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CAUSAL DISCOVERY FROM OBSERVATIONAL DATA 1

Previous lectures assumed that the causal graph is given. What if we don’t know the

graph? Can we learn it? We will refer to this problem as structure identification or structure

learning. In this lecture we show how the structure of the causal network can be learnt

from observational data.
In particular, the lecture presents the following:

» Constraint-based algorithms

» The PC algorithm

» Semi-parametric causal discovery

= Additional topics
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PART I: CONSTRAINT-BASED METHODS

THE FUNDAMENTAL PROBLEM OF CAUSAL INFERENCE

-
We cannot observe both Y;(1) and Y;(0), therefore we cannot
observe the causal effect

T; £ Y;(1) - Y;(0)

Another relevant task is that of CAUSAL DISCOVERY TASK, i.e., the
problem of discovering the causal model which helps to EXPLAIN

the causal effect of the treatment X on the outcome' Y.

The CAUSAL INFERENCE TASK is an
extremely relevant task and it consists
of computing the causal effect t; of the
treatment X on the outcome Y, no
matter which is the causal model

responsible for such a causal effect.

In this lecture we focus the attention to
CAUSAL NETWORKS, as a valid tool to

accomplish the CAUSAL DISCOVERY TASK.

OBSERVATIONAL
DATA .
L 4 More precisely we present the problem
LEARNT
CAUSAL NETWORK of LEARNING A CAUSAL NETWORK by
DOMAIN EXPERT 4 fusion of OBSERVATIONAL DATA and
KNOWLEDGE
_ DOMAIN EXPERT KNOWLEDGE.
Figure 12.1
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Learning a CAUSAL NETWORK consists of learning gender
= Structure, Z

=  Parameters.

Learning a CAUSAL NETWORK can be achieved by
= Constraint-based algorithms, X Figure12.2 Y

_ drug recovery
= Score-based algorithms,

= Hybrid algorithms.

However, in this lecture we focus the attention to

CONSTRAINT-BASED ALGORITHMS. P(Z=0)=0.6
P(X=0|Z=0)=0.5
OBSERVATIONAL
DATA * P(X=0/1Z=1)=0.3
LEARNT P(Y=0/Z=0,X=0)=0.6
CAUSAL NETWORK

P(Y=0|1Z=1,X=0)=0.5

DOMAIN EXPERT 4
KNOWLEDGE P(Y=0/Z=0,X=1)=0.1
Figure 12.1 PY=0Z=1,X=1)=0.2
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» We assume the UNDERLYING PROCESS follows a probability
distribution P (the underlying probability distribution associated
with DAG G).

= Then, the UNDERLYING PROCESS can be adequately represented
by sampling from P to obtain OBSERVATIONAL DATA.

The goal of the CAUSAL DISCOVERY TASK is to identify a model
representation M of P.

To simplify the task, we assume the PROBABILITY DISTRIBUTION P
to be a DAG-FAITHFUL PROBABILITY DISTRIBUTION with underlying
DAG g.

SAMPLING p| OBSERVATIONAL
P | DATA v M
UNDERLYING LEARNT
PROCESS CAUSAL NETWORK
G | p| DOMAN EXPERT A
KNOWLEDGE
Figure 12.1

STABILITY — FAITHFULNESS

/P is a stable (faithful) distribution if there A
exists a DAG ¢ such that

XUpY|ZSX U Y|Z

Q‘or any three sets of variables X, Y, and Z.

We assume that the distribution P can be
represented as a CAUSAL NETWORK (if P
IS not DAG-FAITHFUL, a causal network
may still be an excellent approximation).

The FAITHFULNESS assumption says that
the distribution P, induced by G, satisfies
no independence relations beyond
those implied by G.

A CAUSAL NETWORK is FAITHFUL iff for every
d-connection (no d-separation) Z there is a
corresponding conditional dependence, i.e.,

XUGY|Z=>X UpY|Z
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PART I: CONSTRAINT-BASED METHODS 7

FAITHFULNESS is a much less attractive assumption - N
than the MARKOV ASSUMPTION because it is easy to A B = aA
think of counterexamples where L
o % C:=vyA
= two variables are independent in P,
: D =B+ 6C
= but there are unblocked paths between them in §. - y
It is worthwhile to mention that many CONSTRAINT-BASED B C
METHODS also assume that there are no unobserved D = paA + 6yA
confounders, which is known as CAUSAL SUFFICIENCY. 8 5 D = (Ba + 6y)A
CAUSAL SUFFICIENCY
If fa = =0y
There are no unobserved confounders of any of the
bles in th H Figure 12.3
variables in the graph. A—B—D | cancer
violates A—C—-D | °V
A—B—D ( ) l D=0
A—C—D > A 'M'Q D STABILITY — FAITHFULNESS
Z= () '
there are no paths between \A J.Lg D/ AllpD|ZoA 1 D|Z AlL,D

A and D in the graph G
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cases generated by
the underlying and
unknown process

D= {x!,x?, ..., x"}

distributed data cases

drawn at random from the

probability distribution P

independent and identically

SAMPLING p| OBSERVATIONAL
P DATA v M
UNDERLYING LEARNT
PROCESS CAUSAL NETWORK
G | p| DOMAN EXPERT A
KNOWLEDGE
Figure 12.1

LEARNING A CAUSAL NETWORK is the TASK of identifying a DAG
structure G and a set of conditional probability distributions with
parameters O on the basis of

= D ={x!x? .., xN}and,

= possibly some domain expert background knowledge.

assignment of values to the n
variables for the j'"* data case

i T ] J
x) = {xl,xz,...,xn}

Some values in © may be missing (N/A), but
missing values are assumed to be:

= MISSING AT RANDOM (MAR) or,

" MISSING COMPLETELY AT RANDOM (MCAR).
i.e., the missing data mechanism is
uninformative and can be ignored.

A variable never observed is called a HIDDEN or
a LATENT VARIABLE.

X, X, X,

xl blue yes low

x* green no low

x> red N/A high
Table 12.1
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Abstract: Incomplete data are a common feature in many domains, fror
applications. Bayesian networks (BNs) are often used in these domains because of their graphical
and causal interpretations. BN parameter learning from incomplete data is usually implemented
with the Expectation-Maximisation algorithm (EM), which computes the relevant sufficient statistics
(“soft EM”) using belief propagation. Similarly, the Structural Expectation-Maximisation algorithm
(Structural EM) learns the network structure of the BN from those sufficient statistics using algorithms
designed for complete data. However, practical implementations of parameter and structure learning
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D-SEPARATION

In the CONSTRAINT-BASED APPROACH, 4 path p is blocked by a set of nodes S if and only if \

the DAG ¢ of a causal network is 1) p contains a chain ofnodesA — B — Corafork A« B — C

_ _ such that the middle node B is in S (i.e., is conditioned on),
considered as an encoding of a set of

- 2) or p contains a collider A — B «— (€ such that the collision
(conditional) dependence and node B is not in S, and no descendant of B is in S.

independence relations M, which can If S blocks every path between two nodes X and Y, then X and Y
are d-separated, conditional on S, and thus are independent

@nditional on S. /

= Structure learning is then the task of identifying a DAG structure that (best) encodes a set of
(conditional) dependence and independence relations M.

be read off G using D-SEPARATION.

= The set of (conditional) dependence and independence relations M may, for instance, be derived
from OBSERVATIONAL DATA by statistical tests.

= Based on D alone, we can at most hope to identify an EQUIVALENCE CLASS OF GRAPHS encoding
the (conditional) dependence and independence relations M of the generating distribution P.

CAUSAL NETWORKS — CAUSAL DISCOVERY FROM OBSERVATIONAL DATA FALL 2021 FABIO STELLA



PART I: CONSTRAINT-BASED METHODS

11

A CONSTRAINT-BASED STRUCTURE LEARNING ALGORITHM proceeds by determining the validity of independence

relations of the form:

I1(X,Y|Sxy) we check whether X is independent of Y given subset Syy, where X,Y € X and Syy € X

» The structure learning algorithm will work with any information source n #dags
able to provide such information. 1 1
= We will consider the case where the validity of independence relations is 2 3
determined by STATISTICAL HYPOTHESIS TESTS OF INDEPENDENCE based 3 25
on a database of cases (OBSERVATIONAL DATA). A e
. : . 5 29,281
The size of the space of possible DAGs grows SUPER-EXPONENTIALLY with the
number of nodes n in the graph. 6 3,781,503
7 1.1 10°
The following recursive formula gives the number f(n) of DAGs on n nodes: 3 781011
n 9 1.2 105
fn) = z(_l)lﬂ (n—i)!i! 2=V f (n — i) 10 421018
t=1 Table 12.2
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Under the conditions listed below:

1) The independence relationships have a perfect representation as a DAG
(ACYCLICITY AND FAITHFULNESS ASSUMPTIONS).

2) No hidden (latent) variables are involved (CAUSAL SUFFICIENCY ASSUMPTION).

3) The database (OBSERVATIONAL DATA) consists of a set of independent and identically distributed cases.
4) The database (OBSERVATIONAL DATA) is infinitely large.

5) The statistical tests have no error.

a constraint-based structure learning algorithm discovers a DAG structure equivalent to the DAG structure of P.

= Two DAGs representing the same set of (conditional) dependence and independence relations are
equivalent in the sense that they can capture the same set of probability distributions.

» The equivalence class of a DAG ¢ is the set of DAGs with the same set of d-separation relations as g.

= A PDAG — an acyclic, partially directed graph, i.e., an acyclic graph with some edges undirected (also
known as a pattern or ESSENTIAL GRAPH) — can be used to represent the equivalence class of a set of
DAG structures, i.e., a maximal set of DAGs with the same set of d-separation relations.
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EQUIVALENT MODELS AND MARKOV EQUIVALENCE CLASS ‘ »‘ »‘
/Any two models Mg, and Mg,, over the same set of variables, \ X Y 7
whose graphs G’ and G", respectively, have the same skeleton G
(i.e., undirected graph obtained by replacing directed edges with ‘4 ‘4 ‘
undirected edges) and the same v-structures, are EQUIVALENT.
!/ 14 . X Y Z
Two graphs G' and G are in the same EQUIVALENCE CLASS
= if they share a COMMON SKELETON—that is, if they possess the
same edges, regardless of the direction of those edges—and
= if they share COMMON V-STRUCTURES, that is, colliders whose
k parents are not adjacent. /
Figure 12.4
The three graphs in Figure 12.4
aré MARKOV EQUIVALENT. X Z = common skeleton * no v-structures
Hence, based on data D = {x!,x?, ..., x"}
alone we cannot distinguish between these ‘ ‘ ‘
three models, while we can distinguish them Y X Y 7
from the collider in Figure 12.6. . .
Figure 12.6 Figure 12.5
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The graphs in Figure 12.4 correspond to

the same set of independence/dependence

assumptions Mg, i.e., we say that the

three graphs are MARKOV EQUIVALENT.

Given a graph, we refer to its MARKOV
EQUIVALENCE CLASS as the set of
graphs that encode the same

(conditional) independencies.

XU Z X is independent on Z
XU Z X is not independent on Z

Mg

(XYY XUZ YUZ

The three graphs can
not be distinguished,
when all we have is
observational data!!!

{r

X1 Z|Y Xisindependenton Z given Y The three graphs are
XMW Z|Y Xisnotindependenton Z given Y MARKOV EQUIVALENT

XWZ|Y ZULX|Y <:
\_ J

<

~
N

é -0—@
o—o-—eo

X /
k Figure 12.4 /
~ = common skeleton = No v-structures
Y YA
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PART I: CONSTRAINT-BASED METHODS 15

EQUIVALENCE CLASS

An equivalence class is a maximal set of DAGs The three DAGs in Figure 12.7 all represent
_ _ _ the same set of conditional independence and
with the same set of independence properties M. dependence relations.

4 4

D D D D

k Figure 12.7 / \ Figure 12.8 /

Equivalence class of the
three DAGs to the left

Three equivalent DAGs
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A set of (conditional) dependence and independence
relations M may be generated by statistical tests on the

OBSERVATIONAL DATA.

In each test, the hypothesis tested is that of independence
between a pair of variables.

Let X and Y be a pair of variables for which we would like to

determine dependence by STATISTICAL HYPOTHESIS TESTING.

We could:
= test for MARGINAL INDEPENDENCE and subsequently,

= test for CONDITIONAL INDEPENDENCE given subsets of
other variables.

blue
green

red

yes
no

N/A

Table 12.1

low
low

high
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PART I: CONSTRAINT-BASED METHODS 17

A set of (conditional) dependence and independence X4 X, X,
relations M may be generated by statistical tests on the

X blue yes low
OBSERVATIONAL DATA. 5
X green no low
In each test, the hypothesis tested is that of independence 23 red N/A high
between a pair of variables.
Let X and Y be a pair of variables for which we would like to Table 12.1
determine dependence by STATISTICAL HYPOTHESIS TESTING.
We could: A potential hypothesis test
= test for MARGINAL INDEPENDENCE and subsequently, Under H, the likelihood statistic
= test for CONDITIONAL INDEPENDENCE given subsets of
th iabl 2 _ Ny NN,
other variables. G= =2 ) Nyylog IE_xy Eyy = N
In the case of MARGINAL INDEPENDENCE TESTING between i
X and Y, the HYPOTHESIS TO BE TESTED is has an asymptotic y? distribution with the
appropriate degrees of freedom (df).
Hy: P(X,Y) = P(X) P(Y) X1UpY N,,, number of cases where X = x andY =y
H,: P(X,Y) # P(X) P(Y) N,, number of cases where X = x

N,,, number of cases where Y =y
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A set of (conditional) dependence and independence
relations M may be generated by statistical tests on the

OBSERVATIONAL DATA.

In each test, the hypothesis tested is that of independence

between a pair of variables.

Let X and Y be a pair of variables for which we would like to

determine dependence by STATISTICAL HYPOTHESIS TESTING.

We could:

= test for MARGINAL INDEPENDENCE and subsequently,

= test for CONDITIONAL INDEPENDENCE given subsets of

other variables.

In the case of CONDITIONAL INDEPENDENCE TESTING between
X and Y given subset Sy, the HYPOTHESIS TO BE TESTED IS

Hy: P(X,Y|Sxy) = P(X|Sxy) P(Y|Sxy) X UpY |Sxy

Hy : P(X,Y|Sxy) # P(X|Sxy) P(Y|Sxy)

18
X, X, X,
x! blue yes low
x* green no low
x> red N/A high
Table 12.1

A potential hypothesis test

Under H, the likelihood statistic

N N, .N
G2 =2 Z nys log( xys) IExys — _XSTYS
IExys N
X,V,S

has an asymptotic y? distribution with the
appropriate degrees of freedom (df).

af = (Xl =Davi-v | [

SESxy
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PART Il

THE PC ALGORITHM
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The PC ALGORITHM (Spirtes & Glymour 1991, Spirtes et al. 2000) is probably the most known

CONSTRAINT-BASED ALGORITHM for learning the structure of a causal network.

The MAIN STEPS OF THE PC ALGORITHM are:

1) Test for (conditional) independence between each pair of variables represented

in © = {x1,x?%, ..., x"} to derive My, the set of conditional independence and
dependence relations.

2) Identify the skeleton of the graph induced by M4,.
3) Identify colliders.

4) ldentify derived directions.

The PC ALGORITHM typically produces a PDAG (Partially DAG) representing an equivalence

class as it emerges from hypothesis testing performed by using the available observational
data © = {x! x?, ..., x"}.
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STEP 1:

My <

r

-

TEST FOR (CONDITIONAL) INDEPENDENCE. We try to determine the B
validity of the conditional independence statement

Hy : P(X,Y|Sxy) = P(X|Sxy)P(Y|Sxy)
Hy : P(X,Y|Sxy) # P(X|Sxy)P(Y|Sxy)

The independence hypothesis H, is tested for CONDITIONING SETS Syy
of cardinality O, 1, 2, 3, ... in that order.

X lUpY |Syy

If the hypothesis H, cannot be rejected based on some preselected Figure 12.9

SIGNIFICANCE LEVEL a, then the search for an independence relation
between X and Y is terminated.

Assume you are given the database of cases (OBSERVATIONAL DATA)
which has been generated from the model in Figure 12.9, and that you
got the following (conditional) independence and dependence relations:

My = {BLEBIRB.ILWAA L R|EE L W|A R I W|A)-— independencies
My = {BUABLIUA|ELBLA|RLB UL A{W]LB L A|{E,R},
B U A|{E,W},B L A|{R,W},B I A|{E,R,W},A I E,... < dependencies
AUW,. .. ,ELR,..]
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STEP 2:

My <

(

-

IDENTIFY THE SKELETON. The skeleton of an acyclic, directed or B
partially directed graph ¢ is the undirected graph G* obtained from G
by removing the direction on all directed edges.

The skeleton of the graph induced from My is constructed from the
conditional dependence and independence statements of M4
generated by the statistical test in STEP 1.

For each pair of variables X and Y where no independence statement

X UpY [Syy
exists, the undirected edge (X, Y) is created in the skeleton.

Figure 12.9

The graph of Figure 12.10 is a more intuitive and compact B
representation of the dependence and independence
model than that of equations below.

My = {BI E,BI RB.I WA A I R|EE I W|A,R 1 W|A)
My = {BUABIUANELB UL A|{RLB ULA|{W}B U A|{E,R]}, SKELETON
e u —
B U A|{E,W),B L A|[{R,W).B I A{E,R, W},A L E,... G* = (Vs, Es)
AUW....,ELR,..L W Figure 12.10
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STEP 3:

My <

(

-

IDENTIFY COLLIDERS. Once the skeleton has been identified, B
colliders in the skeleton are identified.

Based on the skeleton, we search for subsets of variables {X,Y, Z}
such that X and Y are neighbors, Z and Y are neighbors while X and
Z are not neighbors.

For each such subset a collider X — Y « Z is created when Y & Sy,
for any Sy, satisfying BoAdeE

X UpZ |Sxz
N MD'

Figure 12.11

(B,A),(E,A) € E
> (VB1 pE|Spg| Ser=1{0} AgSy B

(B,E) & ES
My = [BLLEJBLRBLWIAA LRIEELWIARLWIA)
My = {BUABIUA|{ELBIULA|{R}LBIUAI{W]LB UL A|{E,R}, SKELETON
_ u —
B U A[{EW}LB L A|{RW)LB LA{ERWLA ULE,... " = (Vs, Es)
AUW....,ELR,..L W Figure 12.10
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STEP 3:

My <

-

IDENTIFY COLLIDERS. Once the skeleton has been identified, B
colliders in the skeleton are identified.

Based on the skeleton, we search for subsets of variables {X,Y, Z}
such that X and Y are neighbors, Z and Y are neighbors while X and
Z are not neighbors.

For each such subset a collider X — Y « Z is created when Y & Sy,
for any Sy, satisfying B AdeW

X UpZ |Sxz
N MD'

Figure 12.12

(B,A),(W,A) € E
> (VBI pW |Sew| Ssw={4) A€Sy, B

(B,W) ¢ Eg
My = {BIEBIRIBILWAJA 1L RIE,E 1L W|A,R 1L W|A)
My = {BULABIULANELB UL AI{R}LB L A[{W}B L A|{E,R}, SKELETON
AE.WLB U AIRWLEB L A[(E.RWLA L E.... > g" = (Vs, Es)
A /_ W,...,E LR,.... W Figure 12.10
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STEP 4:

IDENTIFY DERIVED DIRECTIONS. After identifying the skeleton and the
colliders of G, derived directions are identified.

The direction of an edge is said to be derived when it is a logical
consequence of (the lack of) previous actions (i.e., since the edge
was not directed in a previous step and it should have been in order
to have a certain direction, then the edge must be directed in the

opposite direction).

Starting with any PDAG including all valid colliders, a MAXIMALLY
DIRECTED PDAG can be obtained following four NECESSARY AND

SUFFICIENT RULES.

That is, by repeated application of these four rules all edges

common to the equivalence class of G are identified.

B

Figure 12.13

CAUSAL NETWORKS — CAUSAL DISCOVERY FROM OBSERVATIONAL DATA FALL 2021
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PART II: THE PC ALGORITHM 27

STEP 4: IDENTIFY DERIVED DIRECTIONS. B

RULE 1

X
B

~<

Figure 12.13

o

It follows from the fact that the collider
X —>Y «—/
was not identified as a valid collider.

Since the edge between Y and Z is not part of the

aforementioned collider, it must be directed from Y to Z.
Figure 12.14
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STEP 4: IDENTIFY DERIVED DIRECTIONS.

It follows from the fact that
directing the edge between
RULE 2

X and Z from Z to X will
‘ . i induce a directed cycle in
:> the graph.
X Y Z

Thus, the edge must be
directed from X to Z.

It follows from the fact that

directing the edge between
RULE 3 XandY fromY to X will

inevitably produce an

X
> additional collider
V 7 Vo X7
Y or a directed cycle.

Hence, the edge must be
directed from X to Y.

CAUSAL NETWORKS — CAUSAL DISCOVERY FROM OBSERVATIONAL DATA FALL 2021 FABIO STELLA



PART II: THE PC ALGORITHM 29

STEP 4: IDENTIFY DERIVED DIRECTIONS. _
X and V are adjacent nodes,

7 le, X—->V,Vo>XorX—V.

It follows from the fact that directing the
edge between X and Y from Y to X will
inevitably produce an additional collider

Y > X 7
or a directed cycle.

RULE 4

vy X

Y

Hence, the edge must be directed from X to Y.

The dashed lines used to illustrate the fourth rule indicate that X and V are connected by an
edge (either directedornot, X -V, V > XorX — V).

The fourth rule is not necessary if the orientation of the initial PDAG is limited to containing
colliders only.

The initial PDAG may contain non-colliders when expert knowledge on edge directions are
included in the graph.
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STEP 4: IDENTIFY DERIVED DIRECTIONS.

As neither the collider B
B— AW
nor the collider

E— AW

was identified as a collider of G, the
edge between 4 and W must be
directed from A to W (Figure 12.13).
(Application of RULE 1)

Figure 12.12 W

Figure 12.15

Figure 12.13
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STEP 4:

IDENTIFY DERIVED DIRECTIONS.

As neither the collider B E B
B—o> AW

nor the collider
E—-AW A R

was identified as a collider of G, the
edge between 4 and W must be
directed from A to W (Figure 12.14).
(Application of RULE 1)

Figure 12.16 Figure 12.17

Figure 12.16 and Figure 12.17 show the EQUIVALENCE CLASS
of My.

The EQUIVALENCE CLASS of My contains two DAGs differing

only with respect to the orientation of the edge between E

Figure 12.14 and R.
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The four rules are necessary and sufficient for achieving maximal orientation (up to equivalence) of the
PDAG returned by the PC algorithm.

We use these four rules repeatedly until no edge can be given an orientation.

Notice that the result of closing edge directions under rules from 1 to 4 is not necessarily a DAG.

If the graph is not a DAG, then expert knowledge may be appropriate in order to direct an edge.
Once an edge has been directed by use of expert knowledge derived directions should be identified.
This process may be repeated until a DAG structure is obtained.

Experience shows that most edges are directed using RULE 1, and that RULE 3 is only rarely used.

)

possible completions of the PDAG

The two possible completions
induce the same set of conditional
independence and dependence
relations.

When only the database of cases is
available, we can not select which is the
true DAG, i.e., the one corresponding to

Figure 12.14  the underlying process. w

Figure 12.16

W Figure 12.17
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» There are OTHER CONSTRAINT-BASED ALGORITHMS that

=  When a unique DAG can not be allow us to drop various assumptions.
obtained from the database of cases we = The FCI (FAST CAUSAL INFERENCE) algorithm works
can ask help to the domain expert. without assuming causal sufficiency.

= If we can obtain a unique DAG, then we = The CCD algorithm works without assuming acyclicity.
move on to learn the parameters of the = CONSTRAINT-BASED ALGORITHMS suffer from the fact
causal network. that conditional independence tests are hard, and it

can sometimes require a lot of data to get accurate
test results.

)

possible completions of the PDAG

The two possible completions
induce the same set of conditional
independence and dependence
relations.

When only the database of cases is
available, we can not select which is the

_ true DAG, i.e., the one corresponding to
Figure 12.14  the underlying process. w

Figure 12.16 W

Figure 12.17
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Abstract
A necessary step in the development of artificial intelligence is to enable a machine to represent how the world works, building
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om data. This structure a good trade-off between expressive power and querying efficiency.
Bayesian nuworks have proven to be an effective and \Ll\dlllL tool for the task at hand. They have been applied to modeling
knowledge in a variety of fields. ranging from bioinformatics to law. from image processing to economic risk analysis. A
crucial aspect is learning the dependency graph of a Bayesian network from data. This task, called structure learning. is
NP-hard and is the subject of intense, cutting-edge research. In short. it can be thought of as choosing one graph over the
many candidates, grounding our reasoning over a collection of samples of the distribution generating the data. The number
of possible graphs increases very quickly at the increase in the number of variables. Searching in this space, and selecting a
graph over the others, becomes quickly burdensome. In this survey, we review the most relevant structure learning algorithms
that have been proposed in the literature. We classify them according to the approach they follow for solving the problem and
we also show alternatives for handling missing data and continuous variable. An extensive review of existing software tools
is also given.
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