Skip to main content
If you continue browsing this website, you agree to our policies:
  • Condizioni di utilizzo e trattamento dei dati
Continue
x
If you continue browsing this website, you agree to our policies:
  • Condizioni di utilizzo e trattamento dei dati
Continue
x
e-Learning - UNIMIB
  • Home
  • More
Listen to this page using ReadSpeaker
English ‎(en)‎
English ‎(en)‎ Italiano ‎(it)‎
 Log in
e-Learning - UNIMIB
Home
Percorso della pagina
  1. Science
  2. Master Degree
  3. Data Science [F9101Q]
  4. Courses
  5. A.A. 2022-2023
  6. 2nd year
  1. High Dimensional Data Analysis
  2. Summary
Insegnamento Course full name
High Dimensional Data Analysis
Course ID number
2223-2-F9101Q016
Course summary SYLLABUS

Course Syllabus

  • Italiano ‎(it)‎
  • English ‎(en)‎
Export

Obiettivi formativi

Questo è un corso avanzato di statistica che ha come oggetto principale l'analisi di dati ad alta dimensionalità. L'obietto del corso è quello di presentare le moderne tecniche di analisi dei dati e la teoria statistica sottostante, coniugando armoniosamente aspetti teorici, pratici e computazionali.

Contenuti sintetici

Il corso riguarda metodi di regressione e classificazione che possono essere impiegati nel caso di dati ad alta dimensionalità

Programma esteso

  1. Regressione lineare, bias/variance trade-off
  2. Regressione penalizzata, ridge regression e lasso
  3. Sezione del modello, metodi di validazione incrociata
  4. Regressione nonparametrica. k-nearest neighbors (k-NN). Kernel smoothing. Regression splines, Smoothing splines, Local regression

Prerequisiti

Sono necessarie conoscenze di probabilità ed inferenza, algebra lineare e programmazione.

Metodi didattici

Tutte le lezioni si svolgono in laboratorio, integrando aspetti di carattere teorico con quelli computazionali attraverso l'uso del software R.

Modalità di verifica dell'apprendimento

Prova individuale orale su argomenti trattati a lezione. Viene valutata la completezza, la correttezza delle risposte e la proprietà di linguaggio.

Testi di riferimento

  • Materiale didattico fornito dal docente
  • Azzalini, Scarpa (2012) Data analysis and data mining, an introduction . New York: Oxford University Press
  • Gareth, Witten, Hastie, Tibshirani (2014) An Introduction to Statistical Learning, with Applications in R . Springer
  • Hastie, Tibshirani, Friedman (2009) The Elements of Statistical Learning. Data Mining, Inference and Prediction . Springer
  • Hastie, Tibshirani and Wainwright (2015) Statistical Learning with Sparsity: The Lasso and Generalizations . CRC Press

Periodo di erogazione dell'insegnamento

Secondo Semestre

Lingua di insegnamento

Italiano

Sustainable Development Goals

ISTRUZIONE DI QUALITÁ
Export

Learning objectives

This is an advanced course focusing on the analysis of high-dimensional data. The goal is to study modern methods and their underlying theory, drawing together theory, data, computation and recent research.

Contents

This course covers methods for regression and classification which can be applied to high-dimensional data.

Detailed program

  1. Linear regression, bias/variance trade-off
  2. Regularization, ridge and lasso regression
  3. Model selection, cross-validation
  4. Nonparametric Regression. k-nearest neighbors (k-NN). Kernel smoothing. Regression splines, Smoothing splines, Local regression

Prerequisites

Basic knowledge of statistics and probability, linear algebra, and computer programming.

Teaching methods

Theoretical lessons and computer applications in lab with R software.

Assessment methods

Oral individual exam to assess the theoretical knowledge of the student on the topics presented during the course. The grading is based on the correctness, the completeness of the answers and the appropriateness of language.

Textbooks and Reading Materials

  • Lecture notes provided by the instructor
  • Azzalini, Scarpa (2012) Data analysis and data mining, an introduction . New York: Oxford University Press
  • Gareth, Witten, Hastie, Tibshirani (2014) An Introduction to Statistical Learning, with Applications in R . Springer
  • Hastie, Tibshirani, Friedman (2009) The Elements of Statistical Learning. Data Mining, Inference and Prediction . Springer
  • Hastie, Tibshirani and Wainwright (2015) Statistical Learning with Sparsity: The Lasso and Generalizations . CRC Press

Semester

Second semester

Teaching language

Italian

Sustainable Development Goals

QUALITY EDUCATION
Enter

Key information

Field of research
SECS-S/03
ECTS
6
Term
Second semester
Activity type
Mandatory to be chosen
Course Length (Hours)
46
Degree Course Type
2-year Master Degreee
Language
Italian

Staff

    Teacher

  • Gianna Serafina Monti
    Gianna Serafina Monti

Students' opinion

View previous A.Y. opinion

Bibliography

Find the books for this course in the Library

Enrolment methods

Manual enrolments
Self enrolment (Student)

Sustainable Development Goals

QUALITY EDUCATION - Ensure inclusive and equitable quality education and promote lifelong learning opportunities for all
QUALITY EDUCATION

You are not logged in. (Log in)
Policies
Get the mobile app
Powered by Moodle
© 2025 Università degli Studi di Milano-Bicocca
  • Privacy policy
  • Accessibility
  • Statistics