Skip to main content
If you continue browsing this website, you agree to our policies:
  • Condizioni di utilizzo e trattamento dei dati
Continue
x
If you continue browsing this website, you agree to our policies:
  • Condizioni di utilizzo e trattamento dei dati
Continue
x
e-Learning - UNIMIB
  • Home
  • More
Listen to this page using ReadSpeaker
English ‎(en)‎
English ‎(en)‎ Italiano ‎(it)‎
You are currently using guest access
 Log in
e-Learning - UNIMIB
Home
Percorso della pagina
  1. Science
  2. Master Degree
  3. Data Science [F9101Q]
  4. Courses
  5. A.A. 2022-2023
  6. 2nd year
  1. Business Intelligence
  2. Summary
Insegnamento Course full name
Business Intelligence
Course ID number
2223-2-F9101Q023
Course summary SYLLABUS

Course Syllabus

  • Italiano ‎(it)‎
  • English ‎(en)‎
Export

Obiettivi

Il corso intende fornire gli strumenti (metodologici e tecnici) per la comprensione e la realizzazione di soluzioni di BI - incluso il ciclo di vita del dato KDD - in contesti applicativi reali, individuando e definendo i criteri per la valutazione dei processi realizzati

Contenuti sintetici

Introduction to BI and Big Data Analytics

BI Architectures

Knowledge Discovery in Databases – KDD

Programma esteso

1. Introduction to BI and Big Data Analytics

a. Goal and rationale of BI systems

b. The value of knowledge – digital economy and data driven decision making

c. The Structure and subsequent evolution of BI and Big Data Analytics systems

2. BI Architectures

a. The Evolution of BI Architectures (towards Big Data)

b. Decision Models on the basis of business functions

c. Definition, selection and metrics for computing directional indicators (KPI – CSF)

3. Knowledge Discovery in Databases – KDD

a. Phases, methodologies and the value for business purposes (Data as value)

b. Models for data quality evaluation – structured data vs (unstructured) Big data

c. Models for data management and analytics – relational vs schema free (i.e., graph db)

d. Models and techniques for data analysis – how to use data for fact-based decision making

e. Visualisation models for decision making – selecting the proper model for each stakeholder – data story telling and indicators

Prerequisiti

Nessuno

Modalità didattica

Lezioni frontali, seminari monotematici, esercitazioni, assegnamenti da svolgere a casa.

Materiale didattico

Lezioni con l'ausilio di slide, laboratorio e casi applicativi. Articoli scientifici di riferimento saranno forniti dal docente. Il Software utilizzato sarà open-source

Periodo di erogazione dell'insegnamento

I semestre

Modalità di verifica del profitto e valutazione

La verifica sarà composta da:
-- una prova scritta obbligatoria, volta a valutare le competenze dello studente in termini di (i) concetti e metodologie acquisite (ii) capacità nello scrivere/leggere codice e (iii) capacità nel sintetizzare fattori distintivi e critici delle tecnologie introdotti
-- un homework di gruppo facoltativa, volto a valutare le competenze dello studente in termini di (i) lavoro di gruppo; (ii) comprensione dei dati e definizione di un approccio risolutivo, (iii) discutere le soluzioni identificate e realizzate all'utente finale

Orario di ricevimento

su Appuntamento

Export

Aims

The course would provide bot methodological an technical aspects needed to understand and realise BI solutions in real-life contexts, including the whole data lifecycle (KDD) and identifying criteria for the evaluation of the solution provided.

Contents

Introduction to BI and Big Data Analytics

BI Architectures

Knowledge Discovery in Databases – KDD

Detailed program

1. Introduction to BI and Big Data Analytics

a. Goal and rationale of BI systems

b. The value of knowledge – digital economy and data driven decision making

c. The Structure and subsequent evolution of BI and Big Data Analytics systems

2. BI Architectures

a. The Evolution of BI Architectures (towards Big Data)

b. Decision Models on the basis of business functions

c. Definition, selection and metrics for computing directional indicators (KPI – CSF)

3. Knowledge Discovery in Databases – KDD

a. Phases, methodologies and the value for business purposes (Data as value)

b. Models for data quality evaluation – structured data vs (unstructured) Big data

c. Models for data management and analytics – relational vs schema free (i.e., graph db)

d. Models and techniques for data analysis – how to use data for fact-based decision making

e. Visualisation models for decision making – selecting the proper model for each stakeholder – data story telling and indicators

Prerequisites

None

Teaching form

The course will be provided by means of lessons, seminars, and laboratory sessions and homework.

Textbook and teaching resource

Lectures with the support of slides, laboratory and real-life case studies. Scientific Papers and books indicated by the lecturer. The software used is either available as open-source

Semester

I semester

Assessment method

All exams will be performed online composed by:
-- a written examination (mandatory), aimed at assessing the competencies of the student in terms of (i) concepts and methodologies acquired (ii) abilities in writing/reading code and (iii) abilities in summarising pros/cons of the techniques introduced
-- an homework (optional), aimed at evaluating the competencies of the student in terms of (i) teamwork, (ii) understanding the data and define a way to approach the problem, (iii) discussing the solution identified and realised to the final user

Office hours

By Appointment

Enter

Key information

Field of research
ING-INF/05
ECTS
6
Term
First semester
Activity type
Mandatory to be chosen
Course Length (Hours)
46
Degree Course Type
2-year Master Degreee
Language
Italian

Staff

    Teacher

  • LM
    Lorenzo Malandri
  • Fabio Mercorio
    Fabio Mercorio

Students' opinion

View previous A.Y. opinion

Bibliography

Find the books for this course in the Library

Enrolment methods

Manual enrolments
Self enrolment (Student)

You are currently using guest access (Log in)
Policies
Get the mobile app
Powered by Moodle
© 2025 Università degli Studi di Milano-Bicocca
  • Privacy policy
  • Accessibility
  • Statistics