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Preface to the First Edition

Supramolecular chemistry is one of the most popular and fastest growing areas of experimental chemistry 
and it seems set to remain that way for the foreseeable future. Everybody’s doing it! Part of the reason for 
this is that supramolecular science is aesthetically appealing, readily visualised and lends itself to the trans-
lation of everyday concepts to the molecular level. It might also be fair to say that supramolecular chemistry 
is a very greedy topic. It is highly interdisciplinary in nature and, as a result, attracts not just chemists but 
biochemists, biologists, environmental scientists, engineers, physicists, theoreticians, mathematicians and 
a whole host of other researchers. These supramolecular scientists are people who might be described as 
goal-orientated in that they cross the traditional boundaries of their discipline in order to address specifi c 
objectives. It is this breadth that gives supramolecular chemistry its wide allure, and sometimes leads to 
grumbling that ‘everything seems to be supramolecular these days’. This situation is aided and abetted by 
one of the appealing but casual defi nitions of supramolecular chemistry as ‘chemistry beyond the molecule’, 
which means that the chemist is at liberty to study pretty much any kind of interaction he or she pleases 
– except some covalent ones. The situation is rather reminiscent of the hubris of some inorganic chemists in 
jokingly defi ning that fi eld as ‘the chemistry of all of the elements except for some of that of carbon’.

The funny thing about supramolecular chemistry is that despite all of this interest in doing it, there 
aren’t that many people who will actually teach it to you. Most of today’s practitioners in the fi eld, 
including the present authors, come from backgrounds in other disciplines and are often self-taught. 
Indeed, some people seem as if they’re making it up as they go along! As university academics, we 
have both set up undergraduate and postgraduate courses in supramolecular chemistry in our respec-
tive institutions and have found that there are a lot of people wanting to learn about the area. Unfortu-
nately there is rather little material from which to teach them, except for the highly extensive research 
literature with all its jargon and fashions. The original idea for this book came from a conversation 
between us in Missouri in the summer of 1995. Very few courses in ‘supramol,’ existed at the time, but 
it was clear that they would soon be increasingly common. It was equally clear that, with the excep-
tion of Fritz Vögtle’s 1991 research-level book, there was nothing by way of a teaching textbook of the 
subject out there. We drew up a contents list, but there the idea sat until 1997. Everybody we talked to 
said there was a real need for such a book; some had even been asked to write one. It fi nally took the 
persuasive powers of Andy Slade from Wiley to bring the book to fruition over the summers of 1998 
and 1999. We hope that now we have written a general introductory text for supramolecular chemistry, 
many more courses at both undergraduate and postgraduate level will develop in the area and it will 
become a full member of the pantheon of chemical education. It is also delightful to note that Paul 
Beer, Phil Gale and David Smith have recently written a short primer on supramolecular chemistry, 
which we hope will be complementary to this work.

In writing this book we have been very mindful of the working title of this book, which contained the 
words ‘an introduction’. We have tried to mention all of the key systems and to explain in detail all of the 
jargon, nomenclature and concepts pertaining to the fi eld. We have not tried to offer any kind of compre-
hensive literature review (for which purpose JLA has co-edited the 11 volumes of Comprehensive Supra-
molecular Chemistry). What errors there are will be, in the main, ones of over-simplifi cation in an attempt 
to make accessible many very complicated, and often still rapidly evolving, topics. To the many fi ne work-
ers whose insights we may have trivialised we offer humble apology. We hope that the overwhelming ad-
vantages will be the excitement of the reader who can learn about any or all aspects of this hydra-like fi eld 
of chemistry either by a tobogganing plunge from cover to cover, or in convenient, bite-sized chunks.Co

py
ri
gh
t 
©
 2
00
9.
 W
il
ey
. 
Al
l 
ri
gh
ts
 r
es
er
ve
d.
 M
ay
 n
ot
 b
e 
re
pr
od
uc
ed
 i
n 
an
y 
fo
rm
 w
it
ho
ut
 p
er
mi
ss
io
n 
fr
om
 t
he
 p
ub
li
sh
er
, 
ex
ce
pt
 f
ai
r 
us
es
 p
er
mi
tt
ed
 u
nd
er
 U
.S
. 
or
 a
pp
li
ca
bl
e

co
py
ri
gh
t 
la
w.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 2/15/2018 2:47 PM via UNIVERSITA DEGLI STUDI DI MILANO -
BICOCCA
AN: 266018 ; Steed, Jonathan W., Atwood, J. L..; Supramolecular Chemistry
Account: s8507023



Co
py
ri
gh
t 
©
 2
00
9.
 W
il
ey
. 
Al
l 
ri
gh
ts
 r
es
er
ve
d.
 M
ay
 n
ot
 b
e 
re
pr
od
uc
ed
 i
n 
an
y 
fo
rm
 w
it
ho
ut
 p
er
mi
ss
io
n 
fr
om
 t
he
 p
ub
li
sh
er
, 
ex
ce
pt
 f
ai
r 
us
es
 p
er
mi
tt
ed
 u
nd
er
 U
.S
. 
or
 a
pp
li
ca
bl
e

co
py
ri
gh
t 
la
w.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 2/15/2018 2:47 PM via UNIVERSITA DEGLI STUDI DI MILANO -
BICOCCA
AN: 266018 ; Steed, Jonathan W., Atwood, J. L..; Supramolecular Chemistry
Account: s8507023



Preface to the Second Edition

Since the publication of the fi rst edition of Supramolecular Chemistry in 2000 the fi eld has continued 
to grow at a tremendous pace both in depth of understanding and in the breadth of topics addressed by 
supramolecular chemists. These developments have been made possible by the creativity and technical 
skill of the international community and by continuing advances in instrumentation and in the range 
of techniques available. This tremendous activity has been accompanied by a number of very good 
books particularly at more advanced levels on various aspects of the fi eld, including a two-volume 
encyclopaedia that we edited. 

In this book we have tried to sample the entire fi eld, bringing together topical research and clear 
explanations of fundamentals and techniques in a way that is accessible to fi nal year undergraduates 
in the chemical sciences, all the way to experienced researchers. We have been very gratifi ed by the 
reception afforded the fi rst edition and it is particularly pleasing to see that the book is now available 
in Russian and Chinese language editions. For a short while we attempted to keep the book current by 
updating our system of key references on a web site; however it has become abundantly clear that a ma-
jor overhaul of the book in the form of a refreshed and extended second edition is necessary. We see the 
strengths of the book as its broad coverage, the care we have tried to take to explain terms and concepts 
as they are encountered, and perhaps a little of our own personal interpretation and enthusiasm for the 
fi eld that we see evolving through our own research and extensive contact with colleagues around the 
world. These strengths we have tried to build upon in this new edition while at the same time amelio-
rating some of the uneven coverage and oversimplifi cations of which we may have been guilty. 

The original intent of this book was to serve as a concise introduction to the fi eld of supramolecular 
chemistry. One of us (JWS) has since co-authored a short companion book Core Concepts in Supramo-
lecular Chemistry and Nanochemistry that fulfi ls that role. We have therefore taken the opportunity to 
increase the depth and breadth of the coverage of this longer book to make it suitable for, and hopefully 
useful to, those involved at all stages in the fi eld. Undergraduates encountering Supramolecular Chem-
istry for the fi rst time will fi nd that we have included careful explanations of core concepts building on 
the basics of synthetic, coordination and physical organic chemistry. At the same time we hope that se-
nior colleagues will fi nd the frontiers of the discipline well represented with plenty of recent literature. 
We have retained the system of key references based on the secondary literature that feedback indicates 
many people found useful, but we have also extended the scope of primary literature references for 
those wishing to undertake more in-depth reading around the subjects covered. In particular we have 
tried to take the long view both in temporal and length scales, showing how ‘chemistry beyond the 
molecule’ continues to evolve naturally and seamlessly into nanochemistry and molecular materials 
chemistry. 

We have added a great deal to the book in this new edition including new chapters and subjects (e.g. 
supramolecular polymers, microfabrication, nanoparticles, chemical emergence, metal-organic frame-
works, ion pairs, gels, ionic liquids, supramolecular catalysis, molecular electronics, polymorphism, 
gas sorption reactions, anion-π interactions… the list of exciting new science is formidable). We have 
also extensively updated stories and topics that are a part of ongoing research with new results pub-
lished since 2000. The book retains some of the ‘classics’ which no less striking and informative for 
being a little long in the tooth these days. As before we apologise to the many fi ne colleagues whose 
work we did not include. The objective of the book is to cover the scope of the fi eld with interesting and 
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xxvi Preface

representative examples of key systems but we cannot be comprehensive. We feel this second edition 
is more complete and balanced than the fi rst edition and we have really enjoyed putting it together. We 
hope you enjoy it too.

Jonathan W. Steed, Durham, UK
  Jerry L. Atwood, Columbia, Missouri, USA
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About the Front Cover

The front cover shows two views of the Lycurgus cup – a 4th century Roman chalice made of dichroic 
glass impregnated with nanoparticles made of gold-silver alloy. When viewed under normal lighting 
conditions the cup appears green but if light is shone through the glass the nanoparticles impart a 
gorgeous crimson colour. The chemistry of metallic nanoparticles remains a highly topical fi eld in 
supramolecular chemistry. (Images courtesy of the British Museum, London, UK).
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Website

Powerpoint slides of all fi gures from this book, along with the answers to the problems, can be found 
at http://www.wiley.com/go/steed
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Concepts
‘Mankind is divisible into two great classes: hosts and guests.’

Max Beerbohm (b. 1872), Hosts and Guests

1
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 Concepts2

Supramolecular Chemistry, 2nd edition J. W. Steed and J. L. Atwood
© 2009 John Wiley & Sons, Ltd    

Defi nition and Development of Supramolecular Chemistry

Lehn, J.-M., ‘Supramolecular chemistry and self-assembly special feature: Toward complex matter: Supramolecular 
chemistry and self-organization’, Proc. Nat. Acad. Sci. USA, 2002, 99, 4763–4768.

What is Supramolecular Chemistry?

Supramolecular chemistry has been defi ned by one of its leading proponents, Jean-Marie Lehn, who 
won the Nobel Prize for his work in the area in 1987, as the ‘chemistry of molecular assemblies and of 
the intermolecular bond’. More colloquially this may be expressed as ‘chemistry beyond the molecule’. 
Other defi nitions include phrases such as ‘the chemistry of the non-covalent bond’ and ‘non-molecular 
chemistry’. Originally supramolecular chemistry was defi ned in terms of the non-covalent interaction 
between a ‘host’ and a ‘guest’ molecule as highlighted in Figure 1.1, which illustrates the relationship 
between molecular and supramolecular chemistry in terms of both structures and function.

These descriptions, while helpful, are by their nature noncomprehensive and there are many 
exceptions if such defi nitions are taken too literally. The problem may be linked to the defi nition 
of organometallic chemistry as ‘the chemistry of compounds with metal-to-carbon bonds’. This 
immediately rules out Wilkinson’s compound, RhCl(PPh3)3, for example, which is one of the most 
important industrial catalysts for organometallic transformations known in the fi eld. Indeed, it is often 
the objectives and thought processes of the chemist undertaking the work, as much as the work itself, 
which determine its fi eld. Work in modern supramolecular chemistry encompasses not just host-guest 
systems but also molecular devices and machines, molecular recognition, so called ‘self-processes’ 

1.11.1

1.1.11.1.1

Figure 1.1 Comparison between the scope of molecular and supramolecular chemistry according to 
Lehn.1

Co
py
ri
gh
t 
©
 2
00
9.
 W
il
ey
. 
Al
l 
ri
gh
ts
 r
es
er
ve
d.
 M
ay
 n
ot
 b
e 
re
pr
od
uc
ed
 i
n 
an
y 
fo
rm
 w
it
ho
ut
 p
er
mi
ss
io
n 
fr
om
 t
he
 p
ub
li
sh
er
, 
ex
ce
pt
 f
ai
r 
us
es
 p
er
mi
tt
ed
 u
nd
er
 U
.S
. 
or
 a
pp
li
ca
bl
e

co
py
ri
gh
t 
la
w.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 2/15/2018 2:47 PM via UNIVERSITA DEGLI STUDI DI MILANO -
BICOCCA
AN: 266018 ; Steed, Jonathan W., Atwood, J. L..; Supramolecular Chemistry
Account: s8507023



3

such as self-assembly and self-organisation and has interfaces with the emergence of complex matter 
and nanochemistry (Section 1.10). The rapid expansion in supramolecular chemistry over the past 
25 years has resulted in an enormous diversity of chemical systems, both designed and accidentally 
stumbled upon, which may lay some claim, either in concept, origin or nature, to being supramo-
lecular. In particular, workers in the fi eld of supramolecular photochemistry have chosen to adopt 
a rather different defi nition of a supramolecular compound as a group of molecular components 
that contribute properties that each component possesses individually to the whole assembly (cova-
lent or non-covalent). Thus an entirely covalent molecule comprising, for example, a chromophore 
(light-absorbing moiety), spacer and redox centre might be thought of as supramolecular because 
the chromophore and redox centre are able to absorb light, or change oxidation state, whether they 
form part of the supermolecule or not (see Chapter 11). Similarly, much recent work has focused 
on the development of self-assembling synthetic pathways towards large molecules or molecular 
arrays. These systems often self-assemble using a variety of interactions, some of which are clearly 
non-covalent (e.g. hydrogen bonds) and some of which possess a signifi cant covalent component 
(e.g. metal–ligand interactions, see Chapter 10). Ultimately these self-assembly reactions and the 
resulting self-organisation of the system rely solely on the intrinsic information contained in the 
structure of the molecular components and hence there is an increasing trend towards the study and 
manipulation of intrinsic ‘molecular information’. This shift in emphasis is nothing more than a 
healthy growth of the fi eld from its roots in host–guest chemistry to encompass and inform a much 
broader range of concepts and activities. 

Host–Guest Chemistry

Kyba, E. P., Helgeson, R. C., Madan, K., Gokel, G. W., Tarnowski, T. L., Moore, S. S. and Cram, D. J., ‘Host-guest 
complexation .1. Concept and illustration’, J. Am. Chem. Soc., 1977, 99, 2564–2571.

If we regard supramolecular chemistry in its simplest sense as involving some kind of (non-covalent) 
binding or complexation event, we must immediately defi ne what is doing the binding. In this con-
text we generally consider a molecule (a ‘host’) binding another molecule (a ‘guest’) to produce a 
‘host–guest’ complex or supermolecule. Commonly the host is a large molecule or aggregate such as 
an enzyme or synthetic cyclic compound possessing a sizeable, central hole or cavity. The guest may 
be a monatomic cation, a simple inorganic anion, an ion pair or a more sophisticated molecule such as 
a hormone, pheromone or neurotransmitter. More formally, the host is defi ned as the molecular entity 
possessing convergent binding sites (e.g. Lewis basic donor atoms, hydrogen bond donors etc.). The 
guest possesses divergent binding sites (e.g. a spherical, Lewis acidic metal cation or hydrogen bond 
acceptor halide anion). In turn a binding site is defi ned as a region of the host or guest capable of tak-
ing part in a non-covalent interaction. The host–guest relationship has been defi ned by Donald Cram 
(another Supramolecular Chemistry Nobel Laureate)2 as follows:

Complexes are composed of two or more molecules or ions held together in unique structural relationships 
by electrostatic forces other than those of full covalent bonds … molecular complexes are usually held 
together by hydrogen bonding, by ion pairing, by π-acid to π-base interactions, by metal-to-ligand binding, 
by van der Waals attractive forces, by solvent reorganising, and by partially made and broken covalent 
bonds (transition states)… High structural organisation is usually produced only through multiple binding 
sites… A highly structured molecular complex is composed of at least one host and one guest component… 
A host–guest relationship involves a complementary stereoelectronic arrangement of binding sites in host 
and guest… The host component is defi ned as an organic molecule or ion whose binding sites converge in 
the complex… The guest component as any molecule or ion whose binding sites diverge in the complex…

1.1.21.1.2

Defi nition and Development of Supramolecular Chemistry 
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 Concepts4

This description might well be generalised to remove the word ‘organic’, since more recent work 
has revealed a wealth of inorganic hosts, such as zeolites (Section 9.2) and polyoxometallates 
(Section 9.5.2), or mixed metal-organic coordination compounds (e.g. Section 5.2), which perform 
similar functions and may be thought of under the same umbrella. The host–guest binding event may 
be likened to catching a ball in the hand. The hand, acting as the host, envelops the ball providing a 
physical (steric) barrier to dropping it (disassociation). This analogy falls down at the electronic level, 
however, since there is no real attractive force between hand and ball. Host and guest molecules and 
ions usually experience an attractive force between them and hence a stabilising binding free energy. 
The analogy does serve to introduce the term ‘inclusion chemistry’, however (the ball is included in the 
hand), hence the inclusion of one molecular in another.

One key division within supramolecular host–guest chemistry in its general sense relates to the 
stability of a host–guest complex in solution. The fi eld of clathrate, or more generally, inclusion, 
chemistry, relates to hosts that are often only stable in the solid (crystalline) state and disassociate on 
dissolution in a solvent. Gas hydrates, urea clathrates and a wide variety of crystalline solvates (Chapter 7) 
fall into this category. On the other hand, molecular hosts for ions such as the crown ethers, cryptands 
and spherands (Chapter 3), or hosts for neutral molecules such as the carcerands and cryptophanes 
(Chapter 6), display signifi cant binding both in the solid state and in solution. We should also note that 
there exist purely liquid-phase phenomena, such as liquid crystals and liquid clathrates, that have no 
direct solid-state analogies (Chapter 13).

Development

Supramolecular chemistry, as it is now defi ned, is a young discipline dating back to the late 1960s 
and early 1970s. However, its concepts and roots, and indeed many simple (and not-so-simple) 
supramolecular chemical systems, may be traced back almost to the beginnings of modern chemistry 
itself. An illustrative (although necessarily subjective and non-comprehensive) chronology is given 
in Table 1.1. Much of supramolecular chemistry has sprung from developments in macrocyclic 
chemistry in the mid-to-late 1960s, particularly the development of macrocyclic ligands for metal 
cations. Four systems of fundamental importance may be identifi ed, prepared by the groups of 
Curtis, Busch, Jäger and Pedersen, three of which used the Schiff base condensation reaction of an 
aldehyde with an amine to give an imine (Section 3.10.6). Conceptually, these systems may be seen 
as a development of naturally occurring macrocycles (ionophores, hemes, porphyrins etc.). To these 
may be added the work of Donald Cram on macrocyclic cyclophanes (which dates back to the early 
1950s) and, subsequently, on spherands and carcerands, and the tremendous contribution by Jean-
Marie Lehn who prepared the cryptands in the late 1960s and has since gone on to shape many of 
the recent developments in the fi eld.

N NH

NNH

N
N N

N
H

N
H

NH N

NNH

R'

COR
R'

COR

O
O

O

O
O

O

Fe2+
Ni2+ Ni2+

K+

Pedersen 1967Jäger 1964Busch 1964Curtis 1961

1.1 1.2 1.3 1.4

1.1.31.1.3

Co
py
ri
gh
t 
©
 2
00
9.
 W
il
ey
. 
Al
l 
ri
gh
ts
 r
es
er
ve
d.
 M
ay
 n
ot
 b
e 
re
pr
od
uc
ed
 i
n 
an
y 
fo
rm
 w
it
ho
ut
 p
er
mi
ss
io
n 
fr
om
 t
he
 p
ub
li
sh
er
, 
ex
ce
pt
 f
ai
r 
us
es
 p
er
mi
tt
ed
 u
nd
er
 U
.S
. 
or
 a
pp
li
ca
bl
e

co
py
ri
gh
t 
la
w.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 2/15/2018 2:47 PM via UNIVERSITA DEGLI STUDI DI MILANO -
BICOCCA
AN: 266018 ; Steed, Jonathan W., Atwood, J. L..; Supramolecular Chemistry
Account: s8507023



5

Table 1.1 Timeline of supramolecular chemistry.

1810 – Sir Humphry Davy: discovery of chlorine hydrate

1823 – Michael Faraday: formula of chlorine hydrate

1841 – C. Schafhäutl: study of graphite intercalates

1849 – F. Wöhler: β-quinol H2S clathrate

1891 – Villiers and Hebd: cyclodextrin inclusion compounds

1893 – Alfred Werner: coordination chemistry

1894 – Emil Fischer: lock and key concept

1906 – Paul Ehrlich: introduction of the concept of a receptor

1937 –  K. L. Wolf: the term Übermoleküle is coined to describe organised entities arising from the association 
of coordinatively saturated species (e.g. the acetic acid dimer)

1939 –  Linus Pauling: hydrogen bonds are included in the groundbreaking book The Nature of the Chemical Bond

1940 – M. F. Bengen: urea channel inclusion compounds

1945 –  H. M. Powell: X-ray crystal structures of β-quinol inclusion compounds; the term ‘clathrate’ is 
introduced to describe compounds where one component is enclosed within the framework of another

1949 – Brown and Farthing: synthesis of [2.2]paracyclophane

1953 – Watson and Crick: structure of DNA

1956 – Dorothy Crowfoot Hodgkin: X-ray crystal structure of vitamin B12

1959 – Donald Cram: attempted synthesis of cyclophane charge transfer complexes with (NC)2C�C(CN)2 

1961 – N.F. Curtis: fi rst Schiff’s base macrocycle from acetone and ethylene diamine

1964 – Busch and Jäger: Schiff’s base macrocycles

1967 – Charles Pedersen: crown ethers

1968 – Park and Simmons: Katapinand anion hosts

1969 – Jean-Marie Lehn: synthesis of the fi rst cryptands

1969 – Jerry Atwood: liquid clathrates from alkyl aluminium salts

1969 – Ron Breslow: catalysis by cyclodextrins

1973 – Donald Cram: spherand hosts produced to test the importance of preorganisation

1978 –  Jean-Marie Lehn: introduction of the term ‘supramolecular chemistry’, defi ned as the ‘chemistry of 
molecular assemblies and of the intermolecular bond’

1979 – Gokel and Okahara: development of the lariat ethers as a subclass of host

1981 – Vögtle and Weber: podand hosts and development of nomenclature

1986 – A. P. de Silva: Fluorescent sensing of alkali metal ions by crown ether derivatives

1987 –  Award of the Nobel prize for Chemistry to Donald J. Cram, Jean-Marie Lehn and Charles J. Pedersen for 
their work in supramolecular chemistry

1996 –  Atwood, Davies, MacNicol & Vögtle: publication of Comprehensive Supramolecular Chemistry 
containing contributions from many key groups and summarising the development and state of the art

1996 –  Award of the Nobel prize for Chemistry to Kroto, Smalley and Curl for their work on the chemistry of 
the fullerenes

2003 –  Award of the Nobel prize for Chemistry to Peter Agre and Roderick MacKinnon for their discovery of 
water channels and the characterisation of cation and anion channels, respectively.

2004 – J. Fraser Stoddart: the fi rst discrete Borromean-linked molecule, a landmark in topological synthesis.

Defi nition and Development of Supramolecular Chemistry 
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 Concepts6

As it is practised today, supramolecular chemistry is one of the most vigorous and fast-growing fi elds of 
chemical endeavour. Its interdisciplinary nature has brought about wide-ranging collaborations between 
physicists, theorists and computational modellers, crystallographers, inorganic and solid-state chemists, 
synthetic organic chemists, biochemists and biologists. Within the past decade Supramolecular chemistry 
has fed into very exciting new research in nanotechnology and at the interface between the two lies the 
area of nanochemistry (Chapter 15). The aesthetically pleasing nature of supramolecular compounds and 
the direct links established between the visualisation, molecular modelling and practical experimental 
behaviour of hosts and their complexes has fuelled increasing enthusiasm in the area to the extent that it 
is now a full member of the pantheon of scientifi c disciplines. 

Classifi cation of Supramolecular Host–Guest Compounds

Vogtle, F., Supramolecular Chemistry, John Wiley & Sons, Ltd: Chichester, 1991.

One of the fi rst formal defi nitions of a supramolecular cage-like host–guest structure was proposed by 
H. M. Powell at the University of Oxford in 1948. He coined the term ‘clathrate’, which he defi ned as a 
kind of inclusion compound ‘in which two or more components are associated without ordinary chemi-
cal union, but through complete enclosure of one set of molecules in a suitable structure formed by an-
other’. In beginning to describe modern host–guest chemistry it is useful to divide host compounds into 
two major classes according to the relative topological relationship between guest and host. Cavitands 
may be described as hosts possessing permanent intramolecular cavities. This means that the cavity 
available for guest binding is an intrinsic molecular property of the host and exists both in solution and 
in the solid state. Conversely, clathrands are hosts with extramolecular cavities (the cavity essentially 
represents a gap between two or more host molecules) and is of relevance only in the crystalline or solid 
state. The host–guest aggregate formed by a cavitand is termed a cavitate, while clathrands form clath-
rates. We can also distinguish a third situation in which two molecules associate using non-covalent 
forces but do not fi t the descriptions of ‘host’ and ‘guest’. Under these circumstances we talk about the 
self-assembly of a mutually complementary pair (or series) of molecules. The distinction between the 
two host classes and self-assembly is illustrated schematically in Figure 1.2.

A further fundamental subdivision may be made on the basis of the forces between host and guest. If 
the host–guest aggregate is held together by primarily electrostatic interactions (including ion–dipole, 
dipole–dipole, hydrogen bonding etc.) the term complex is used. On the other hand, species held 
together by less specifi c (often weaker), non-directional interactions, such as hydrophobic, van der Waals 
or crystal close-packing effects, are referred to by the terms cavitate and clathrate. Some examples of 
the use of this nomenclature are shown in Table 1.2. The distinctions between these classes are blurred 
and often the word ‘complex’ is used to cover all of these phenomena. Within these broad classifi cations 
a number of intermediate types exist; indeed, it is often very much a matter of opinion as to exactly what 
the classifi cation of a given material might be. The nomenclature should act as a conceptual framework 
helping the chemist to describe and visualise the systems being handled, rather than a restrictive and 
rigid series of ‘phyla’.

Receptors, Coordination and the Lock and Key Analogy

Behr, J. P., The Lock and Key Principle. The State of the Art –100 Years on, John Wiley & Sons, Inc.: 
New York, 1994.

Host–guest (or receptor–substrate) chemistry is based upon three historical concepts:

1.21.2

1.31.3
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7

The recognition by Paul Ehrlich in 1906 that molecules do not act if they do not bind, ‘Corpora non 
agunt nisi fi xata’; in this way Erlich introduced the concept of a biological receptor.
The recognition in 1894 by Emil Fischer that binding must be selective, as part of the study of receptor–
substrate binding by enzymes. He described this by a lock and key image of steric fi t in which the 

1.

2.

Figure 1.2 Schematic illustrating the difference between a cavitate and a clathrate: (a) synthesis and 
conversion of a cavitand into a cavitate by inclusion of a guest into the cavity of the host molecule; 
(b) inclusion of guest molecules in cavities formed between the host molecules in the lattice resulting 
in conversion of a clathrand into a clathrate; (c) synthesis and self-assembly of a supramolecular 
aggregate that does not correspond to the classical host-guest description.

covalent

(a)

(b)

(c)

synthesis

covalent

synthesis

Larger Molecule
(Cavitate host)

Small Molecules Cavitand Host-Guest Complex
(solution and solid-state)

Larger moleculeSmall Molecules Self-Assembled Aggregate
(solution and solid-state)

Small molecular guest

   Spontaneous

Larger Molecule
(Clathrand Host)

Small Molecule (Guest)

Crystallization

Lattice Inclusion Host-Guest Complex or Clathrate
(solid-state only)

Table 1.2 Classifi cation of common host–guest compounds of neutral hosts.

Host Guest Interaction Class Example

Crown ether Metal cation Ion–dipole Complex (cavitand) [K�([18]crown–6)]
Spherand Alkyl ammonium 

cation
Hydrogen 

bonding
Complex (cavitand) Spherand ⋅ (CH3NH3

�)

Cyclodextrin Organic molecule Hydrophobic/
van der Waals

Cavitate (α–cyclodextrin)⋅
( p–hydroxybenzoic acid)

Water Organic molecule, 
halogen etc.

Van der Waals/
crystal packing

Clathrate (H2O)6 ⋅ (CH4)

Calixarene Organic molecule Van der Waals/
crystal packing

Cavitate ( p–t–butylcalix[4]arene) ⋅ 
(toluene)

Cyclotriveratrylene 
(CTV)

Organic molecule Van der Waals/
crystal packing

Clathrate (CTV) ⋅ 0.5(acetone)

Receptors, Coordination and the Lock and Key Analogy 
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 Concepts8

guest has a geometric size or shape complementarity to the receptor or host (Figure 1.3a). This 
concept laid the basis for molecular recognition, the discrimination by a host between a number of 
different guests.
The fact that selective binding must involve attraction or mutual affi nity between host and guest. 
This is, in effect, a generalisation of Alfred Werner’s 1893 theory of coordination chemistry, in 
which metal ions are coordinated by a regular polyhedron of ligands binding by dative bonds.

These three concepts arose essentially independently of one another and it was to be many years 
before the various disciplines in which they were born grew together to give birth to the highly inter-
disciplinary fi eld of supramolecular chemistry. Ehrlich, for example, was working on the treatment of a 
range of infectious diseases. As part of his work he noticed that the dye methylene blue has a surprising 
affi nity for some living cells, staining them an intense blue (his tutor Robert Koch had used methylene 
blue (1.5) to discover the tubercle bacillus, and Ehrlich had a ready supply of this synthetic dye from 
Farbwerke Hoechst, who had been manufacturing it since 1885). ‘If only certain cells are coloured,’ 
reasoned Ehrlich, ‘then may there not be dyestuffs which colour only the carriers of illnesses and at the 
same time destroy them without attacking the body’s own cells?’ Ehrlich eventually went on to develop 
the arsenic-based anti-syphilis drug Salvarsan (arsphenamine, 1.6) in 1910,3 one of the most effective 
drugs known for that disease. In the process he became the founder of modern chemotherapy.

N

S
+

N

Me

Me
N

Me

Me

As *OH

NH2

nCl-

methylene blue
Salvarsan (arsphenamine)
n = typically 3 or 5

1.5 1.6

The marrying of the fi elds of coordination chemistry, chemotherapy and enzymology was fi nally 
spurred on by the advent of modern instrumental and synthetic techniques, and not least by the 
dramatic developments in organic synthesis, which was born as a discipline in itself in 1828 with 
Friedrich Wöhler’s synthesis of urea from ammonium cyanate. In the course of the development of 
supramolecular chemistry, enormous progress has been made on quantifying the details of receptors 
with an affi nity for guests which fi t inside them. The lock and key image especially has suffered 

3.

Figure 1.3 (a) Rigid lock and key and (b) induced fi t models of enzyme–substrate binding.
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successive waves of modifi cation by the concepts of cooperativity, preorganisation and complementarity, 
solvation and the very defi nition of ‘molecular shape’ as we will see in the following sections. In 
particular, in enzyme catalysis, the lock-and-key image has been replaced by the ‘induced fi t’ theory 
of Daniel Koshland4 in which both enzyme and substrate (host and guest) undergo signifi cant confor-
mational changes upon binding to one another (Figure 1.3b). It is these conformational changes that 
allow the enzymatic catalytic rate acceleration since the substrate is commonly more like the reac-
tion transition state in its bound form than in its unbound form. The occurrence of a conformational 
change upon guest binding is in fact a very common phenomenon both in biological chemistry, where 
it lies at the heart of ‘trigger’ processes such as muscle contraction and synaptic response, and in 
supramolecular chemistry.

Binding Constants

Defi nition and Use

Connors, K. A., Binding Constants, John Wiley & Sons, Ltd: Chichester, 1987.

The thermodynamic stability of a host-guest (e.g. metal–macrocycle) complex in a given solvent (often 
water or methanol) at a given temperature is gauged by measurement of the binding constant, K. Strictly 
the binding constant is dimensionless, but it is often calculated approximately using concentrations and 
thus has units of dm3 mol�1, or M�1, for a 1:1 complex. The binding constant is also known by the terms 
formation constant, Kf, association constant, Ka or stability constant, Ks. In biological systems the dis-
sociation constant, Kd, is commonly used. This quantity is the reciprocal of the binding constant and has 
units of concentration. The Kd value is sometimes useful because it is a direct measure of the concentra-
tion below which a complex such as a drug-receptor complex will dissociate. The binding constant is the 
main method by which host-guest affi nity in solution is assessed and so it is of fundamental importance 
in supramolecular chemistry and so it is worth spending some time looking into its proper defi nition and 
usage. Ignoring activity effects, the binding constant is merely the equilibrium constant for the reaction 
shown in Equation 1.1 (e.g. between a metal, M, and host ligand, L, in water):

 
M(H O) L ML nH On2

m+m+
2++

 
(1.1)

 
K

m

n
m=
+

+

[ ]

[ ][ ]

ML

M(H O) L2  
(1.2)

Thus a large binding constant corresponds to a high equilibrium concentration of bound metal, and 
hence a more stable metal–macrocycle complex. Typical binding constants for crown ethers and alkali 
metal cations in water are in the range 101–102. In methanol, this increases up to 106 for [K([18]crown-
6)]�.* The binding constant for K� and [2.2.2]cryptand is about 1010. Some other examples are given 
in Table 1.3.

* Take care with square brackets. In equations square brackets are used to denote ‘concentration of’, however coordination 
chemists also use square brackets to denote a coordination complex ion, thus in a mathematical equation ‘[MLm�]’ means the 
‘concentration of the chemical species MLm�’. If MLm� is a coordination complex ion, then it should be written outside an equa-
tion ‘[ML]m�’, i.e. a chemical entity comprising a metal of charge m� and a ligand, L. The square brackets are useful because they 
always denote the ligands directly bound to the metal so, for example, [Co(1,2-diaminoethane)2Cl2]Br contains two Cl– ligands 
bound to Co(III) with a bromide counter anion balancing the overall charge, whereas [Co(1,2-diaminoethane)2ClBr]Cl contains 
both Co–Cl and Co–Br bonds and a chloride counter anion.

1.41.4

1.4.11.4.1

Binding Constants 
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 Concepts10

If a sequential process involving the binding of more than one metal ion is involved, then two 
K values may be measured for the 1:1 and 1:2 complexes, respectively: K11 and K12 (e.g. binding of two 
Na� ions by dibenzo[30]crown-10).

 M(H O) L ML nH On2
m+m+

2

11

++
K

 (1.3)

 M(H O) ML M nHL On2
m+m+

12

2
(2m)+

2++
K

 (1.4)

 
K

m

n
m m12 =

+

+ +

[ ]

[ ][ ]

M L

M(H O) ML
2

(2 )

2  

(1.5)

In these circumstances, an overall binding constant, β12 may be defi ned for the overall process, the 
individual K values are then known as the stepwise binding constants:

 β12 11 12= ×K K  (1.6)

 
Or, more generally,

M L

M] L]
βxn

x n
x n=

[ ]

[ [  

(1.7)

Magnitudes of binding constants can vary widely, so they are often reported as log K, hence:

 log log( log log12β = × = +K K K K11 12 11 12)  (1.8)

The subscript numbers in stepwise binding constant notation refer to the ratio of one complexing 
partner to another, thus in a multi-step process the association of the host with the fi rst guest might be 
denoted K11, while the association of the resulting 1:1 complex with a further guest to produce a 1:2 

Table 1.3 Binding constants for a range of complexation processes.

Guest Host Solvent K11/M�1 ∆Go/kJ mol�1

Na � ClO4
� H2O    3.2  �3

Iodine Hexamethylbenzene CCl4    1.35    �0.8

Tetracyanoethylene Hexamethylbenzene CH2Cl2  17    �7.1

7,7,8,8-Tetracyanoquinodimethane Pyrene CH2Cl2    0.94    � 0.0

Salicylic acid Caffeine H2O  44    �9.7

Hydrocortisone Benzoate ion H2O    2.9    �2.5

Methyl trans-cinnamate Imidazole H2O     1.0    0.0

p-Hydroxybenzoic acid α-Cyclodextrin H2O 1130  �17.6

Caffeine Caffeine H2O  19   �7.1

Phenol Dimethylformamide C6H6   442  �15.0

K� [18]crown-6 H2O   100  �11.4

K� [18]crown-6 Methanol   106  �34.2

K� [2.2.2]cryptand Methanol   1010  �57.0

Fe3� enterobactin H2O   1052 �296
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11

complex has an equilibrium constant K12 etc. Strictly speaking it is only possible to take a logarithm 
of a dimensionless quantity (i.e. logs can only come from a number, not something with units) but we 
have to remember that the strict defi nition of a binding constant is based on the activities of the chemi-
cal species, not their concentrations. The activity (a) of a chemical species, i, is its effective concentra-
tion for the purposes of mass action, ai � γiCi/CΘ where Ci is the concentration of i, CΘ is equal to 1 
mol dm�3 if Ci is given in mol dm�3 and γi is the activity coeffi cient, a factor that accounts for deviations 
from ideal behaviour. In approximate assessment of binding constants in supramolecular chemistry we 
make the approximation that γi � 1 and, activity (dimensionless) ≈ concentration.

Because binding constants are thermodynamic parameters, they are related to the free energy of the 
association process according to the Gibbs equation: ∆Go � –RT ln K. (R � gas constant, 8.314 J K�1 
mol�1, T � temperature in Kelvin) Thus the general affi nity of a host for a guest under specifi c condi-
tions (solvent, temperature etc.) may be given either in terms of K or –∆Go values. In energy terms, 
complexation free energies may range from magnitudes of 20 to 100 kJ mol�1 (5 to 25 kcal mol�1; 1 kJ 
� 4.184 kcal) for alkali metal cation complexes. A large K value of about 1010 corresponds to a �∆Go of 
about 57 kJ mol�1 (13 kcal mol�1). Some very general examples of the magnitudes of binding constants 
and their corresponding complexation free energies are given in Table 1.3.

Binding constants may also be defi ned in terms of the rate constants (k) of the complexation and 
decomplexation reactions:

 
M(H O) L ML nH On2

m+m+
2

1

-1
++

k

k
 

(1.9)

 
K

k

k
=

−

1

1  
(1.10)

Measurement of Binding Constants

J. Polster and H. Lachmann, Spectrometric Titrations, VCH: Weinheim, 1989.

In principle, binding constants may be assessed by any experimental technique that can yield informa-
tion about the concentration of a complex, [Host⋅Guest], as a function of changing concentration of 
the host or guest. In practice the following methods are in common use. In every case a concentration 
range must be chosen such that there is an equilibrium between signifi cant amounts of bound and free 
host and guest, limiting the range of binding constants that can be measured by a particular technique. 
If binding by the target host is too strong then a competing host is sometimes added in order to reduce 
the apparent (measured) binding constant according to the difference in guest affi nity between the two 
hosts. The true affi nity can then be extrapolated from a knowledge of the binding constant of the guest 
for the host with the lower affi nity.

Potentiometric Titration

In the case of macrocycles that are susceptible to protonation (e.g. the cryptands with their basic 
tertiary amine nitrogen bridgeheads), the protonation constants (and hence pKa values) may be deter-
mined readily using pH (glass) electrodes to monitor a simple acid–base titration. Initially this will 
give the acid dissociation constant (pKa) of the ligand’s conjugate acid, HL�).5 Addition of a metal cat-
ion will perturb the macrocycle’s basicity (ability to bind one or more protons) by competition between 
the metal ion and H� for the ligand lone pair(s) and hence will affect the shape of the titration curves. 

1.4.21.4.2

Binding Constants 
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 Concepts12

Analysis of the various equilibria by a curve-fi tting computer program (such as Hyperquad) along 
with knowledge of the ligand’s pKa allows the determination of the amount of uncomplexed ligand and 
hence the concentration of the complex and the stability constants for the metal complexation reaction, 
Scheme 1.1

Nuclear Magnetic Resonance Titration

If the exchange of complexed and uncomplexed guest is slow on the nuclear magnetic resonance (NMR) 
time scale, then the binding constant may be approximately evaluated under the prevailing conditions 
of concentration, temperature solvent etc. by simple integration of the NMR signals for bound and 
unbound host or guest. Most host–guest equilibria are fast on the (relatively slow) NMR spectroscopic 
time scale, however, and the chemical shift observed for a particular resonance (that is sensitive to the 
complexation reaction) is a weighted average between the chemical shift of the free and bound species. 
In a typical NMR titration experiment, small aliquots of guest are added to a solution of host of known 
concentration in a deuterated solvent and the NMR spectrum of the sample monitored as a function 
of guest concentration, or host:guest ratio. Commonly, changes in chemical shift (∆δ) are noted for 
various atomic nuclei present (e.g. 1H in 1H NMR) as a function of the infl uence the guest binding has 
on their magnetic environment. As a result, two kinds of information are gained. Firstly, the location 
of the nuclei most affected may give qualitative information about the regioselectivity of guest bind-
ing (is the guest inside the host cavity?). More importantly, however, the shape of the titration curve 
(a plot of ∆δ against added guest concentration, e.g. Figure 1.4) gives quantitative information about the 
binding constant. NMR spectroscopic methods are useful for binding constants in the range 10–104 M�1. 
Such titration curves are often analysed by computer least-squares curve fi tting (e.g. by a program such 
as EQNMR6) using Equation 1.14 to determine optimum values of δmn (chemical shift of each species 
present where mn is the ratio of host, H, and guest, G) and βmn (stepwise binding constant). The iso-
therm shown in Figure 1.4a fi ts a stoichiometry model involving both 1:1 and 1:2 host:guest complexes 
with log β11 � 2.3 and log β12 � 4.5. The plot also shows the relative percentage amounts of each 
species present in the solution for a given host and guest concentration.

 
δ δ β
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total1

i m[G] H]
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=
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(1.11)

Method of Continuous Variation (Job Plots)

A key aspect of such calculations is the use of the correct stoichiometry model (i.e. the ratio of host 
to guest, which must be assumed or determined). There is a strong bias in the supramolecular chem-
istry literature towards the fi tting of data to 1:1 stoichiometries, and it is a common mistake to neglect 
higher aggregates. Binding stoichiometry may be confi rmed in most kinds of titration experiments that 
allow the concentration of complex to be determined by making up a series of solutions with varying 
host:guest ratios such that the total concentration of host and guest is a constant. Monitoring the 

Scheme 1.1 Competing equilibria in a potentiometric titration.
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changing concentration of the host–guest complex in these samples allows a plot of [Complex] against 
([Host]/([Host] � [Guest])) to be constructed. For a 1:1 complex, this kind of representation (referred 
to as a Job plot) should give a peak at 0.5 (Figure 1.5), a peak at 0.66 would correspond to a 2:1 stoichi-
ometry and so on. The concentration of the complex is generally taken to be related to an observable 
quantity such as ∆ δ according to Equation 1.12. In a spectrophotometric experiment absorbance at a 
properly chosen wavelength is usually directly proportional to complex concentration.

 [Complex] ∝ ∆δ � mole fraction of host (1.12)

Fluorescence Titration

Fluorescence titration measurements are based on the proportion of fl uorescence intensity to fl uorophore 
concentration (concentration of fl uorescent species in solution; this is often a fl uorescent guest, G). For a 1:1 
complex with host, H, with stability constant K11 � [HG]/[H][G] the fl uorescence intensity F is given by:

 F k k= +G 11 G HG[ ] [ ]  (1.13)

Figure 1.4 (a) NMR titration plot (isotherm) and corresponding speciation plots for a system under-
going fast equilibration on the NMR time scale, with log β11 � 2.3 and log β12 � 4.5. (b) Schematic 
NMR spectra of slowly equilibrating mixtures of free host, guest and host–guest complex.
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 Concepts14

where kG and k11 represent proportionality constants for the guest and the 1:1 host–guest complex 
respectively. In the absence of host the fl uorescence intensity, Fo, is given by:

 F ko G
o

totalG=  (1.14)

where Gtotal � [G] � [HG].
Combining these two relationships gives Equation (1.15), which provides the basis for most fl uori-

metric methods for stability constant (K11) determination:

 

F

F

k k k k K

Ko

G G
o

11 G
o

11

11

H]

1 H]
= +

+
/ ( / ) [

[  
(1.15)

This equation is greatly simplifi ed for cases where either the guest or host–guest complex are non-
fl uorescent (i.e. the fl uorescence is ‘turned on’ by complexation, or in the case of quenching by the 
host), in which case either kG or k11 become zero. For example, for kG � kG

0
  and k11 � 0, we obtain:

 

F

F
Ko

11 H]= +1 [
 (1.16)

A simple plot of Fo/F against [H] from titration of the quenching host into a guest solution should 
yield a straight line of slope K11. Common fl uorescent guests such as 8-anilino-1-naphthalenesulfonate 
(ANS, 1.7) may be used to probe complexation ability of various hosts in this way.

NHS

ANS

1.7

O3

Figure 1.5 Job plot for a 1:1 host–guest complex.
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UV-Vis Spectrophotometric Titration

UV-Vis spectroscopic titration (or spectrophotometric titration) involves monitoring the intensity of 
a electronic absorption band at a particular wavelength that is characteristic of either the complex 
or free host or guest and is closely analogous to fl uorescence titration methods. A plot is generated 
of absorbance intensity vs. concentration of added guest to a solution of constant host concentra-
tion. Software such as the program Specfi t® can then be used, in conjunction with an appropriate 
stoichiometry model, to extract the binding constant(s). Both fl uorescent and UV-Vis spectroscopic 
methods have the advantage over NMR methods that they are more sensitive and hence lower con-
centrations of host and guest can be used. Unlike fl uorescence methods, the observation of one or 
more clear isosbestic points is common in absorption spectroscopic titrations. An isosbestic point is 
where the observed absorption intensity is constant throughout the titration. The observation of an 
isosbestic point is good evidence for the conversion of free host into complex without the involve-
ment of signifi cant intermediate species. Figure 1.6 shows the observed UV-Vis spectra during a 
titration of a diisobutyl-substituted acridono-18-crown-6 ligand 1.8 with Pb2�. The isosbestic point 
occurs at at 271 nm.7

Calorimetric Titration

Calorimetric titration, also known as isothermal titration calorimetry (ITC), involves careful mea-
surement of the heat (enthalpy) evolved from a carefully insulated sample as a function of added 
guest or host concentration. The gradient of the ITC curve can be fi tted to determine the binding 
constant and hence ∆Gcomplex. Integration of the total area under the ITC plot gives the complexation 
enthalpy (∆Hcomplex) and hence the technique can give a measurement of all thermodynamic param-
eters of the system since ∆Gcomplex � ∆Hcomplex – T∆Scomplex. ITC is useful for determination of bind-
ing constants that range from ca.102 – 107 M�1. ITC has been used in an interesting case study to 
probe solvent and counter-cation effects on the binding of anions such as chloride to calix[4]pyrrole, 
1.9 (Section 4.6.4).8 Figure 1.7 shows the ITC data and resulting fi t for the binding of NBu4

�Cl� by 
1.9 in nitromethane, giving K11 � 19,200 M�1, ∆G � 11.3 kJ mol�1, ∆H � 8.55 kJ mol�1 and ∆S � 
�9.1 J K�1 mol�1.

Figure 1.6 UV-monitored titration of a diisobutyl-substituted acridono-18-crown-6 ligand 1.8 with 
Pb2� showing an isosbestic point at 271 nm (solid line represents free ligand spectrum, reproduced 
from [7] with permission from Elsevier).
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 Concepts16

Extraction Experiments

The distribution (or partition) coeffi cient, Kd, of a metal cation between an aqueous (aq) and organic (org) 
phase may also be used to assess the selectivity of a given host for a range of metal cations under standard 
conditions, using the equilibrium constants (K) for the following processes (Equations 1.17–1.20) (for 
metal picrate (Pic) salt, water (aq) and water-saturated chloroform (org) phases, 25 ºC).

 
[ ] [ [ ]M Pic Host] M Host Picorg org org 11

+ − + −⋅ + = ⋅ ⋅ K ((binding constant)
 (1.17)

 
[ ] [ ] [ [ ]M Pic Host] M Host Picaq aq org org

+ − + −+ + = ⋅ ⋅ KKe extraction constant)(
 

(1.18)

  
[ ] [ ] [ ] (M Pic M Pic distributionaq aq org d

+ − + −+ = ⋅ K   coefficient)
 

(1.19)

  K K K11 e d= /  (1.20)

The concentration of picrate anion (and hence necessarily M� by charge balance) is determined by 
measurement of the electronic absorbance (380 nm) of each layer. The host is assumed to be essentially 
insoluble in the aqueous layer. The technique is of relatively low precision but is quick and lends itself 
readily to the screening of a wide range of compounds. It is suitable for measurement of binding free 

Figure 1.7 ITC data at 25 oC for the binding of NBu4
�Cl� by 1.9 in nitromethane – the top plot rep-

resents the raw data with the calorimetric response in µcal s�1 for each addition of NBu4
�Cl� while 

the lower plot is the titration isotherm fi tted to a 1:1 model with kcal per mol NBu4
�Cl� added vs. mole 

ratio of NBu4
�Cl� to 1.9. (Reproduced with permission from [8] © 2006, American Chemical Society).
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energies in the range 25–70 kJ mol�1 (i.e. binding constants of ca. 104–1012). Binding energies in ex-
cess of 70 kJ mol�1 are assessed by competition with hosts of known binding energy.

Cooperativity and the Chelate Effect

Hancock, R. D., ‘Chelate ring size and metal ion selection’, J. Chem. Ed., 1992, 69, 615–621; Ercolani, G., 
‘Assessment of cooperativity in self-assembly’, J. Am. Chem. Soc., 2003, 125, 16097–16103.

Much of the emphasis in the construction of supramolecular host molecules concerns bringing about 
summative or even multiplicative interactions. This means that we can construct a stable host–guest 
complex using (often weak) non-covalent interactions if we ensure that there are as many as possible of 
these interactions stabilising the complex. The small amount of stabilisation energy gained by any one 
such interaction when added to all the other small stabilisations from the other interactions (summa-
tive) results in a signifi cant binding energy and hence complex stability. In some cases, the interaction 
of the whole system is synergically greater than the sum of the parts (multiplicative). When two or 
more binding sites (A and B) on a host cooperate in this fashion to bind to a guest the phenomenon is 
termed cooperativity. If the overall stability of the complex is greater than the sum of the energies of 
the interaction of the guest with binding groups A and B individually then the result is positive coop-
erativity. On the other hand, if unfavourable steric or electronic effects arising from the linking of A 
and B together into one host cause the overall binding free energy for the complex to be less than the 
sum of its parts then the phenomenon is termed negative cooperativity. Binding site cooperativity in a 
supramolecular host-guest interaction is simply a generalisation of the chelate effect found in classical 
coordination chemistry.

In energy terms the cooperativity arising from the chelate effect, or more generally from the interac-
tion of a two-binding-site guest (A–B), with a bidentate host can be expressed in terms of the overall 
binding free energy ∆GAB

o which is equal to the sum of the intrinsic binding free energies of each 
component A and B (∆GA

i and ∆GB
i) plus a factor arising from the summation or connection of A and 

B (∆Gs), Equation 1.21.9

 ∆GAB
o � ∆GA

i � ∆GB
i � ∆Gs (1.21)

The intrinsic binding energy represents the energy group A or B imparts to the rest of the molecule 
assuming there are no unfavourable strain or entropy components introduced into the binding by the 
linking of the group with the rest of the molecule, i.e. Equation 1.22 (and similarly for component B)

 ∆GA
i � ∆GAB

o � ∆GB
o (1.22)

we can thus write Equation 1.23 which shows that the connection energy is equal to the sum of 
the separate affi nities of the isolated ligands A or B minus the binding free energy of the connected 
molecule.

 ∆Gs � ∆GA
o � ∆GB

o � ∆GAB
o (1.23)

Equation 1.23 can be used to give an empirical measure of the cooperativity, since equilibrium 
constants (K) for the binding of A, B and A-B by a host can be measured and related to the Gibbs 
free energy according to ∆Go � �RT ln K. If ∆Gs is negative then the binding sites A and B exhibit 
unfavourable negative cooperativity. A positive value for ∆Gs implies a favourable positive 
cooperativity. 

The chelate effect is well known in coordination chemistry and relates to the observation that metal 
complexes of bidentate ligands (such as 1,2-diaminoethane, en) are signifi cantly more stable than closely 

1.51.5

Cooperativity and the Chelate Effect 

Co
py
ri
gh
t 
©
 2
00
9.
 W
il
ey
. 
Al
l 
ri
gh
ts
 r
es
er
ve
d.
 M
ay
 n
ot
 b
e 
re
pr
od
uc
ed
 i
n 
an
y 
fo
rm
 w
it
ho
ut
 p
er
mi
ss
io
n 
fr
om
 t
he
 p
ub
li
sh
er
, 
ex
ce
pt
 f
ai
r 
us
es
 p
er
mi
tt
ed
 u
nd
er
 U
.S
. 
or
 a
pp
li
ca
bl
e

co
py
ri
gh
t 
la
w.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 2/15/2018 2:47 PM via UNIVERSITA DEGLI STUDI DI MILANO -
BICOCCA
AN: 266018 ; Steed, Jonathan W., Atwood, J. L..; Supramolecular Chemistry
Account: s8507023



 Concepts18

related materials that contain unidentate ligands (such as ammonia). For example, in the reaction shown 
in Equation 1.24, the value of the equilibrium constant for the replacement of ammonia with 1,2-diami-
noethane indicates that the 1,2-diaminoethane chelate complex is more than 108 times more stable.

 [ ) ] [.Ni(NH 3NH CH CH NH Ni3 6
2

2 2 2 2
log 8 76+ =+  →K ((NH CH CH NH 6NH2 2 2 2 3

2
3) ] + +  (1.24)

NH3

Ni
2+

NH3

H3N

H3N NH3

NH3

NH2

Ni
2+

NH2

H3N

H3N NH2

NH2

[Ni(NH3)6]2+ [Ni(en)3]2+

1.10 1.11

The special stability of chelate complexes in solution may be traced to both thermodynamic and 
kinetic effects. Thermodynamically, reaction of a metal with a chelating ligand results in an increase of 
the number of free particles (four on the left-hand side of Equation 1.24, seven on the right) and hence a 
favourable entropy contribution (∆So) to the overall free energy of the reaction (∆Go), given by ∆Go � 
∆Ho – T∆So. In addition, clever design of the macrocycle to maximise conformational and electrostatic 
aspects of ligand–metal interactions can result in a favourable enthalpy of reaction as well. The entro-
pic contribution is reinforced further by a statistical aspect, since in order for the chelate complex to 
dissociate, both of the metal–donor atom bonds must be broken simultaneously. Finally, kinetic effects 
are involved in the formation of the chelate complex. It is likely that the reaction of the metal with a 
ligand, L, proceeds at a similar rate to the binding of the fi rst donor atom of a chelating ligand, L-L. 
The binding of the second donor atom of L-L proceeds much more rapidly, however, because in its 
‘tethered’ state it has a much higher effective concentration than a second molecule of unidentate L.

While an experimental fact in solution coordination chemistry, the nature of the chelate effect has 
been the topic of much debate in the literature. The fi rst problem concerns the defi nition of the stability 
constants; the second stepwise stability constant β12 for the binding of two unidentate ligands (when 
calculated using concentrations instead of activities) does not have the same dimensions as the fi rst 
stability constant for the bidentate ligand with which it is being compared. As a result, the infl uence 
of the solvent concentration is neglected. When this difference is taken into account by converting 
concentrations as mole fractions (i.e. concentration in mol dm�3/concentration of solvent), the chelate 
effect almost disappears. Furthermore, measurements of gas phase stability also indicate little difference 
between comparable chelate and non-chelate complexes. Nevertheless it is a fact that, in the solution 
phase at least, chelate ligands will almost invariably displace their monodentate analogues.

The stabilisation afforded by the chelate effect is highly dependent on the size of the chelate ring 
(Figure 1.8). Five-membered rings, as in metal complexes of 1,2-diaminoethane, are often the most 

Figure 1.8 Ring size dependence of the stabilisation offered by the chelate effect.Co
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stable by far because they contain the least amount of ring strain, particularly for larger cations. Four-
membered rings (e.g. chelating acetate) are highly strained, while as the chelate rings size increases 
the statistical likelihood of two donor atoms pointing directly at the metal becomes increasingly less 
probable, resulting in an unfavourable entropy. The strain energy in the chelate ring is dependent on the 
size of the metal cation, however. For very small cations such as Li� and Be2�, six-membered chelate 
rings are common because the small cation results in cation–donor bond lengths similar to those found 
in unstrained six-membered ring molecules such as cyclohexane.

In supramolecular chemistry, the thermodynamic stability of a host–guest complex may be enhanced 
by the operation of a chelate effect giving rise to positive cooperativity. The ligand donor atoms are 
generalised to host binding sites (of whatever nature) and the metal is generalised to the guest (which 
indeed often is a metal cation, although guests may also be anions or neutral species). The operation 
of the chelate effect is observed in the binding of metal cations by podands — chain-like hosts with a 
number of donor atoms situated at intervals along their length as in 1.12 (see Section 3.3.1) and, more 
generally, positive binding site cooperativity is similarly observed in hydrogen bonded complexes such 
as receptor 1.13 which selectively binds citrate anion through multiple hydrogen bonding interactions.10 
Another good example of cooperativity is seen in the drug-receptor complex 1.14 formed between the 
new generation antibiotic vancomycin and proteins that are used in the synthesis of bacterial cell 
walls.9 The proteins end in the sequence D-alanine-D-alanine which form numerous hydrogen bonded 
and hydrophobic contacts to the drug (Figure 1.9).

In addition to cooperativity between two or more host binding sites in binding a single guest we can 
also recognise both positive and negative cooperativity in the binding of multiple guests by a single host, 
multiple ligands by a single metal or in multi-component self-assembly processes. Multi-component 
self-assemblies are complicated by the occurrence of both intra- and inter-molecular associations, 
however, and simple binding models are not appropriate. This issue is of considerable relevance in 
highly topical self-assembled, multi-component metal complexes and we will look at models for these 
processes further in Section 10.4. Cooperativity in cases where the binding of a fi rst guest infl uences 
(particularly enhances) the affi nity of a host for a second guest at a remote site is termed an allosteric 
effect. A good example is shown in Scheme 1.2.11 Here a binding of Ru(II) to the bipyridyl portion of 
the host changes its conformation by rotation about the pyridyl-pyridyl bond to create a cavity suit-
able for chelating an alkali metal cation such as Na�. Similarly binding of Na� to the polyether site 
predisposes (preorganises – see Section 1.6) the bipyridyl portion for Ru(II) binding. The strength of 

Figure 1.9 Supramolecular host–guest complexation stabilised by positive cooperativity between 
binding sites: Ag� binding by 1.12, a host for citrate anion (1.13) and a drug-receptor complex formed 
by vancomycin (1.14).
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the sequential binding of the two metal cations can be quantifi ed by the binding constants K11 and K12. 
The allosteric effect means that K12, the affi nity for the second cation, is always greater than the K11 
binding constant for that same cation alone, in the absence of the other metal. Allosteric effects are 
very important in biological systems, particularly in the case of the bonding of O2 by haemoglobin (see 
Section 2.5). 

Cooperativity may be recognised by the deviation from well-defi ned statistical relationships. Con-
sider again the interaction of two binding sites –A and –B capable only of interaction with one another 
to give a species –A·B– in a reaction with the microscopic interaction equilibrium constant Kinter (i.e. 
the equilibrium constant for the individual reaction step). We can examine the equilibria shown in 
Scheme 1.3 for a metal, M, with m identical binding sites of type –B (for example m would be the 
metal’s coordination number) involved in a series of equilibria binding a number of ligands, L, each 
with a unique binding site –A.

On statistical grounds it can be shown that Equation 1.25 holds true. Equation 1.25 implies that the 
binding constant for each added ligand is less than the previous one. In fact successive equilibrium 

Scheme 1.2 Allosteric (cooperative) enhancement of Na� binding by preorganisation of the poly-
ether binding site by Ru(II), and vice versa.11
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Scheme 1.3 Equilibrium constants (K) for multiple ligands (L) binding to a single metal (M) via a 
binding site on the ligand termed ‘A’ interacting with a binding site on the metal termed ‘B’.
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constants decrease by a factor of at least a half as more ligands are added because of the increasing 
likelihood of displacing a ligand if there are more of them. This effect is evident for example, in the 
stability constants for the successive reaction of [Ni(H2O)6]2� with six molecules of NH3: log K1�6 � 
2.80, 2.24, 1.73, 1.19, 0.75, 0.03.

 
K K m i ii = − +inter 1)/(

 (1.25)

 

K

K

i m i

i m i
i

i

+ = −
+ − +

1 )

1) 1)

(

( (  (1.26)

From Equation 1.25 we can derive Equation 1.26. The quantity Ki�1/Ki may be used as a measure 
of cooperativity. If the statistical relationship shown in Equation 1.26 holds true the system is non-
cooperative. If Ki�1 / Ki is higher than would be expected from Equation 1.26 the system exhibits posi-
tive cooperativity, whereas if it is lower the system exhibits negative cooperativity and the binding of 
one ligand inhibits the binding of the next. Experimentally, cooperativity is often assessed by graphical 
methods based on a parameter r (Equation 1.27), known as the occupancy, i.e. the average number of 
occupied binding sites, in this case on the metal, M. 
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Where βi represents the stepwise stability constants and [L] is the concentration of free ligand. If the 
system is non-cooperative (i.e. Equation 1.26 holds true) then Equation 1.27 becomes Equation 1.28:
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(1.28)

Equation 1.28 can be put into two alternate linear forms known as the Scatchard (1.29) and Hill (1.30) 
equations.
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(1.29)
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m r
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 = +L] inter

 

(1.30)

A Scatchard plot is thus a plot of r/[L] as a function of r and appears as a straight line for non-cooper-
ative systems, a convex curve for negative cooperativity and a concave curve for positive cooperativity. 
A Hill plot is a plot of log[r/(m � r)] vs. log[L]. Cooperativity results in two straight lines connected by 
a S-shaped curve. The value of the slope in the central region of the curve is called the Hill coeffi cient 
(nH). A value of nH � 1 indicates positive cooperativity, while systems exhibiting negative cooperativ-
ity have nH � 1. Hill and Scatchard plots for the binding of ammonia to Ni2� are shown in Figure 1.10. 
The value of the Hill coeffi cient of 0.59 and the convex shape of the curve indicates that the process ex-
hibits negative cooperativity, as exemplifi ed in the binding constants which are lower even than would 
be expected from a statistical effects. A word of warning, however, Cooperativity can only be assessed 
in this way for intermolecular processes involving the binding of multiple guests to a single host (e.g. 
multiple metal ions to a protein, multiple ligands to a metal). Multimolecular self-assembly that mixes 

Cooperativity and the Chelate Effect 
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intra- and intermolecular processes requires a different treatment (Section 10.4) and this distinction 
has resulted in many erroneous claims of positive cooperativity in the literature.12

Preorganisation and Complementarity

Cram, D. J., ‘Preorganisation – from solvents to spherands’, Angew. Chem., Int. Ed. Engl. 1986, 25, 1039–1134.

Many supramolecular host–guest complexes are even more stable than would be expected from coop-
erative / chelate effects alone. The hosts in these species are usually macrocyclic (large ring) ligands 
that chelate their guests, again via a number of binding sites. Such compounds are stabilised addition-
ally by what is traditionally termed the macrocyclic effect. This effect relates not only to the chela-
tion of the guest by multiple binding sites, but also to the organisation of those binding sites in space 
prior to guest binding (i.e. preorganisation) such that binding energy is not expended in the guest 
having to ‘wrap’ the host about itself in order to benefi t from the most chelation. Furthermore the 
enthalpic penalty associated with bringing donor atom lone pairs into close proximity to one another 
(with consequent unfavourable repulsion and desolvation effects) has been ‘paid in advance’ during 
the synthesis of the macrocycle. This makes macrocycles diffi cult to make but stronger complexing 
agents than analogous non-macrocyclic hosts (podands). Some of the ‘tricks’ in macrocycle synthesis 
are discussed in Section 3.9 The macrocyclic effect makes cyclic hosts such as corands (e.g. crown 
ethers) up to a factor of 104 times more stable than closely related acyclic podands with the same type 
of binding sites. The macrocyclic effect was fi rst elucidated by Cabbiness and Margerum in 1969 who 
studied the Cu(II) complexes 1.15 and 1.16.13 Both ions benefi t from the stability associated with four 
chelating donor atoms. However, the macrocyclic complex 1.15 is about 104 times more stable than the 
acyclic analogue 1.16 as a consequence of the additional preorganisation of the macrocycle.

Thermodynamic measurements on the analogous (unmethylated) Zn2� complexes reveal that the 
stabilisation by macrocyclic preorganisation has both enthalpic and entropic contributions (Table 1.4). 

1.61.6

Figure 1.10 (a) Hill plot and (b) Scatchard plot for the successive intermolecular connections of am-
monia to bivalent nickel to give [Ni(NH3) i]2�, the concentration of the free ligand [L] is computed by 
using the known stability constants. [Ni]total � 1 � 10�3 M; [NH3]total varies between 10�5 and 1 M. 
(Reproduced from [12] by permission of the Royal Society of Chemistry).
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The enthalpic term arises from the fact that macrocyclic hosts are frequently less strongly solvated than 
their acyclic analogues. This is because they simply present less solvent-accessible surface area. As a 
result there are fewer solvent–ligand bonds to break than in the extended, acyclic case. Entropically, 
macrocycles are less conformationally fl exible and so lose fewer degrees of freedom upon complex-
ation. In general, the relative importance of the entropic and enthaplic terms varies according to the 
system studied although the enthalpy is frequently dominant as a result of additional factors such as 
lone pair repulsions. Bicyclic hosts such as cryptands (Section 3.4) are found to be even more stable 
than monocyclic corands for much the same reasons. Historically this further additional stability is 
referred to as the macrobicyclic effect (Figure 1.11) and simply represents the more rigid, preorganised 
nature of the macrobicycle. The macrocyclic and macrobicyclic effects make an important contribution 
to hosts for alkali metal binding, (Scheme 1.4 and Section 3.7).

The macrocyclic and macrobicyclic effects are simply manifestations of increasing preorganisa-
tion. We can say that if a host molecule does not undergo a signifi cant conformational change upon 
guest binding, it is preorganised. Host preorganisation is a key concept because it represents a major 
(in some cases decisive) enhancement to the overall free energy of guest complexation. Neglecting 
the effects of solvation, the host guest binding process may be divided very loosely into two stages. 
First, there is an activation stage in which the host undergoes conformational readjustment in order to 
arrange its binding sites in the fashion most complementary to the guest and at the same time minimis-
ing unfavourable interactions between one binding site and another on the host. This is energetically 
unfavourable, and because the host must remain in this binding conformation throughout the lifetime 
of the host–guest complex, this energy is never paid back. Following rearrangement, binding occurs 
which is energetically favourable because of the enthalpically stabilising attraction between mutually 
complementary binding sites of host and guest. The overall free energy of complexation represents the 
difference between the unfavourable reorganisation energy and the favourable binding energy. If the 
reorganisation energy is large, then the overall free energy is reduced, destabilising the complex. If the 
host is preorganised, this rearrangement energy is small.

The corollary of preorganisation is in the guest binding kinetics. Rigidly preorganised hosts may 
have signifi cant diffi culty in passing through a complexation transition state and so tend to exhibit slow 
guest binding kinetics. Conformationally mobile hosts are able to adjust rapidly to changing conditions, 

Table 1.4 Thermodynamic parameters for Zn2� complexes of 1.15 and 1.16 (298 K).

1.15 1.16

Log K    15.34    11.25

∆Ho (kJ mol–1)  –61.9 –44.4

–T∆So (kJ mol–1) –25.6 –19.8

NH HN

NH HN

M

NH HN

NH2 NH2

M M = Cu, Zn

2+
2+

1.15 1.16

Preorganisation and Complementarity 
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Scheme 1.4 Comparison of preorganisation effects in K� binding by a macrobicycle, macrocycle and 
non-preorganised podand pentaethyleneglycol dimethyl ether.
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Figure 1.11 The chelate, macrocyclic and macrobicyclic effects.
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and both complexation and decomplexation are rapid. Solvation enhances the effects of preorganisation 
since the solvation stabilisation of the unbound host is often greater than the case when it is wrapped 
around the guest, effectively presenting less surface area to the surrounding medium.

In addition to the degree of host preorganisation, the other principal factor in determining the affi nity 
of a host for a guest is complementarity. In order to bind, a host must have binding sites that are of the 
correct electronic character (polarity, hydrogen bond donor/acceptor ability, hardness or softness etc.) to 
complement those of the guest. Hydrogen bond donors must match acceptors, Lewis acids must match 
Lewis bases and so on. Furthermore, those binding sites must be spaced out on the host in such a way as 
to make it possible for them to interact with the guest in the binding conformation of the host molecule. 
If a host fulfi ls these criteria, it is said to be complementary. The principle of complementarity has been 
summed up by Donald Cram: ‘To complex, hosts must have binding sites which cooperatively contact 
and attract binding sites of guests without generating strong nonbonded repulsions.’

The combined effects of preorganisation and complementarity are startlingly illustrated by a com-
parison of the binding constants under standard conditions for the alkali metal complexes shown in 
Figure 1.12. All of the hosts bind through six ether oxygen atoms. The fairly hard (non-polarisable) 
oxygen donors are complementary to fairly hard alkali metal cations such as K�. However, the stability 
constants range over nearly 14 orders of magnitude, refl ecting the increasing preorganisation of the 
oxygen atom donor array. The amine nitrogen atoms in some hosts do not signifi cantly enhance the 
binding because the softer amine is not complementary for alkali metal cations. Thus replacing two 

Figure 1.12 Comparison of the effects of preorganisation and complementarity on the magnitudes 
of the binding constant of polyether hosts for alkali metal cations. The fi gure for Li� is given for the 
highly preorganised spherand-6 since it is too small to accommodate K�.
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