

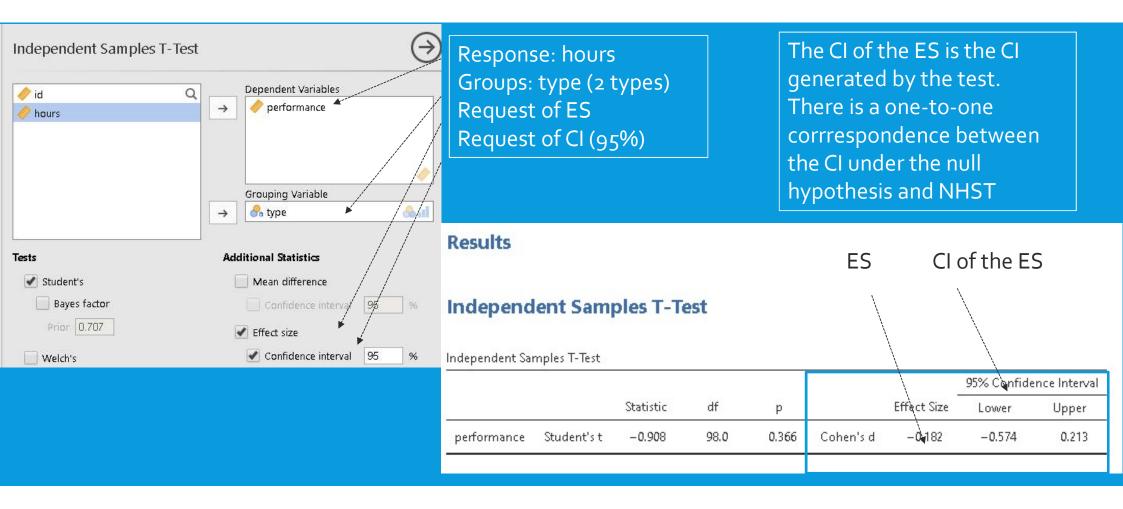
httpswww.vox.comfuture-perfect21504366science-replication-crisis-peerreview-statisticsfbclid=IwAR3IIJXfXBVwFWaE5aw4RXHKY

ES, CI AND POWER ANALYSIS IN JAMOVI A QUICK 360° DEGREES EXCURSUS

Ph.D Programme in Psychology, Linguistics and Cognitive Neurosciences

A PREMISE: HOW TO INSTALL NEW MODULES IN JAMOVI

NHST : ES, CI AND POWER FOR SAMPLE SIZE PLANNING


- In our lesson we saw the NHST (Neyman-Pearson approach) and the possible decisions. We saw that we need to fix the significance level (minimum 0.05) and the power (minimum 0.80).
- To meet these requirements, we need sample size planning.
- According to the America Psychological Association (Apa), the types of sample size planning are:
 - 1. Power analysis, when the existence of an effect is at stake;
 - 2. Accuracy in parameter estimation (AIPE) , when the magnitude of of an effect is the primary aim.
- Here we tackle:
 - 1. The power analytic perspective in sample size planning.
 - 2. Estimation of the ES.

both in Jamovi, in order to have a homogeneous learning setting. We will still need G*Power,, and R, but becoming familiar with statistical concept within a single setting first allows us to go further.

EFFECT SIZE WITH RELATIVE CI

- Some procedures (i.e. specific analysis) allow us to compute ES.
- A dedicated module to CI for the 'new statistics', ESC, linked to the volume by Geoff Cummings::
 - Understanding The New Statistics: Effect Sizes, Confidence Intervals, and Meta-Analysis
 - Introduction to the New Statistics
- For introductory documentation see: <u>https://thenewstatistics.com/itns/esci/jesci/</u>. The link provides the correspondence between standard statistical terminology and the author's one.
- The module is in development

T-TEST ON DIFFERENCE IN MEANS BETWEEN TWO INDEPENDENT GROUPS. ES AND CI ARE INCLUDED

ESCI MODULE: T-TEST ON DIFFERENCE IN MEANS BETWEEN TWO INDEPENDENT GROUPS

Estimate Independent Mean Difference	
Analyze raw data Enter summary data Work With Raw Data	Response: hours
Image: wide wide wide wide wide wide wide wide	Groups: type (2 types)
→ Catype	We can fix the confidence level for CI
Switch comparison order	Beware: the analysis option is homoscedasticity
 > Work With Summary Data Analysis options Confidence level 95 Assume equal variances 	Out of curiosity, in the t-test a research design? Yes, it is a one way Anova, with a factor with a values
> Region of Practical Equivalence (ROPE) Options > Graph Options	factor with 2 values. Ph.D. School - University of Milano-Bicocca Prof. Franca Crippa

T-TEST ON DIFFERENCE IN MEANS BETWEEN TWO INDEPENDENT GROUPS

Estimate Independent Mean Difference Compare Two Means 95 % CI Condition M Lower Upper s N Group P 50 P 7.300 6.34 8.258 3.41 Group A 50 8.000 A 7.15 8.851 3.03 -0.700-1.980.581 3.23 100 Difference Notes CIs are at the 95 % level. This comparison was made on unpaired data. Equal variance was assumed. s in the row for the difference is the pooled standard deviation Standardized Mean Difference

d_{unbiased} = -0.22 95% CI [-0.62, 0.18] Note that the standardized effect size is d_unbiased because the denominator used was SDpooled which had a value of 3.23 The standardized effect size has been corrected for bias. The bias-corrected version of Cohen's d is sometimes also (confusingly) called Hedges' g.

Decision Making

t-table

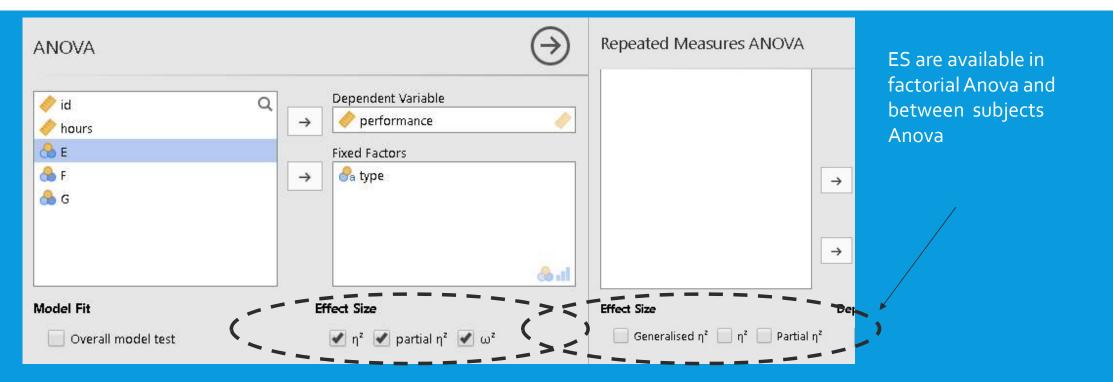
ES d=- 0.22 check Cohen's thresholds

- CI for the ES: [-0.68; 0.18]

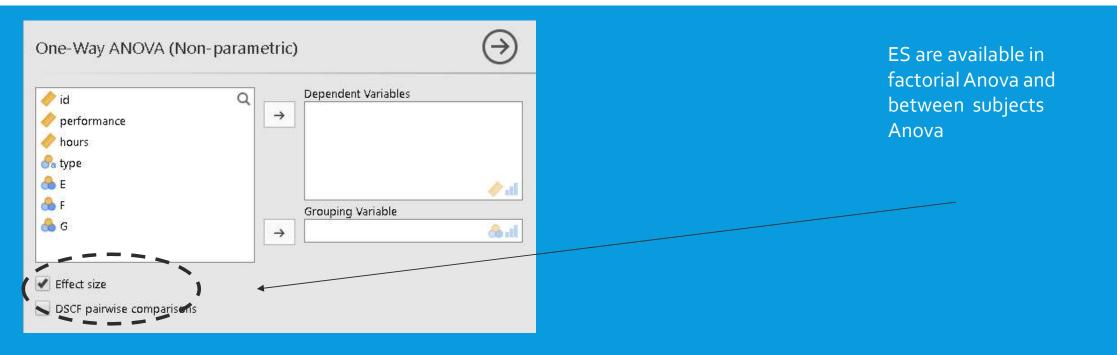
Is the CI informative?

The smaller the CI, the more informative

Why? The likely value of the ES is included in a short range


If we estimate all possible CI, 95% will include its true value, in a small range

ES AND CI FOR ALL TYPES OF T-TEST


The same requests are available for all types of t-tests

- 1. Single sample
- 2. Indipendent samples
- 3. Paired samples

ES IN THE GLM MODEL: ANOVA BETWEEN AND WITHIN

ES IN NON PARAMETRIC ANOVA

ES IN MODULE GAMLJ - GENERAL LINEAR MODEL ANOVA – REGRESSION – ANCOVA

General Linear Model	(\rightarrow)
🤌 id 🔍 🔍	Dependent Variable
	→ 🔷 performance 🔶 📶
	Factors
	→ 😪 type
	8
	Covariates
	→ <pre></pre>
Effect Size	Confidence Intervals
\checkmark β \checkmark η ^z \checkmark partial η ^z \checkmark ω ^z	Confidence intervals Interval 95 %

ES for the model and for single covatiates/factors

	F	р	η²	η²p	ω ^z
Model	35.06	< .001	0.4196	0.420	0.405
type	4.31	0.041	0.0258	0.043	0.020
hours	68.74	< .001	0.4113	0.415	0.403
Residuals					
Total					

🥠	Descriptive Stats
58	
96	Descriptives
50	Means
57	
38	Estimate Mean
38	Estimate Independent Mean Difference
53	
57	Estimate Paired Mean Difference
71	Proportions
54	
58	Estimate Proportion
00	Estimate Proportion Difference
13	Estimate Proportion Difference
50	Correlations
17	
16	Estimate Correlation
58	Estimate Correlation Difference
54	
25	Complex Designs
39	
38	Estimate Ind. Groups Contrasts
00	Estimate Ind. 2x2
34	
00	Meta-Aralysis
50	Meta-Analysis - Raw Scores
Deleted	Meta-Analysis - Cohen d

SOME CI ESTIMATION IN MODULE ESCI

- The modul ESCI enables one to estimate ES and their CI for other types pf analysis, as it can be seen in the drop down menu.
- This methodological perspective is useful in the replication 'stance'
- Reference from the author is available at the link:<u>https://thenewstatistics.com/itns/esci/jesci/</u>

ES IN MODULE UFS

• Another module, UFS, computes CI for some statistical measures, including ES.

Effect Size Confidence Interval: Cohens's d	Effect Size Confidence Interval: Cohens's d
Cohen's d: 0.5	A Cohen's d of 0.5 computed from a sample of 128 datapoints has a 95% confidence interval of [0.15; 0.85].
Sample size: 128	
Confidence level: 95 %	20
	15-
	4 ge 22 ge 2
	0.5-
	ที่ คามปรีเทยงา – บทเงย์โรเช งา พแลกง-ธเตยแล a.a. 2 <mark>019/20</mark>

ACCURACY FOR ES AND SAMPLE SIZE IN MODULE UFS

 Given the accuracy of the ES (i.e. the width of its CI), we can also obtain the sample size needed

Sample	e size for accuracy: d	Sample size for accuracy: d
Cohen's d:	0.5	To estimate a Cohen's d of 0.5 with a 95% confidence interval with a maximum half-width of 0.1 or less, at least 1585 participants are required.
Half-width:	: 0.1	Plot
Confidence	e level: 95 %	\land
		6
		den stit
		ð
		2-
		רחש כרוטטו – טחועפוזוגץ טראווומווט-שובטבנגא a.a. 2019/20 14

POWER ANALYSIS IN JAMOVI FOR T-TESTS

A module in Jamovi is devoted to power analysis, even if restricted to t-tests. As seen during the lesson, we can refer to G*Power for a user friendly packace for GLM and to the R environment for a very wide of power analysis types., always in the context of open access software.

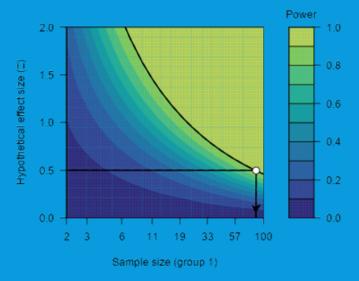
Out of curiosity, this link shows the use of power analysis in Jamovi and then moves to R : https://jdleongomez.info/en/post /power/

Independent Samples T-	Test	
Calculate N per group ▼		
Minimally-interesting effect size (δ)	0.5	
Minimum desired power	0.9	
N for group 1	20	
Relative size of group 2 to group 1	1	
α (type I error rate)	0.05	
Tails	two-tailed 🔹	
Plots		
🖌 Power contour plot		
Power curve by effect size		
Power curve by N		
Power demonstration		
Additional Options		
Explanations text		

OUTPUT FOR POWER ANALYSIS IN JAMOVI/1

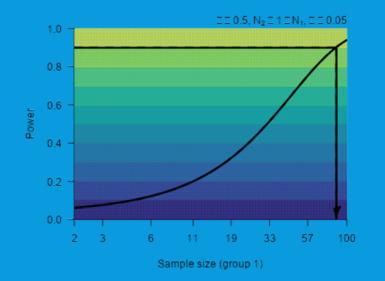
A Priori	Power	Analysis

		U	ser Defined	
N ₁	Nz	Effect Size	Power	α
86	86	0.500	0.900	0.0500

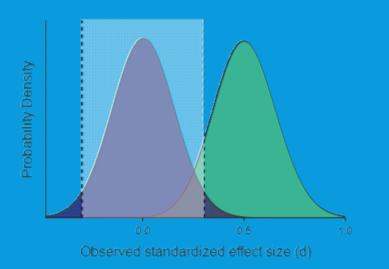

We would need a sample size of 86 in each group to reliably (with probability greater than 0.9) detect an effect size of $\delta \ge 0.5$, assuming a two-sided criterion for detection that allows for a maximum Type I error rate of a=0.05.

To evaluate the design specified in the table, we can consider how sensitive it is to true effects of increasing sizes; that is, are we likely to correctly conclude that $|\delta| > 0$ when the effect size is large enough to care about?

Power by Effect Size


True effect size	Power to detect	Description
0 < d = 0.301	≤50%	Likely miss
0.301 < d = 0.430	50% - 80%	Good chance of missing
0.430 < d = 0.553	80% - 95%	Probably detect
d = 0.553	≥95%	Almost surely detect

Power Contour



OUTPUT FOR POWER ANALYSIS IN JAMOVI/2

Power Curve by N

Results Power Demonstration

