Skip to main content
If you continue browsing this website, you agree to our policies:
  • Condizioni di utilizzo e trattamento dei dati
Continue
x
e-Learning - UNIMIB
  • Home
  • Calendar
  • My Media
  • More
Listen to this page using ReadSpeaker
English ‎(en)‎
English ‎(en)‎ Italiano ‎(it)‎
You are currently using guest access
 Log in
e-Learning - UNIMIB
Home Calendar My Media
Percorso della pagina
  1. Economics
  2. Master Degree
  3. Scienze Economico-Aziendali [F7703M - F7701M]
  4. Courses
  5. A.A. 2022-2023
  6. 1st year
  1. Statistical Methods for Management
  2. Summary
Unità didattica Course full name
Statistical Methods for Management
Course ID number
2223-1-F7701M093-F7701M104M
Course summary SYLLABUS

Blocks

Back to Quantitative Methods for Management

Course Syllabus

  • Italiano ‎(it)‎
  • English ‎(en)‎
Export

Obiettivi formativi

Il corso si propone di presentare alcuni metodi statistici sovente utilizzati nell’analisi (esplorativa) dei dati multivariati.

Contenuti sintetici

Metodologie di statistica multivariata

Programma esteso

· Regressione Multipla

· Analisi delle componenti principali

· Analisi dei gruppi

· Analisi delle corrispondenze

· Analisi discriminante

Prerequisiti

Elementi di inferenza asintotica e di statistica descrittiva

Metodi didattici

35 ore di lezioni teoriche frontali, 5 cfu.

Modalità di verifica dell'apprendimento

Report scientifico scritto redatto in INGLESE o in ITALIANO, sulla produzione, in software SPSS, dell'output e suo commento dettagliato dell'applicazione di una o più tecniche presentate nel corso su un dataset concordato con il docente. Superata tale prova, è previsto un colloquio orale sulla parte di teoria.

Si fa riferimento al seguente modello do prova presente nelle linee guida alla composizione del sullabus:

• ANALISI DI CASO (Descrizione di situazione o esempio reale di cui si analizzano le interconnessioni
fra i diversi elementi/variabili alla luce di una o più paradigmi teorici)

Testi di riferimento

Materiale disponibile in piattaform a e-learning

In alternativa, in lingua inglese:

- G. Chow, ECONOMETRICS, Mc-Graw Hill,

chapter on "general linear regression", only

- W. Hardle, L. Simar APPLIED MULTIVARIATE STATISTICAL ANALYSIS, Method & Data Tecnologies ed.

chapters 11, 13, 14, 15, 22 (in 2019-20 edition)

Periodo di erogazione dell'insegnamento

Primo semestre

Lingua di insegnamento

Italiano

Sustainable Development Goals

SALUTE E BENESSERE | ISTRUZIONE DI QUALITÁ | ENERGIA PULITA E ACCESSIBILE | LAVORO DIGNITOSO E CRESCITA ECONOMICA | IMPRESE, INNOVAZIONE E INFRASTRUTTURE | CITTÀ E COMUNITÀ SOSTENIBILI | CONSUMO E PRODUZIONE RESPONSABILI | LOTTA CONTRO IL CAMBIAMENTO CLIMATICO | PACE, GIUSTIZIA E ISTITUZIONI SOLIDE
Export

Learning objectives

The course aims to present to students the statistical methods, that are typically applied to multivariate data.

Contents

Multivariate statistical data analysis

Detailed program

· Multiple linear Regression

· Principal Components Analysis

· Cluster Analysis

· Correspondences Analysis

· Dicriminant Analysis

Prerequisites

Elements of asymptotic inference and descriptive statistics

Teaching methods

35 hours of theoretical lectures, 5 cfu, in physical presence.

Assessment methods

A paper (report), written in ENGLISH or in ITALIANO on an application on a data set of one or two tools presented in the course, by producing, in SPSS softwre, the output and developing a punctual comment on it Then, the student will have a theoretical talk about the course program.

Following the guidelines for writing the syllabus, the exam consists of a CASE ANALYSIS, the description of a real situation or example of which the connection between different elements are discusse and analyzed with respect to one or more technical paradigms.

Textbooks and Reading Materials

In italian:

Slides in e-learning website

In english:

- G. Chow, ECONOMETRICS, Mc Graw Hill,

chapter on "general linear regression", only

- W. Hardle, L. Simar APPLIED MULTIVARIATE STATISTICAL ANALYSIS, Method & Data Tecnologies ed.

chapters 11, 13, 14, 15, 22 (in 2019-20 edition)

Semester

First Semester

Teaching language

Italian

Sustainable Development Goals

GOOD HEALTH AND WELL-BEING | QUALITY EDUCATION | AFFORDABLE AND CLEAN ENERGY | DECENT WORK AND ECONOMIC GROWTH | INDUSTRY, INNOVATION AND INFRASTRUCTURE | SUSTAINABLE CITIES AND COMMUNITIES | RESPONSIBLE CONSUMPTION AND PRODUCTION | CLIMATE ACTION | PEACE, JUSTICE AND STRONG INSTITUTIONS
Enter

Key information

Field of research
SECS-S/01
ECTS
5
Term
First semester
Activity type
Mandatory
Course Length (Hours)
35
Degree Course Type
2-year Master Degreee
Language
Italian

Staff

    Teacher

  • Alessandro Zini
    Alessandro Zini
  • Tutor

  • Francesco Santoro
    Francesco Santoro

Enrolment methods

Manual enrolments
Self enrolment (Student)

Sustainable Development Goals

GOOD HEALTH AND WELL-BEING - Ensure healthy lives and promote well-being for all at all ages
GOOD HEALTH AND WELL-BEING
QUALITY EDUCATION - Ensure inclusive and equitable quality education and promote lifelong learning opportunities for all
QUALITY EDUCATION
AFFORDABLE AND CLEAN ENERGY - Ensure access to affordable, reliable, sustainable and modern energy for all
AFFORDABLE AND CLEAN ENERGY
DECENT WORK AND ECONOMIC GROWTH - Promote sustained, inclusive and sustainable economic growth, full and productive employment and decent work for all
DECENT WORK AND ECONOMIC GROWTH
INDUSTRY, INNOVATION AND INFRASTRUCTURE - Build resilient infrastructure, promote inclusive and sustainable industrialization and foster innovation
INDUSTRY, INNOVATION AND INFRASTRUCTURE
SUSTAINABLE CITIES AND COMMUNITIES - Make cities and human settlements inclusive, safe, resilient and sustainable
SUSTAINABLE CITIES AND COMMUNITIES
RESPONSIBLE CONSUMPTION AND PRODUCTION - Ensure sustainable consumption and production patterns
RESPONSIBLE CONSUMPTION AND PRODUCTION
CLIMATE ACTION - Take urgent action to combat climate change and its impacts
CLIMATE ACTION
PEACE, JUSTICE AND STRONG INSTITUTIONS - Promote peaceful and inclusive societies for sustainable development, provide access to justice for all and build effective, accountable and inclusive institutions at all levels
PEACE, JUSTICE AND STRONG INSTITUTIONS

You are currently using guest access (Log in)
Policies
Get the mobile app
Powered by Moodle
© 2025 Università degli Studi di Milano-Bicocca
  • Privacy policy
  • Accessibility
  • Statistics