Percorso della pagina
- Economics
- Bachelor Degree
- Statistica e Gestione delle Informazioni [E4102B]
- Courses
- A.A. 2021-2022
- 3rd year
- Data Mining
- Summary
Unità didattica
Course full name
Data Mining
Course ID number
2122-3-E4102B085-E4102B086M
Course Syllabus
Obiettivi formativi
Data mining
Il corso intende fornire un’introduzione alle principali tecniche
statistiche di Data Mining attraverso le più moderne tecniche e strategie per
l’analisi di grandi moli di dati, illustrando le problematiche connesse.
Alla fine del corso lo studente ha la possibiltà di
proporre i principali algoritmi , discernendo pregi e difetti, essendo in grado di sperimentare ed
applicare le conoscenze acquisite su dati reali.
Contenuti sintetici
Il corso affronta lo studio di tecniche modellistiche algoritmiche e le principali problematiche e tecniche statistiche di Data Mining
Programma esteso
Data mining
Il
Data mining, robustezza, overfitting e problematiche di validazione dei
risultati, Regole associative, Modelli statistici per la classificazione
supervisionata (modello lineare, analisi
discriminante parametrica, modello logistico binario e multinomiale), Algoritmi per la classificazione supervisionata (Naive Bayes,
Nearest Neighbour, neural network, regressioni lasso, Alberi decisionali e Classificativi, PLS, Bagging, Boosting and Random forest)
Prerequisiti
Superamento esame di Analisi statistica Multivariata
Metodi didattici
Nel periodo di emergenza Covid-19 le lezioni si svolgeranno in modalità mista: parziale presenza e lezioni sincrone (streeming) via piattaforme web.
Modalità di verifica dell'apprendimento
PROVA SCRITTA
PROJECT WORK (Sviluppo di un progetto originale a partire da una semplice idea o dall’analisi di un caso esistente)
Lavoro
applicativo da svolgere autonomamente o in gruppo di max 3 persone su dataset scelti
dallo studente (R o SAS) su cui applicare i principali argomenti
svolti a lezione .
Di seguito le analisi da svolgere per i due moduli in ogni project work (Sas base o R):
Data mining (Sas Enterprise Miner o R)
1 PROJECT WORK, analisi con con target binario (classificazione)
(ANALISI DA SVOLGERE: analisi descrittive, proposta diversi modelli, validation strategies, preprocessing, tuning modelli, confronto modelli, score di nuovi dati)
In totale per superare l'esame da 15 cfu è necessario completare due project work (1 di statistica computazionale + 1 di Data mining) su due dataset differenti
Portali per la scelta dei dataset:
https://archive.ics.uci.edu/ml/datasets
www.kaggle.com
PROVA ORALE
I principali output del PROJECT WORK (svolto nelle settimane precedenti la data dell'orale) vanno stampati e portati all'orale, se in presenza.
Altrimenti il COLLOQUIO avviene via WEB DI DISCUSSIONE SUL project work (Nel periodo di emergenza Covid-19 gli esami orali saranno solo telematici. Verranno svolti utilizzando la piattaforma WebEx e nella pagina e-learning dell'insegnamento verrà riportato un link pubblico per l'accesso all'esame di possibili spettatori virtuali).
L'esame orale, per ciascun modulo, consta di domande sulla TEORIA affrontata a lezione e sul commento degli output del lavoro applicativo per verificare la comprensione dei principali strumenti adottati e il conseguente "modus operandi" dell'analisi statistica svolta.
Lo studente deve dimostrare di aver appreso il funzionamento dei principali algoritmi, essendo in grado di comprenderne pregi e difetti e di applicare tali strumenti su dati reali.
Non sono previste prove in itinere
Testi di riferimento
Data mining
Gareth, Witten, Hastie, Tibshirani, An Introduction to Statistical Learning with Applications in R
http://www-bcf.usc.edu/~gareth/ISL/
Chapter 2-3-4-5- 8
Lucidi sul moodle
Periodo di erogazione dell’insegnamento
I semestre, ciclo II
Learning objectives
Data mining
The course aims at introducing statistical models of DATA MINING both from the theoretical and from the applicative point of view.
The student at the end of the course should be able to understand, discern and propose complex models and algorithms, being able to assess the studied topics
analyzing read dataset.
Contents
The course deals with complex/algorithmic modelling techniques and main problems and algorithm of Data Mining
Detailed program
Data mining
Principles of Data mining, robustness, over fitting and validation. Association rules, Statistical models: linear, discriminant analysis, logistic models, (binary and multinomial), Algorithms for the classification: (Naive Bayes, Nearest Neighbour, lasso regression, neural network, Classification TREE, PLS, Bagging, Boosting and Random forest)
Prerequisites
Students need to pass before the exam of Analisi statistica Multivariata
Teaching methods
During Covid-19, lessons will be taken by partial presence and streeming web platforms.
During Covid-19, lessons will be taken by partial presence and streeming web platforms.
Assessment methods
WRITTEN EXAM: PROJECT WORK
Project work (also in group, to complete before the date of the oral exam) involving a data analysis (R or SAS) on a dataset chosen by the
student to replicate arguments and analyses discussed during lab sessions.
Analyses of the Project work
Data mining (sas Entreprise Miner or R)
1 applied work with binary target (classification)
(To do: descriptive analysis, propose different classifiers and validation strategies, preprocessing, tuning of models, assessment, score of new data)
Web portals for the choice of the dataset:
https://archive.ics.uci.edu/ml/datasets
www. kaggle.com
ORAL EXAM
The outputs of the project work (completed during the period before the oral exam) must be printed and presented/discussed at the oral exam, IF EXAMS ARE HOLD IN PRESENCE. OTHERWISE, THE DISCUSSION OF THE PROJECT WORK via WEB platforms (during COVID19)
The oral exam deals with questions on statistical THEORY (see arguments) and on the comments of outputs of the project work to assess the comprehension of principal statistical tools and consequently the "modus operandi" of the conducted statistical analyses.
The student should demonstrate to understand, discern and explain the functioning of complex models and algorithms, being able to explain the studied topics and to analyze real dataset.
To resume, to pass the exam the student should complete two project works, one for statcomp, one for data mining.
Textbooks and Reading Materials
Data mining
Gareth,
Witten, Hastie, Tibshirani, An
Introduction to Statistical Learning with Applications in R
http://www-bcf.usc.edu/~gareth/ISL/
Chapter 2-3-4-5- 8
Handouts on moodle
Semester
I semester cycle II
Key information
Field of research
SECS-S/01
ECTS
9
Term
First semester
Activity type
Mandatory
Course Length (Hours)
63
Degree Course Type
Degree Course
Language
Italian