 1|𝑋 = 1, 𝑍 = 0  𝑃 𝑍 = 0

condition on gender 
(male) 

condition on gender 
(female) 

probability to recover 
for male drug-takers

probability to recover 
for female drug-takers

average using 
percentage male

average using 
percentage female
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Figure 4.8
drug recovery

gender

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥

ADJUSTMENT FORMULA

= ෍ 𝑃 𝑌 = 𝑦|𝑋 = 𝑥, 𝑍 = 𝑧  𝑃 𝑍 = 𝑧

௭

It also thus instructs us to ignore the aggregated population data

𝑃 𝑌 = 1|𝑋 = 1 𝑃 𝑌 = 1|𝑋 = 0

from which we might (falsely) conclude that the drug has a negative effect overall.

ATE = 𝑃 𝑌 = 1|𝑋 = 1 − 𝑃 𝑌 = 1|𝑋 = 0 = 0.78 − 0.83 = −0.05
The drug 
appears to 
be harmful
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These simple examples might give us the impression that whenever we face the dilemma of whether to condition 
on a third variable 𝑍, the adjustment formula prefers the 𝑍-specific analysis over the nonspecific analysis.

But what about the blood pressure example of Simpson’s paradox?

The more sensible method would be not to condition on blood pressure, but to 
examine the unconditional population table directly.

How would the adjustment formula cope with situations like that?

Figure 4.10

treatment recovery

blood pressure
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These simple examples might give us the impression that whenever we face the dilemma of whether to condition 
on a third variable 𝑍, the adjustment formula prefers the 𝑍-specific analysis over the nonspecific analysis.

But what about the blood pressure example of Simpson’s paradox?

 We simulate an intervention and then examine the adjustment formula that 
emanates from the simulated intervention. 

 In graphical models, an intervention is simulated by severing all arrows that 
enter the manipulated variable 𝑋. 

Figure 4.10

treatment recovery

blood pressure

𝑋 has no entering edges

no surgery needed

pre-intervention distribution 𝑃 is the same as the post-intervention distribution 𝑃௠
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We are now in a position to understand what variable 𝑍, or set of variables 𝐙, can legitimately be included in 
the adjustment formula. 

The intervention procedure, which led to the adjustment formula, dictates that 𝐙 should coincide with the 
parents 𝑝𝑎 𝑋 of 𝑋, because it is the influence of these parents that we neutralize when we fix 𝑋 by 
external manipulation 𝑑𝑜 𝑋 = 𝑥 . 

We can therefore write a general adjustment formula and summarize it in a rule:

Given a graph 𝒢 in which a set of variables 𝑝𝑎 𝑋 are designated as the parents of 𝑋, 
the causal effect of 𝑋 on 𝑌 is given by

where 𝒖 ranges over all the combinations of values that the variables in 𝑝𝑎 𝑋 can take.

THE CAUSAL EFFECT RULE

𝒖
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Given a graph 𝒢 in which a set of variables 𝑝𝑎 𝑋 are designated as the parents of 𝑋, 
the causal effect of 𝑋 on 𝑌 is given by

where 𝒖 ranges over all the combinations of values that the variables in 𝑝𝑎 𝑋 can take.

THE CAUSAL EFFECT RULE

𝒖

PART II: MODULARITY AND ADJUSTMENT FORMULA

If we multiply and 
divide the summand 
by the probability 
𝑃 𝑋 = 𝑥|𝑝𝑎 𝑋 = 𝒖 , 
we get a more 
convenient form:

PROPENSITY SCORE: displays the role played by the parents 𝑝𝑎 𝑋
of 𝑋 in predicting the results of interventions, the advantages of 
expressing 𝑃 𝑦|𝑑𝑜 𝑥 in this form will be not discussed here.

𝒖
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We can appreciate now what role the causal graph plays in resolving Simpson’s 
paradox, and, more generally, what aspects of the graph allow us to predict causal 
effects from purely observational data.

We need the graph in order to determine the identity of 𝑋’s parents 𝑝𝑎 𝑋 —the set 
of factors that, under non-experimental conditions, would be sufficient for 
determining the value of 𝑋, or the probability of that value.

Using graphs and their underlying assumptions, we were able to identify causal 
relationships in purely observational data. 

But, from this discussion, readers may be tempted to conclude that the role of 
graphs is fairly limited; once we identify the parents 𝑝𝑎 𝑋  of 𝑋, the rest of the 
graph can be discarded, and the causal effect can be evaluated mechanically 
from the adjustment formula.

The next part of the lecture shows that things may not be so simple.

𝒖

Figure 4.10

treatment recovery

blood pressure

Figure 4.8

drug recovery

gender

PROPENSITY SCORE: displays the role played by the parents 𝑝𝑎 𝑋
of 𝑋 in predicting the results of interventions, the advantages of 
expressing 𝑃 𝑦|𝑑𝑜 𝑥 in this form will be not discussed here.
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PART III

TRUNCATED FACTORIZATION

AND BACKDOOR ADJUSTMENT

CAUSAL MODELS
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However, social/medical policies occasionally 
involve MULTIPLE INTERVENTIONS, such as 
those that dictate the value of several 
variables simultaneously, or those that control 
a variable over time. 

Then, it is useful to start from the:

In deriving the adjustment formula, we assumed 
 an intervention on a single variable 𝑋, 
 whose parents were disconnected, 

so as to simulate the absence of their influence 
after intervention.

Given a probability distribution 𝑃 and a 
DAG 𝒢, 𝑃 factorizes according to 𝒢 if

ଵ ଶ ௡ ௜ ௜

௡

௜ୀଵ

BAYESIAN NETWORK FACTORIZATION

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥 = ෍ 𝑃 𝑌 = 𝑦|𝑋 = 𝑥, 𝑍 = 𝑧  𝑃 𝑍 = 𝑧

௭

ADJUSTMENT FORMULA

Figure 4.8
drug recovery

gender

Figure 4.9
drug recovery

gender

𝑃 𝑧, 𝑦|𝑑𝑜 𝑥 = 𝑃௠ 𝑧 𝑃௠ 𝑥|𝑧 𝑃௠ 𝑦|𝑥, 𝑧 = 𝑃 𝑧  𝑃 𝑦|𝑥, 𝑧

POST-INTERVENTION DISTRIBUTION

𝑃 𝑥, 𝑦, 𝑧 = 𝑃 𝑧  𝑃 𝑥|𝑧 𝑃 𝑦|𝑥, 𝑧

PRE-INTERVENTION DISTRIBUTION

𝑃௠ 𝑥|𝑧 = 1

𝑃 𝑦|𝑑𝑜 𝑥 = ෍ 𝑃 𝑧, 𝑦|𝑑𝑜 𝑥

௭

= ෍ 𝑃 𝑧 𝑃 𝑦|𝑥, 𝑧

௭

≠ 𝑃 𝑦|𝑥
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However, social and medical policies 
occasionally involve multiple interventions, 
such as those that dictate the value of 
several variables simultaneously, or those 
that control a variable over time. 

Then, it is useful to start from the:

In deriving the adjustment formula, we assumed 
 an intervention on a single variable 𝑋, 
 whose parents were disconnected, 

so as to simulate the absence of their influence 
after intervention.

Given a probability distribution 𝑃 and a 
DAG 𝒢, 𝑃 factorizes according to 𝒢 if

ଵ ଶ ௡ ௜ ௜

௡

௜ୀଵ

BAYESIAN NETWORK FACTORIZATION

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥 = ෍ 𝑃 𝑌 = 𝑦|𝑋 = 𝑥, 𝑍 = 𝑧  𝑃 𝑍 = 𝑧

௭

ADJUSTMENT FORMULA

Figure 4.8
drug recovery

gender

Figure 4.9
drug recovery

gender

𝑃 𝑦|𝑑𝑜 𝑥 = ෍ 𝑃 𝑧, 𝑦|𝑑𝑜 𝑥

௭

= ෍ 𝑃 𝑧 𝑃 𝑦|𝑥, 𝑧

௭

If 𝑃 𝑧 = 𝑃 𝑧|𝑥 then, we would have

= ෍ 𝑃 𝑧|𝑥 𝑃 𝑦|𝑥, 𝑧

௭

= ෍ 𝑃 𝑦, 𝑧|𝑥 = 𝑃 𝑦|𝑥

௭

෍ 𝑃 𝑧 𝑃 𝑦|𝑥, 𝑧

௭

≠ 𝑃 𝑦|𝑥

𝑃 𝑦|𝑑𝑜 𝑥
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In deriving the adjustment formula, we assumed 
 an intervention on a single variable 𝑋, 
 whose parents were disconnected, 

so as to simulate the absence of their influence 
after intervention.

Given a probability distribution 𝑃 and a 
DAG 𝒢, 𝑃 factorizes according to 𝒢 if

ଵ ଶ ௡ ௜ ௜

௡

௜ୀଵ

BAYESIAN NETWORK FACTORIZATION

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥 = ෍ 𝑃 𝑌 = 𝑦|𝑋 = 𝑥, 𝑍 = 𝑧  𝑃 𝑍 = 𝑧

௭

ADJUSTMENT FORMULA

Figure 4.8
drug recovery

gender

Figure 4.9
drug recovery

gender

𝑃 𝑦|𝑑𝑜 𝑥 = ෍ 𝑃 𝑧, 𝑦|𝑑𝑜 𝑥

௭

= ෍ 𝑃 𝑧 𝑃 𝑦|𝑥, 𝑧

௭

≠ 𝑃 𝑦|𝑥

௬ ௬
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The previous consideration also allows us 
to generalize the ADJUSTMENT FORMULA to 
MULTIPLE INTERVENTIONS, that is, 
interventions that fix the values of a set of 
variables 𝐒 to constants 𝒔.

We simply write down the FACTORIZATION of the PRE-INTERVENTION

DISTRIBUTION and strike out all factors that correspond to variables 
in the INTERVENTION SET 𝐒. 

Given a probability distribution 𝑃 and a 
DAG 𝒢, 𝑃 factorizes according to 𝒢 if

ଵ ଶ ௡ ௜ ௜

௡

௜ୀଵ

BAYESIAN NETWORK FACTORIZATION

ADJUSTMENT FORMULA

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥 = ෍ 𝑃 𝑌 = 𝑦|𝑋 = 𝑥, 𝑍 = 𝑧  𝑃 𝑍 = 𝑧

௭

We assume that 𝑃 and 𝒢 satisfy the Markov assumption and 
modularity. Given, a set of intervention nodes 𝐒 (intervention 
set), if 𝑥௜ is consistent with the intervention 𝐒 = 𝒔, then

ଵ ଶ ௡ ௜ ௜ ௜

௡

௑೔∉ 𝐒

otherwise ଵ ଶ ௡ .

TRUNCATED FACTORIZATION – G-FORMULA
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Figure 4.11

ଵ

ଶ

ଷ

ଵ ଶ ଷ ଷ ଵ ଶ ଵ ଷ ଷ ଵ ଶ ଶ ଷ

)

ଷ ଷ

ଵ ଶ ଶ ଷ

We assume that 𝑃 and 𝒢 satisfy the Markov assumption and 
modularity. Given, a set of intervention nodes 𝐒 (intervention 
set), if 𝑥௜ is consistent with the intervention 𝐒 = 𝒔, then

ଵ ଶ ௡ ௜ ௜ ௜

௡

௑೔∉ 𝐒

otherwise ଵ ଶ ௡ .

TRUNCATED FACTORIZATION – G-FORMULA

PRE-INTERVENTION DISTRIBUTION
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Figure 4.12

ଵ

ଶ

ଷ ଷ

ଵ ଶ ଷ ଷ ଵ ଶ ଶ ଷ

POST-INTERVENTION DISTRIBUTION

We assume that 𝑃 and 𝒢 satisfy the Markov assumption and 
modularity. Given, a set of intervention nodes 𝐒 (intervention 
set), if 𝑥௜ is consistent with the intervention 𝐒 = 𝒔, then

ଵ ଶ ௡ ௜ ௜ ௜

௡

௑೔∉ 𝐒

otherwise ଵ ଶ ௡ .

TRUNCATED FACTORIZATION – G-FORMULA

ଵ ଶ ଷ ଷ ଵ ଶ ଵ ଷ ଷ ଵ ଶ ଶ ଷ

ଵ ଶ ଶ ଷ

PRE-INTERVENTION DISTRIBUTION
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It is interesting to note that combining

Figure 4.8
drug recovery

gender
 

and

௠ ௠

we get a simple relation between the pre-and post-intervention distributions:

(post-intervention)

(pre-intervention)

It tells us that the conditional probability 𝑃 𝑥|𝑧 is 
all we need to know in order to predict the effect 
of an intervention 𝑑𝑜 𝑥 from non-experimental 
data governed by the distribution 𝑃 𝑥, 𝑦, 𝑧 .

We assume that 𝑃 and 𝒢 satisfy the Markov assumption and 
modularity. Given, a set of intervention nodes 𝐒 (intervention 
set), if 𝑥௜ is consistent with the intervention 𝐒 = 𝒔, then

ଵ ଶ ௡ ௜ ௜ ௜

௡

௑೔∉ 𝐒

otherwise ଵ ଶ ௡ .

TRUNCATED FACTORIZATION – G-FORMULA
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We came to the conclusion that, given a variable 𝑋, we should adjust for it’s
parents 𝑝𝑎 𝑋 , when trying to determine the effect of 𝑋 on another variable 𝑌.

Given a graph 𝒢 in which a set of variables 𝑝𝑎 𝑋 are designated 
as the parents of 𝑋, the causal effect of 𝑋 on 𝑌 is given by

where 𝒖 ranges over all the combinations of values that the 
variables in 𝑝𝑎 𝑋 can take.

THE CAUSAL EFFECT RULE

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥 = ෍ 𝑃 𝑌 = 𝑦|𝑋 = 𝑥, 𝑝𝑎 𝑋 = 𝒖  𝑃 𝑝𝑎 𝑋 = 𝒖

𝒖

unmeasured

But often, we know, or believe, that the variables have UNMEASURED PARENTS (LATENT) that, though represented 
in the graph, may be inaccessible for measurement. 

In those cases, we need to find an alternative set of variables to adjust for.

Under what conditions does a causal story permit us to compute the causal effect of one variable on another, 
from data obtained by passive observations, with no interventions?

Figure 4.13
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Since we have decided to represent causal stories with graphs, the 
question becomes a graph-theoretical problem:

Under what conditions, is the structure of the causal graph 
sufficient for computing a causal effect from a given data set?

The answer to that question is long enough—and important 
enough—that we will spend the rest of the lecture addressing it. 

But one of the most important tools we use to determine whether 
we can compute a causal effect is a simple test called the 
BACKDOOR CRITERION. 

Using it, we can determine, for any two variables 𝑋 and 𝑌 in a 
causal model represented by a DAG 𝒢, which set of variables 𝐒 in 
that model should be conditioned on when searching for the causal 
relationship between 𝑋 and 𝑌.

THE BACKDOOR CRITERION

Given an ordered pair of variables 𝑋, 𝑌 in a DAG 𝒢, a set of 
variables 𝐒 satisfies the backdoor criterion relative to 𝑋, 𝑌 if no 
node in 𝐒 is a descendant of 𝑋, and 𝐒 blocks every path between 
𝑋 and 𝑌 that contains an arrow into 𝑋.
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If a set of variables 𝐒 satisfies the BACKDOOR CRITERION

for 𝑋 and 𝑌, then the causal effect of 𝑋 on 𝑌 is given by 
the formula

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥 = ෍ 𝑃 𝑌 = 𝑦|𝑋 = 𝑥, 𝐒 = 𝒔  𝑃 𝐒 = 𝒔

𝒔

THE BACKDOOR ADJUSTMENT FORMULA

just as when we adjust for 𝑝𝑎 𝑋 .

(Note that 𝑝𝑎 𝑋 always satisfies the backdoor criterion)

The logic behind the BACKDOOR CRITERION is fairly 
straightforward. 

In general, we would like to condition on a set of nodes 𝐒
(CONDITIONING SET) such that we:

1. block all spurious paths between 𝑋 and 𝑌

2. leave all directed paths from 𝑋 to 𝑌 unperturbed

3. create no new spurious paths Figure 4.14

ଵ ଶ

ଷ

1. block all spurious paths between X and Y.

We want the conditioning set 𝐒 to block any 
BACKDOOR PATH in which one end has an arrow 
into 𝑋, because such paths may make 𝑋 and 𝑌
dependent, but are obviously not transmitting 
causal influences from 𝑋, and if we do not block 
them, they will confound the effect that 𝑋 has on 𝑌.
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Figure 4.15

ଵ ଶ

ଷ

1. block all spurious paths between X and Y.

backdoor 
path

Given an ordered pair of variables 𝑋, 𝑌 in a DAG 𝒢, 
a set of variables 𝐒 satisfies the backdoor criterion 
relative to 𝑋, 𝑌 if no node in 𝐒 is a descendant of 𝑋, 
and 𝐒 blocks every path between 𝑋 and 𝑌 that 
contains an arrow into 𝑋.

THE BACKDOOR CRITERION

The logic behind the BACKDOOR CRITERION is fairly 
straightforward. 

In general, we would like to condition on a set of nodes 𝐒
(CONDITIONING SET) such that we:

1. block all spurious paths between 𝑋 and 𝑌

2. leave all directed paths from 𝑋 to 𝑌 unperturbed

3. create no new spurious paths

We want the conditioning set 𝐒 to block any 
BACKDOOR PATH in which one end has an arrow 
into 𝑋, because such paths may make 𝑋 and 𝑌
dependent, but are obviously not transmitting 
causal influences from 𝑋, and if we do not block 
them, they will confound the effect that 𝑋 has on 𝑌.
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Figure 4.16

ଵ ଶ

ଷ

1. block all spurious paths between X and Y.

backdoor 
path

The logic behind the BACKDOOR CRITERION is fairly 
straightforward. 

In general, we would like to condition on a set of nodes 𝐒
(CONDITIONING SET) such that we:

1. block all spurious paths between 𝑋 and 𝑌

2. leave all directed paths from 𝑋 to 𝑌 unperturbed

3. create no new spurious paths

We want the conditioning set 𝐒 to block any 
BACKDOOR PATH in which one end has an arrow 
into 𝑋, because such paths may make 𝑋 and 𝑌
dependent, but are obviously not transmitting 
causal influences from 𝑋, and if we do not block 
them, they will confound the effect that 𝑋 has on 𝑌.

Given an ordered pair of variables 𝑋, 𝑌 in a DAG 𝒢, 
a set of variables 𝐒 satisfies the backdoor criterion 
relative to 𝑋, 𝑌 if no node in 𝐒 is a descendant of 𝑋, 
and 𝐒 blocks every path between 𝑋 and 𝑌 that 
contains an arrow into 𝑋.

THE BACKDOOR CRITERION
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Figure 4.17

ଵ ଶ

ଷ

1. block all spurious paths between X and Y.

backdoor 
path

The logic behind the BACKDOOR CRITERION is fairly 
straightforward. 

In general, we would like to condition on a set of nodes 𝐒
(CONDITIONING SET) such that we:

1. block all spurious paths between 𝑋 and 𝑌

2. leave all directed paths from 𝑋 to 𝑌 unperturbed

3. create no new spurious paths

We want the conditioning set 𝐒 to block any 
BACKDOOR PATH in which one end has an arrow 
into 𝑋, because such paths may make 𝑋 and 𝑌
dependent, but are obviously not transmitting 
causal influences from 𝑋, and if we do not block 
them, they will confound the effect that 𝑋 has on 𝑌.

Given an ordered pair of variables 𝑋, 𝑌 in a DAG 𝒢, 
a set of variables 𝐒 satisfies the backdoor criterion 
relative to 𝑋, 𝑌 if no node in 𝐒 is a descendant of 𝑋, 
and 𝐒 blocks every path between 𝑋 and 𝑌 that 
contains an arrow into 𝑋.

THE BACKDOOR CRITERION
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Figure 4.18

ଵ ଶ

ଷ

1. block all spurious paths between X and Y.

backdoor 
path

The logic behind the BACKDOOR CRITERION is fairly 
straightforward. 

In general, we would like to condition on a set of nodes 𝐒
(CONDITIONING SET) such that we:

1. block all spurious paths between 𝑋 and 𝑌

2. leave all directed paths from 𝑋 to 𝑌 unperturbed

3. create no new spurious paths

We want the conditioning set 𝐒 to block any 
BACKDOOR PATH in which one end has an arrow 
into 𝑋, because such paths may make 𝑋 and 𝑌
dependent, but are obviously not transmitting 
causal influences from 𝑋, and if we do not block 
them, they will confound the effect that 𝑋 has on 𝑌.

Given an ordered pair of variables 𝑋, 𝑌 in a DAG 𝒢, 
a set of variables 𝐒 satisfies the backdoor criterion 
relative to 𝑋, 𝑌 if no node in 𝐒 is a descendant of 𝑋, 
and 𝐒 blocks every path between 𝑋 and 𝑌 that 
contains an arrow into 𝑋.

THE BACKDOOR CRITERION
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1. block all spurious paths between X and Y.

Figure 4.19

ଵ ଶ

ଷ

conditioning on 𝑍ଵ

blocks the backdoor 
path from 𝑋 to 𝑌
(fork)

The logic behind the BACKDOOR CRITERION is fairly 
straightforward. 

In general, we would like to condition on a set of nodes 𝐒
(CONDITIONING SET) such that we:

1. block all spurious paths between 𝑋 and 𝑌

2. leave all directed paths from 𝑋 to 𝑌 unperturbed

3. create no new spurious paths

We want the conditioning set 𝐒 to block any 
BACKDOOR PATH in which one end has an arrow 
into 𝑋, because such paths may make 𝑋 and 𝑌
dependent, but are obviously not transmitting 
causal influences from 𝑋, and if we do not block 
them, they will confound the effect that 𝑋 has on 𝑌.

Given an ordered pair of variables 𝑋, 𝑌 in a DAG 𝒢, 
a set of variables 𝐒 satisfies the backdoor criterion 
relative to 𝑋, 𝑌 if no node in 𝐒 is a descendant of 𝑋, 
and 𝐒 blocks every path between 𝑋 and 𝑌 that 
contains an arrow into 𝑋.

THE BACKDOOR CRITERION
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1. block all spurious paths between X and Y.

Figure 4.20

ଵ ଶ

ଷ

conditioning on 𝑍ଷ

blocks the backdoor path 
from 𝑋 to 𝑌 (chain)

The logic behind the BACKDOOR CRITERION is fairly 
straightforward. 

In general, we would like to condition on a set of nodes 𝐒
(CONDITIONING SET) such that we:

1. block all spurious paths between 𝑋 and 𝑌

2. leave all directed paths from 𝑋 to 𝑌 unperturbed

3. create no new spurious paths

We want the conditioning set 𝐒 to block any 
BACKDOOR PATH in which one end has an arrow 
into 𝑋, because such paths may make 𝑋 and 𝑌
dependent, but are obviously not transmitting 
causal influences from 𝑋, and if we do not block 
them, they will confound the effect that 𝑋 has on 𝑌.

Given an ordered pair of variables 𝑋, 𝑌 in a DAG 𝒢, 
a set of variables 𝐒 satisfies the backdoor criterion 
relative to 𝑋, 𝑌 if no node in 𝐒 is a descendant of 𝑋, 
and 𝐒 blocks every path between 𝑋 and 𝑌 that 
contains an arrow into 𝑋.

THE BACKDOOR CRITERION
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1. block all spurious paths between X and Y.

Figure 4.21

ଵ ଶ

ଷ

conditioning on 𝑍ଵ

blocks the backdoor 
path from 𝑋 to 𝑌
(fork)

The logic behind the BACKDOOR CRITERION is fairly 
straightforward. 

In general, we would like to condition on a set of nodes 𝐒
(CONDITIONING SET) such that we:

1. block all spurious paths between 𝑋 and 𝑌

2. leave all directed paths from 𝑋 to 𝑌 unperturbed

3. create no new spurious paths

We want the conditioning set 𝐒 to block any 
BACKDOOR PATH in which one end has an arrow 
into 𝑋, because such paths may make 𝑋 and 𝑌
dependent, but are obviously not transmitting 
causal influences from 𝑋, and if we do not block 
them, they will confound the effect that 𝑋 has on 𝑌.

Given an ordered pair of variables 𝑋, 𝑌 in a DAG 𝒢, 
a set of variables 𝐒 satisfies the backdoor criterion 
relative to 𝑋, 𝑌 if no node in 𝐒 is a descendant of 𝑋, 
and 𝐒 blocks every path between 𝑋 and 𝑌 that 
contains an arrow into 𝑋.

THE BACKDOOR CRITERION
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1. block all spurious paths between X and Y.

Figure 4.22

ଵ ଶ

ଷ

conditioning on 𝑍ଶ

blocks the backdoor 
path from 𝑋 to 𝑌
(fork)

The logic behind the BACKDOOR CRITERION is fairly 
straightforward. 

In general, we would like to condition on a set of nodes 𝐒
(CONDITIONING SET) such that we:

1. block all spurious paths between 𝑋 and 𝑌

2. leave all directed paths from 𝑋 to 𝑌 unperturbed

3. create no new spurious paths

We want the conditioning set 𝐒 to block any 
BACKDOOR PATH in which one end has an arrow 
into 𝑋, because such paths may make 𝑋 and 𝑌
dependent, but are obviously not transmitting 
causal influences from 𝑋, and if we do not block 
them, they will confound the effect that 𝑋 has on 𝑌.

Given an ordered pair of variables 𝑋, 𝑌 in a DAG 𝒢, 
a set of variables 𝐒 satisfies the backdoor criterion 
relative to 𝑋, 𝑌 if no node in 𝐒 is a descendant of 𝑋, 
and 𝐒 blocks every path between 𝑋 and 𝑌 that 
contains an arrow into 𝑋.

THE BACKDOOR CRITERION
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1. block all spurious paths between X and Y.

conditioning on 𝑍ଷ

blocks the backdoor 
path from 𝑋 to 𝑌
(chain)

Figure 4.23

ଵ ଶ

ଷ

The logic behind the BACKDOOR CRITERION is fairly 
straightforward. 

In general, we would like to condition on a set of nodes 𝐒
(CONDITIONING SET) such that we:

1. block all spurious paths between 𝑋 and 𝑌

2. leave all directed paths from 𝑋 to 𝑌 unperturbed

3. create no new spurious paths

We want the conditioning set 𝐒 to block any 
BACKDOOR PATH in which one end has an arrow 
into 𝑋, because such paths may make 𝑋 and 𝑌
dependent, but are obviously not transmitting 
causal influences from 𝑋, and if we do not block 
them, they will confound the effect that 𝑋 has on 𝑌.

Given an ordered pair of variables 𝑋, 𝑌 in a DAG 𝒢, 
a set of variables 𝐒 satisfies the backdoor criterion 
relative to 𝑋, 𝑌 if no node in 𝐒 is a descendant of 𝑋, 
and 𝐒 blocks every path between 𝑋 and 𝑌 that 
contains an arrow into 𝑋.

THE BACKDOOR CRITERION
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1. block all spurious paths between X and Y.

conditioning on 𝑍ଶ

blocks the backdoor 
path from 𝑋 to 𝑌
(fork)

Figure 4.24

ଵ ଶ

ଷ

The logic behind the BACKDOOR CRITERION is fairly 
straightforward. 

In general, we would like to condition on a set of nodes 𝐒
(CONDITIONING SET) such that we:

1. block all spurious paths between 𝑋 and 𝑌

2. leave all directed paths from 𝑋 to 𝑌 unperturbed

3. create no new spurious paths

We want the conditioning set 𝐒 to block any 
BACKDOOR PATH in which one end has an arrow 
into 𝑋, because such paths may make 𝑋 and 𝑌
dependent, but are obviously not transmitting 
causal influences from 𝑋, and if we do not block 
them, they will confound the effect that 𝑋 has on 𝑌.

Given an ordered pair of variables 𝑋, 𝑌 in a DAG 𝒢, 
a set of variables 𝐒 satisfies the backdoor criterion 
relative to 𝑋, 𝑌 if no node in 𝐒 is a descendant of 𝑋, 
and 𝐒 blocks every path between 𝑋 and 𝑌 that 
contains an arrow into 𝑋.

THE BACKDOOR CRITERION
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1. block all spurious paths between X and Y.

conditioning on 𝑍ଷ

blocks the backdoor 
path from 𝑋 to 𝑌
(fork)

Figure 4.25

ଵ ଶ

ଷ

MIND THE

CASE!!! The logic behind the BACKDOOR CRITERION is fairly 
straightforward. 

In general, we would like to condition on a set of nodes 𝐒
(CONDITIONING SET) such that we:

1. block all spurious paths between 𝑋 and 𝑌

2. leave all directed paths from 𝑋 to 𝑌 unperturbed

3. create no new spurious paths

We want the conditioning set 𝐒 to block any 
BACKDOOR PATH in which one end has an arrow 
into 𝑋, because such paths may make 𝑋 and 𝑌
dependent, but are obviously not transmitting 
causal influences from 𝑋, and if we do not block 
them, they will confound the effect that 𝑋 has on 𝑌.

Given an ordered pair of variables 𝑋, 𝑌 in a DAG 𝒢, 
a set of variables 𝐒 satisfies the backdoor criterion 
relative to 𝑋, 𝑌 if no node in 𝐒 is a descendant of 𝑋, 
and 𝐒 blocks every path between 𝑋 and 𝑌 that 
contains an arrow into 𝑋.

THE BACKDOOR CRITERION
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2. leave all directed paths from 𝑋 to 𝑌 unperturbed

However, we don’t want to condition on any nodes 
that are descendants of 𝑋. 

Descendants of 𝑋 would be affected by an 
intervention on 𝑋 and might themselves affect 𝑌; 
conditioning on them would block those pathways. 

Figure 4.14

ଵ ଶ

ଷ

The logic behind the BACKDOOR CRITERION is fairly 
straightforward. 

In general, we would like to condition on a set of nodes 𝐒
(CONDITIONING SET) such that we:

1. block all spurious paths between 𝑋 and 𝑌

2. leave all directed paths from 𝑋 to 𝑌 unperturbed

3. create no new spurious paths

Given an ordered pair of variables 𝑋, 𝑌 in a DAG 𝒢, 
a set of variables 𝐒 satisfies the backdoor criterion 
relative to 𝑋, 𝑌 if no node in 𝐒 is a descendant of 𝑋, 
and 𝐒 blocks every path between 𝑋 and 𝑌 that 
contains an arrow into 𝑋.

THE BACKDOOR CRITERION
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2. leave all directed paths from 𝑋 to 𝑌 unperturbed

However, we don’t want to condition on any nodes 
that are descendants of 𝑋. 

Descendants of 𝑋 would be affected by an 
intervention on 𝑋 and might themselves affect 𝑌; 
conditioning on them would block those pathways. 

Figure 4.26

ଵ ଶ

ଷ

conditioning on 𝑊
blocks the directed path 
from 𝑋 to 𝑌 (chain)

The logic behind the BACKDOOR CRITERION is fairly 
straightforward. 

In general, we would like to condition on a set of nodes 𝐒
(CONDITIONING SET) such that we:

1. block all spurious paths between 𝑋 and 𝑌

2. leave all directed paths from 𝑋 to 𝑌 unperturbed

3. create no new spurious paths

Given an ordered pair of variables 𝑋, 𝑌 in a DAG 𝒢, 
a set of variables 𝐒 satisfies the backdoor criterion 
relative to 𝑋, 𝑌 if no node in 𝐒 is a descendant of 𝑋, 
and 𝐒 blocks every path between 𝑋 and 𝑌 that 
contains an arrow into 𝑋.

THE BACKDOOR CRITERION
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2. leave all directed paths from 𝑋 to 𝑌 unperturbed

However, we don’t want to condition on any nodes 
that are descendants of 𝑋.

Descendants of 𝑋 would be affected by an 
intervention on 𝑋 and might themselves affect 𝑌; 
conditioning on them would block those pathways. 

Figure 4.26

ଵ ଶ

ଷ

conditioning on 𝑊
blocks the directed path 
from 𝑋 to 𝑌 (chain)

The logic behind the BACKDOOR CRITERION is fairly 
straightforward. 

In general, we would like to condition on a set of nodes 𝐒
(CONDITIONING SET) such that we:

1. block all spurious paths between 𝑋 and 𝑌

2. leave all directed paths from 𝑋 to 𝑌 unperturbed

3. create no new spurious paths

Given an ordered pair of variables 𝑋, 𝑌 in a DAG 𝒢, 
a set of variables 𝐒 satisfies the backdoor criterion 
relative to 𝑋, 𝑌 if no node in 𝐒 is a descendant of 𝑋, 
and 𝐒 blocks every path between 𝑋 and 𝑌 that 
contains an arrow into 𝑋.

THE BACKDOOR CRITERION
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3. create no spurious paths

Finally, to comply with the third requirement, we 
should refrain from conditioning on any collider 
that would unblock a new path between 𝑋 and 𝑋. 

Figure 4.14

ଵ ଶ

ଷ

The logic behind the BACKDOOR CRITERION is fairly 
straightforward. 

In general, we would like to condition on a set of nodes 𝐒
(CONDITIONING SET) such that we:

1. block all spurious paths between 𝑋 and 𝑌

2. leave all directed paths from 𝑋 to 𝑌 unperturbed

3. create no new spurious paths

Given an ordered pair of variables 𝑋, 𝑌 in a DAG 𝒢, 
a set of variables 𝐒 satisfies the backdoor criterion 
relative to 𝑋, 𝑌 if no node in 𝐒 is a descendant of 𝑋, 
and 𝐒 blocks every path between 𝑋 and 𝑌 that 
contains an arrow into 𝑋.

THE BACKDOOR CRITERION
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3. create no spurious paths

Finally, to comply with the third requirement, we 
should refrain from conditioning on any COLLIDER

that would unblock a new path between 𝑋 and 𝑋. 

Figure 4.27

ଵ ଶ

ଷ

conditioning on 𝑍ଷ

(collider) makes 𝑍ଵ

and 𝑍ଶ dependent. 
MIND THE

CASE!!! The logic behind the BACKDOOR CRITERION is fairly 
straightforward. 

In general, we would like to condition on a set of nodes 𝐒
(CONDITIONING SET) such that we:

1. block all spurious paths between 𝑋 and 𝑌

2. leave all directed paths from 𝑋 to 𝑌 unperturbed

3. create no new spurious paths

Given an ordered pair of variables 𝑋, 𝑌 in a DAG 𝒢, 
a set of variables 𝐒 satisfies the backdoor criterion 
relative to 𝑋, 𝑌 if no node in 𝐒 is a descendant of 𝑋, 
and 𝐒 blocks every path between 𝑋 and 𝑌 that 
contains an arrow into 𝑋.

THE BACKDOOR CRITERION
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3. create no spurious paths

Finally, to comply with the third requirement, we 
should refrain from conditioning on any COLLIDER

that would unblock a new path between 𝑋 and 𝑋. 

Figure 4.28

ଵ ଶ

ଷ

conditioning on 𝑍ଷ

(collider) un-blocks 
the backdoor path 
from 𝑋 to 𝑌

MIND THE

CASE!!! The logic behind the BACKDOOR CRITERION is fairly 
straightforward. 

In general, we would like to condition on a set of nodes 𝐒
(CONDITIONING SET) such that we:

1. block all spurious paths between 𝑋 and 𝑌

2. leave all directed paths from 𝑋 to 𝑌 unperturbed

3. create no new spurious paths

Given an ordered pair of variables 𝑋, 𝑌 in a DAG 𝒢, 
a set of variables 𝐒 satisfies the backdoor criterion 
relative to 𝑋, 𝑌 if no node in 𝐒 is a descendant of 𝑋, 
and 𝐒 blocks every path between 𝑋 and 𝑌 that 
contains an arrow into 𝑋.

THE BACKDOOR CRITERION
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3. create no spurious paths

Finally, to comply with the third requirement, we 
should refrain from conditioning on any collider 
that would unblock a new path between 𝑋 and 𝑋. 

Figure 4.29

ଵ ଶ

ଷ

The requirement of excluding descendants of 𝑋, 
i.e. 𝑑𝑒 𝑋 , also protects us from conditioning on 
children of intermediate nodes between 𝑋 and 𝑌
(e.g., 𝑄).

intermediate node 
between 𝑋 and 𝑌

descendant of an intermediate 
node between 𝑋 and 𝑌

The logic behind the BACKDOOR CRITERION is fairly 
straightforward. 

In general, we would like to condition on a set of nodes 𝐒
(CONDITIONING SET) such that we:

1. block all spurious paths between 𝑋 and 𝑌

2. leave all directed paths from 𝑋 to 𝑌 unperturbed

3. create no new spurious paths

Given an ordered pair of variables 𝑋, 𝑌 in a DAG 𝒢, 
a set of variables 𝐒 satisfies the backdoor criterion 
relative to 𝑋, 𝑌 if no node in 𝐒 is a descendant of 𝑋, 
and 𝐒 blocks every path between 𝑋 and 𝑌 that 
contains an arrow into 𝑋.

THE BACKDOOR CRITERION
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3. create no spurious paths

Finally, to comply with the third requirement, we 
should refrain from conditioning on any collider 
that would unblock a new path between 𝑋 and 𝑋. 

Figure 4.30

ଵ ଶ

ଷ

The requirement of excluding descendants of 𝑋, 
i.e. 𝑑𝑒 𝑋 , also protects us from conditioning on 
children of intermediate nodes between 𝑋 and 𝑌
(e.g., 𝑄).

conditioning on 𝑄
creates a 
spurious path

The logic behind the BACKDOOR CRITERION is fairly 
straightforward. 

In general, we would like to condition on a set of nodes 𝐒
(CONDITIONING SET) such that we:

1. block all spurious paths between 𝑋 and 𝑌

2. leave all directed paths from 𝑋 to 𝑌 unperturbed

3. create no new spurious paths

Given an ordered pair of variables 𝑋, 𝑌 in a DAG 𝒢, 
a set of variables 𝐒 satisfies the backdoor criterion 
relative to 𝑋, 𝑌 if no node in 𝐒 is a descendant of 𝑋, 
and 𝐒 blocks every path between 𝑋 and 𝑌 that 
contains an arrow into 𝑋.

THE BACKDOOR CRITERION
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3. create no spurious paths

Finally, to comply with the third requirement, we 
should refrain from conditioning on any collider 
that would unblock a new path between 𝑋 and 𝑋. 

Figure 4.31
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The requirement of excluding descendants of 𝑋, 
i.e. 𝑑𝑒 𝑋 , also protects us from conditioning on 
children of intermediate nodes between 𝑋 and 𝑌
(e.g., 𝑄).

conditioning on 𝑄
creates a 
spurious path

The logic behind the BACKDOOR CRITERION is fairly 
straightforward. 

In general, we would like to condition on a set of nodes 𝐒
(CONDITIONING SET) such that we:

1. block all spurious paths between 𝑋 and 𝑌

2. leave all directed paths from 𝑋 to 𝑌 unperturbed

3. create no new spurious paths

Given an ordered pair of variables 𝑋, 𝑌 in a DAG 𝒢, 
a set of variables 𝐒 satisfies the backdoor criterion 
relative to 𝑋, 𝑌 if no node in 𝐒 is a descendant of 𝑋, 
and 𝐒 blocks every path between 𝑋 and 𝑌 that 
contains an arrow into 𝑋.

THE BACKDOOR CRITERION
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Given an ordered pair of variables 𝑋, 𝑌 in a 
DAG 𝒢, a set of variables 𝐒 satisfies the 
backdoor criterion relative to 𝑋, 𝑌 if no node 
in 𝐒 is a descendant of 𝑋, and 𝐒 blocks every 
path between 𝑋 and 𝑌 that contains an arrow 
into 𝑋.

THE BACKDOOR CRITERION

A set 𝐒 which satisfies the backdoor 

criterion is said to be a 

SUFFICIENT ADJUSTMENT SET.

Given the modularity assumption, that, 𝐒 satisfies the 
backdoor criterion, and positivity, we can identify the causal 
effect of 𝑋 on 𝑌 as follows:

THE BACKDOOR ADJUSTMENT FORMULA

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥 = ෍ 𝑃 𝑌 = 𝑦|𝑋 = 𝑥, 𝐒 = 𝒔  𝑃 𝐒 = 𝒔

𝒔

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥

= ෍ 𝑃 𝑌 = 𝑦|𝑋 = 𝑥, 𝐒 = 𝒔  𝑃 𝐒 = 𝒔|𝑑𝑜 𝑋 = 𝑥

𝒔

= ෍ 𝑃 𝑌 = 𝑦|𝑋 = 𝑥, 𝐒 = 𝒔  𝑃 𝐒 = 𝒔

𝒔

(conditioning on 𝐒 and then marginalizing 𝐒 out)

= ෍ 𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥 , 𝐒 = 𝒔  𝑃 𝐒 = 𝒔|𝑑𝑜 𝑋 = 𝑥

𝒔

(𝐒 satisfies the backdoor criterion)

(by modularity)
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We can use the backdoor adjustment formula if, 𝐒 d-separates 𝑋 from 𝑌 in 
the AUGMENTED GRAPH (obtained by removing all outgoing edges from 𝑋).

In previous lectures we mentioned that we would be able to isolate the 
causal association if 𝑋 is d-separated from 𝑌 in the AUGMENTED GRAPH.

“Isolation of the causal association” is identification. 

We can also isolate the causal association if 𝑋 is d-separated from 𝑌 in 
the AUGMENTED GRAPH, conditional on 𝐒.

This is what the first part of the backdoor criterion is about and what we’ve 
codified in the backdoor adjustment.

causal path

association path

Figure 4.32

Given an ordered pair of variables 𝑋, 𝑌 in a 
DAG 𝒢, a set of variables 𝐒 satisfies the 
backdoor criterion relative to 𝑋, 𝑌 if no node 
in 𝐒 is a descendant of 𝑋, and 𝐒 blocks every 
path between 𝑋 and 𝑌 that contains an arrow 
into 𝑋.

THE BACKDOOR CRITERION

Given the modularity assumption, that, 𝐒 satisfies the 
backdoor criterion, and positivity, we can identify the causal 
effect of 𝑋 on 𝑌 as follows:

THE BACKDOOR ADJUSTMENT FORMULA

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥 = ෍ 𝑃 𝑌 = 𝑦|𝑋 = 𝑥, 𝐒 = 𝒔  𝑃 𝐒 = 𝒔

𝒔

𝐒 = 𝑍


