Vai al contenuto principale
Se prosegui nella navigazione del sito, ne accetti le politiche:
  • Condizioni di utilizzo e trattamento dei dati
Prosegui
x
e-Learning - UNIMIB
  • Home
  • My Media
  • Altro
Ascolta questa pagina con ReadSpeaker
Italiano ‎(it)‎
English ‎(en)‎ Italiano ‎(it)‎
 Login
e-Learning - UNIMIB
Home My Media
Percorso della pagina
  1. Area Economico-Statistica
  2. Corso di Laurea Triennale
  3. Statistica e Gestione delle Informazioni [E4104B - E4102B]
  4. Insegnamenti
  5. A.A. 2020-2021
  6. 3° anno
  1. Complex Data Analysis
  2. Introduzione
Insegnamento Titolo del corso
Complex Data Analysis
Codice identificativo del corso
2021-3-E4102B083
Descrizione del corso SYLLABUS

Syllabus del corso

  • Italiano ‎(it)‎
  • English ‎(en)‎
Esporta

Obiettivi formativi

The course aims to introduce the Bayesian approach, both from a theoretical and  applied point of view, and to problems of inference related to longitudinal data, for repeated measures over time of same statistical units. The freeware statistical software R Project will be used for the applied part of the course.

Contenuti sintetici

Introduction to Bayesian Statistics and to longitudinal data analysis

Programma esteso

  • Bayesian Statistics: 
  1. Introduction: framework and priors
  2. Decision-theoretic foundations: evaluation of estimators and loss functions
  3. Priors: models, subjectivity, conjugacy and noninformativeness 
  4. Bayesian point estimation: inference, normal model, dynamic models
  5. Bayesian calculations: approximation methods, Markov chain Monte Carlo
  6. Other topics: tests and model choice, hierarchical models, empirical Bayes


  • Longitudinal data: 
  1. Linear mixed models: mixed-effects models, fitting, parameter variability  
  2. Multiple random-effect terms: crossed effects, nested effects, partially crossed effects 
  3. Longitudinal models: models with correlated and uncorrelated effects, precision assessment, prediction 
  4. Computational methods: framework, penalized least squares, residual maximum likelihood  

Prerequisiti

There are no formal prerequisites, but basic knwoledge of the following topics is needed: Mathematical Analysis, Linear Algebra, Probability Calculus, Statistical Inference, R programming.

Metodi didattici

Theoretical and applied (with R statistical software) frontal lectures.

Modalità di verifica dell'apprendimento

The exam will be consist of a written test with exercises and open questions, to assess knowledge and autonomous reproduction of the study material proposed during the course.

In the exercises we will assess theoretical and applied aspects of the course, on how to correctly build, estimate and implement statistical models and inferential methodologies being studied. 

In the open questions we will assess the capacity of the student in the interpretation of complex problems and in the communication of elaborated answers requiring formal reasoning, logic discretion, and coherente language.

No different exams will be provided between attending and no attending students.

Testi di riferimento

There is no specific textbook. 

Class notes will be provided during the course. 

For the first part of the course, a good reference book is P.D. Hoff (2009) A First Course in Bayesian Statistical Methods, Springer https://www.stat.washington.edu/~pdhoff/book.php. 

For the applied part of the course students are referred to the online material available available at http://www.r-project.org.

Periodo di erogazione dell’insegnamento

First semester

Lingua di insegnamento

English

Esporta

Learning objectives

The course aims to introduce the Bayesian approach, both from a theoretical and  applied point of view, and to problems of inference related to longitudinal data, for repeated measures over time of same statistical units. The freeware statistical software R Project will be used for the applied part of the course.

Contents

Introduction to Bayesian Statistics and to longitudinal data analysis

Detailed program

  • Bayesian Statistics: 

  1. Introduction: framework and priors
  2. Decision-theoretic foundations: evaluation of estimators and loss functions
  3. Priors: models, subjectivity, conjugacy and noninformativeness 
  4. Bayesian point estimation: inference, normal model, dynamic models
  5. Bayesian calculations: approximation methods, Markov chain Monte Carlo
  6. Other topics: tests and model choice, hierarchical models, empirical Bayes

  • Longitudinal data: 

  1. Linear mixed models: mixed-effects models, fitting, parameter variability  
  2. Multiple random-effect terms: crossed effects, nested effects, partially crossed effects 
  3. Longitudinal models: models with correlated and uncorrelated effects, precision assessment, prediction 
  4. Computational methods: framework, penalized least squares, residual maximum likelihood




Prerequisites

There are no formal prerequisites, but basic knwoledge of the following topics is needed: Mathematical Analysis, Linear Algebra, Probability Calculus, Statistical Inference, R programming.

Teaching methods

Theoretical and applied (with R statistical software) frontal lectures.

Assessment methods

The exam will be consist of a written test with exercises and open questions, to assess knowledge and autonomous reproduction of the study material proposed during the course.

In the exercises we will assess theoretical and applied aspects of the course, on how to correctly build, estimate and implement statistical models and inferential methodologies being studied. 

In the open questions we will assess the capacity of the student in the interpretation of complex problems and in the communication of elaborated answers requiring formal reasoning, logic discretion, and coherente language.

No different exams will be provided between attending and no attending students.

Textbooks and Reading Materials

There is no specific textbook. 

Class notes will be provided during the course. 

For the first part of the course, a good reference book is P.D. Hoff (2009) A First Course in Bayesian Statistical Methods, Springer https://www.stat.washington.edu/~pdhoff/book.php. 

For the applied part of the course students are referred to the online material available available at http://www.r-project.org.

Semester

First semester

Teaching language

English

Entra

Scheda del corso

Settore disciplinare
SECS-S/01
CFU
6
Periodo
Primo Semestre
Tipo di attività
Obbligatorio a scelta
Ore
42
Tipologia CdS
Laurea Triennale

Staff

    Docente

  • SP
    Stefano Peluso

Opinione studenti

Vedi valutazione del precedente anno accademico

Bibliografia

Trova i libri per questo corso nella Biblioteca di Ateneo

Metodi di iscrizione

Iscrizione manuale
Iscrizione spontanea (Studente)

Non sei collegato. (Login)
Politiche
Ottieni l'app mobile
Powered by Moodle
© 2025 Università degli Studi di Milano-Bicocca
  • Privacy
  • Accessibilità
  • Statistiche