Chapter 6 - Introduction to thermonuclear fusion

1 Tunnel effect and fusion cross section

The effective potential seen by two particles 1 and 2 for a fusion reaction in the centre of mass frame can be represented as in figure 1. The two particles have the charge $+Z_1e$ and $+Z_2e$, respectively, a reduced mass μ and a relative kinetic energy ϵ . The nucleus has a radius $r_n = r_{n1} + r_{n2}$ and r_{tp} indicates the classical turning point. The potential well of the nucleus has a depth $-U_0$ and the Coulomb barrier has a maximum height of V_b .

Classically, a particle with relative kinetic energy ϵ cannot overcome the Coloumb barrier if $\epsilon < V_b$. Quantum mechanics however predicts that the particle can overcome the barrier even when $\epsilon < V_b$ due to tunneling and can thus undergo a fusion reaction also in this case.

The solution of the Schrödinger equation for this problem shows that the effective potential seen by the wave component that carries the angular momentum $\hbar\sqrt{l(l+1)}$ is

$$V_{eff,l}(r) = V(r) + \frac{\hbar^2 l(l+1)}{2\mu r^2}$$
(1)

Figure 1: Effective potential in the centre of mass frame seen by a charged particle with relative kinetic energy ϵ undergoing a fusion reaction.

where V(r) is the potential of figure 1. The angular momentum components of the wave that have $l \neq 0$ experience a progressively increased potential barrier due to the centrifugal term $\frac{\hbar^2 l(l+1)}{2\mu r^2}$ and have a smaller probability to undergo a fusion reaction. We can thus assume that, to a first extent, only the l = 0component contributes to the reaction, so that $V_{eff,l}(r) = V(r)$; in particular, when $r > r_n$, V(r) is the repulsive Coulomb potential between two charges $+Z_1e$ and $+Z_2e$.

Under these conditions, the WKB theory of quantum mechanics predicts that the tunneling probability P is

$$P \approx \exp\left(-\frac{2}{\hbar} \int_{r_n}^{r_{tp}} \sqrt{2\mu \left(V(r) - \epsilon\right)} dr\right) \tag{2}$$

Evaluate P and show that, if $r_{tp} >> r_n$

$$P \approx \exp\left(-\sqrt{\frac{\epsilon_G}{\epsilon}}\right) \tag{3}$$

 $\epsilon_G = (\pi \alpha_f Z_1 Z_2)^2 2mc^2$ is the "Gamow energy" and $\alpha_f = \frac{e^2}{4\pi\epsilon_0 \hbar c}$ is the fine structure constant ¹.

2 Some estimates for fusion power plants

A fusion power plant operates at the temperature T=15 keV, when the $t(d, n)\alpha$ reactivity is $\approx 2.7 \cdot 10^{-22} \text{ m}^3/\text{s}$ so to produce 1 GW of thermal fusion power. If the plasma has an electron density $n = 10^{20} \text{ m}^{-3}$

- a) How many reactions per second need to occur?
- b) What is the plasma volume that allows obtaining this amount of reactions per second?
- c) Considering that deuterium has an isotopic abundance of 0.015%, how many litres of water have to be used to produce all the deuterium in the power plant?
- d) What is the fraction per second of deuterium that is burnt due to the fusion reactions?

¹The following recursive formula can be useful when evaluating the integral for *P*. If $J_n = \int \frac{dt}{(1+t^2)^n}$, then

$$J_{n+1} = \frac{1}{2n} \frac{t}{(1+t^2)^n} + \frac{2n-1}{2n} J_n \tag{4}$$